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Introduction 

Def.  Finite undirected graph is an ordered pair  G =  (V, E), where: 
   V = {v1, v2, …, vn}  is finite set of vertices 
   E = {e1, e2, …, em} is finite set of undirected edges and each element ek  E 
(k = 1, 2, …, m) is unordered pair {vi, vj}, vi, vj  V, 1  i, j  n. 
 

 

Def.  Let G = (V, E) be a graph and V ’  V. If we remove from E every edges 
{vi, vj} , such that vi  V ’ or vj  V ’, ďut the otheƌs ƌeŵaiŶ, theŶ G’;V’,E’Ϳ is 
called a subgraph of G.  
 



Introduction 

Def. Let G = (V, E) be a graph, such that {vi, vj}  E,  

for  vi, vj  V, i ≠  j. Then G is called complete. 
 

Def. Let G’=;V’,E’Ϳ ďe a Đoŵplete suďgƌaph of G = (V, E), V ’  V. Then 
G is called clique or m-clique, if |V ’| = m. A maximum clique is a 
clique of the largest possible size m in a graph G.  
 

 

// maximal clique is a clique that cannot be enlarged // 
 



Some clique problems 

- finding the maximum clique (with the largest number of 
vertices); 
- solving the decision problem of testing whether a graph 
contains a clique larger than a given size; 
- // finding all maximal cliques. 
 

We choose one of the most efficient algorithms for finding  
maximum clique [4-Cliquer] and trying to implement it in 
parallel. 



Cliquer – description 

•  G(V, E) , |V| = n 

•  V = {v1, v2 ,…, vn} 
•  Si = {vi, vi+1 ,…, vn}  
•  N(vi) – set of vertices adjacent to a vertex  vi . 

•  c[n] – array contains largest clique in Si for vi 

 

Func  { 
          max : = 0 

          for  i : = n downto 1 

          {     found : = false 

                 clique (Si N(vi),  1) 
                 c[i] : = max 

          } 
  } 



clique (U, tsize){ 
 if  ( |U| = 0  && tsize > max) 
 {            max : = tsize  
  /save the solution/  
  return  
 } 
 while(U ≠ 0 ){ 
  if (tsize + |U|  max) { return } 
   i : = min { j | vj  U} 
  if (tsize + c[i]  max) { return } 
  U : = U \ {vi} 
   clique (U  N(vi), size + 1) 
  if (found = true) {return}   

 } 
} 
 



 

 

 

 

 

 

 

 

 

 

 

 

Let vi is contained in tsize - clique and  
N(vi) = {vi1,…,  vij,..., viк} 
--> We search for m - clique 

        if (tsize + c[ij]  m) --> true 

 --> vij is not proper. 



Parallel implementation 
 

 

 

• Using MPI library (Message Passing Interface) with C. 
• SPMD (Single Program Multiple Data) model. 
• Master/worker strategy. 
• Blocking or nonblocking communication. 
 

 

 

 



lMPI 

lMaster/worker strategy 



Known implementations 

•Single process works on fixed branch of the searching 
tree [7]. 
  



Our implementation 

•Each next vertex of a graph is given to separate process  Pi 

(All processes operate simultaneously for different vertices 

with corresponding search trees).  
 



tmax – the size of current maximum clique. 
F – position of the last vertex  (that work has been completed). 

Pi – worker process responsible to find a clique in Si (which contains vi) with size 

greater than maxl, but not larger than maxu, keeps this value in maxl and sends it to 

the master . 

 
Cliquer searches a clique with size plus 1 than the current, and if the next joined 

vertex does not participate in bigger clique, it will be not proper. 

 
In our case we are searching for maximum clique with size m’, where   
maxl < m’  maxu.  We use two bounds maxl and maxu, because the processes before 
Pi are still working and their results are undefined. 

 



Worker statement 

U : array of sets 
found: boolean 

size, i , maxl, maxu: integer 
maxl  - lower bound, maxu – upper bound 

C[n], Si, N(vi) – the same like in a Cliquer algorithm 
 

Mainclique(i, maxl, maxu) 
 { 
  found:= false; 
 U[0] := {Si N(vi)}; 
  cliquep(1, maxl, maxu); 
 } 



cliquep (size, maxl, maxu) 
{ 
     if |U[size − ϭ]| = Ϭ theŶ 

     { 
           if (size > maxl) then 

           { 
                 maxl:=size; 
                 if (maxl = maxu) then found:=true; 
           } 
     } 
     while |U[size − ϭ]| <> Ϭ do 

     { 
             if (size + |U[size − ϭ]|  maxl) then return; 
             i := min{ j : vj  U [size − ϭ]}; 
             if (( size + C [i] )  maxl) then return; 
             U[size − ϭ] := U[size − ϭ] \ {vi}; 
             U[size] := { U[size − ϭ]  N(vi) }; 
             cliquep (size+1, maxl, maxu); 
             if (found = true) then return; 
      } 
} 



• Any worker receives values of i, maxl, maxu and information to 
improve the local array C from the master. 
• Master sends values of i, maxl, maxu, C and receives the 
obtained value of maxl from any worker. 
 

There are two versions of this implementation: 
 

*  Master waits for a response from the process which has 
received his work first. Here the assumption is that the work on 
the vertex with smaller index will be heavier in the most of the 
cases. (blocking communication) 
 

**  Master gives work to  the first ready process. (nonblocking 
communication) 



Clique_paralel* (G(V,E)); 
{ 
     if (master) 
     {       Send initial work for all workers; 
              work := |V|- numworkers; 
              while (work>0) do 

               {       wait_message_from_next; 
                        receive_from_next (maxl,workdone,workernum); 
                        update C; 
                        fiŶd "ŵaxl"’ aŶd "ŵaxu" foƌ ĐuƌƌeŶt "woƌk"; 
                        send_to_workernum(maxl, maxu, work, info for C); 
                        work:=work-1; 
              } 
      } 
      if (worker) 
      {while (work>0) do 

          { 
                 receive_from_master(maxl, maxu, work, info for C); 
                 update C; 
                 Mainclique(work, maxl, maxu); 
                 send_to_master(maxl, workdone, workernum); 
          } 
      } 
} 



Clique_paralel** (G(V,E)); 
{ 
     if (master) 
     {       Send initial work for all workers; 
              work := |V|- numworkers; 
              while (work>0) do 

               { 
                        receive_from_any (maxl,workdone,workernum); 
                        update C; 
                        fiŶd "ŵaxl"’ aŶd "ŵaxu" foƌ ĐuƌƌeŶt "woƌk"; 
                        send_to_workernum(maxl, maxu, work, info for C); 
                        work:=work-1; 
              } 
      } 
      if (worker) 
      {while (work>0) do 

          { 
                 receive_from_master(maxl, maxu, work, info for C); 
                 update C; 
                 Mainclique(work, maxl, maxu); 
                 send_to_master(maxl, workdone, workernum); 
          } 
      } 
} 



Experimental results 

We use graphs Gp,q with the following property: The vertex set 
is V = {v1, v2, . . . , vp}. There is an edge from vi to vj if and only if 
the Hamming distance between the binary representations of i 
and j is laƌgeƌ thaŶ Ƌ − ϭ. 



Experimental results 
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