
About parallelization of an
algorithm for the maximum

clique problem

Iliya Bouyukliev, Venelin Monev,
Maria Dzhumalieva-Stoeva

Albena, 2013

Introduction

Def. Finite undirected graph is an ordered pair G = (V, E), where:
 V = {v1, v2, …, vn} is finite set of vertices
 E = {e1, e2, …, em} is finite set of undirected edges and each element ek E
(k = 1, 2, …, m) is unordered pair {vi, vj}, vi, vj V, 1 i, j n.

Def. Let G = (V, E) be a graph and V ’ V. If we remove from E every edges
{vi, vj} , such that vi V ’ or vj V ’, ďut the otheƌs ƌeŵaiŶ, theŶ G’;V’,E’Ϳ is
called a subgraph of G.

Introduction

Def. Let G = (V, E) be a graph, such that {vi, vj} E,

for vi, vj V, i ≠ j. Then G is called complete.

Def. Let G’=;V’,E’Ϳ ďe a Đoŵplete suďgƌaph of G = (V, E), V ’ V. Then
G is called clique or m-clique, if |V ’| = m. A maximum clique is a
clique of the largest possible size m in a graph G.

// maximal clique is a clique that cannot be enlarged //

Some clique problems

- finding the maximum clique (with the largest number of
vertices);
- solving the decision problem of testing whether a graph
contains a clique larger than a given size;
- // finding all maximal cliques.

We choose one of the most efficient algorithms for finding
maximum clique [4-Cliquer] and trying to implement it in
parallel.

Cliquer – description

• G(V, E) , |V| = n

• V = {v1, v2 ,…, vn}
• Si = {vi, vi+1 ,…, vn}
• N(vi) – set of vertices adjacent to a vertex vi .

• c[n] – array contains largest clique in Si for vi

Func {
 max : = 0

 for i : = n downto 1

 { found : = false

 clique (Si N(vi), 1)
 c[i] : = max

 }
 }

clique (U, tsize){
 if (|U| = 0 && tsize > max)
 { max : = tsize
 /save the solution/
 return
 }
 while(U ≠ 0){
 if (tsize + |U| max) { return }
 i : = min { j | vj U}
 if (tsize + c[i] max) { return }
 U : = U \ {vi}
 clique (U N(vi), size + 1)
 if (found = true) {return}

 }
}

Let vi is contained in tsize - clique and
N(vi) = {vi1,…, vij,..., viк}
--> We search for m - clique

 if (tsize + c[ij] m) --> true

 --> vij is not proper.

Parallel implementation

• Using MPI library (Message Passing Interface) with C.
• SPMD (Single Program Multiple Data) model.
• Master/worker strategy.
• Blocking or nonblocking communication.

lMPI

lMaster/worker strategy

Known implementations

•Single process works on fixed branch of the searching
tree [7].

Our implementation

•Each next vertex of a graph is given to separate process Pi

(All processes operate simultaneously for different vertices

with corresponding search trees).

tmax – the size of current maximum clique.
F – position of the last vertex (that work has been completed).

Pi – worker process responsible to find a clique in Si (which contains vi) with size

greater than maxl, but not larger than maxu, keeps this value in maxl and sends it to

the master .

Cliquer searches a clique with size plus 1 than the current, and if the next joined

vertex does not participate in bigger clique, it will be not proper.

In our case we are searching for maximum clique with size m’, where
maxl < m’ maxu. We use two bounds maxl and maxu, because the processes before
Pi are still working and their results are undefined.

Worker statement

U : array of sets
found: boolean

size, i , maxl, maxu: integer
maxl - lower bound, maxu – upper bound

C[n], Si, N(vi) – the same like in a Cliquer algorithm

Mainclique(i, maxl, maxu)
 {
 found:= false;
 U[0] := {Si N(vi)};
 cliquep(1, maxl, maxu);
 }

cliquep (size, maxl, maxu)
{
 if |U[size − ϭ]| = Ϭ theŶ

 {
 if (size > maxl) then

 {
 maxl:=size;
 if (maxl = maxu) then found:=true;
 }
 }
 while |U[size − ϭ]| <> Ϭ do

 {
 if (size + |U[size − ϭ]| maxl) then return;
 i := min{ j : vj U [size − ϭ]};
 if ((size + C [i]) maxl) then return;
 U[size − ϭ] := U[size − ϭ] \ {vi};
 U[size] := { U[size − ϭ] N(vi) };
 cliquep (size+1, maxl, maxu);
 if (found = true) then return;
 }
}

• Any worker receives values of i, maxl, maxu and information to
improve the local array C from the master.
• Master sends values of i, maxl, maxu, C and receives the
obtained value of maxl from any worker.

There are two versions of this implementation:

* Master waits for a response from the process which has
received his work first. Here the assumption is that the work on
the vertex with smaller index will be heavier in the most of the
cases. (blocking communication)

** Master gives work to the first ready process. (nonblocking
communication)

Clique_paralel* (G(V,E));
{
 if (master)
 { Send initial work for all workers;
 work := |V|- numworkers;
 while (work>0) do

 { wait_message_from_next;
 receive_from_next (maxl,workdone,workernum);
 update C;
 fiŶd "ŵaxl"’ aŶd "ŵaxu" foƌ ĐuƌƌeŶt "woƌk";
 send_to_workernum(maxl, maxu, work, info for C);
 work:=work-1;
 }
 }
 if (worker)
 {while (work>0) do

 {
 receive_from_master(maxl, maxu, work, info for C);
 update C;
 Mainclique(work, maxl, maxu);
 send_to_master(maxl, workdone, workernum);
 }
 }
}

Clique_paralel** (G(V,E));
{
 if (master)
 { Send initial work for all workers;
 work := |V|- numworkers;
 while (work>0) do

 {
 receive_from_any (maxl,workdone,workernum);
 update C;
 fiŶd "ŵaxl"’ aŶd "ŵaxu" foƌ ĐuƌƌeŶt "woƌk";
 send_to_workernum(maxl, maxu, work, info for C);
 work:=work-1;
 }
 }
 if (worker)
 {while (work>0) do

 {
 receive_from_master(maxl, maxu, work, info for C);
 update C;
 Mainclique(work, maxl, maxu);
 send_to_master(maxl, workdone, workernum);
 }
 }
}

Experimental results

We use graphs Gp,q with the following property: The vertex set
is V = {v1, v2, . . . , vp}. There is an edge from vi to vj if and only if
the Hamming distance between the binary representations of i
and j is laƌgeƌ thaŶ Ƌ − ϭ.

Experimental results

References
[1] I. Bouyukliev and E. Jakobsson, Results on binary linear codes with minimum distance
 8 and 10, IEEE Trans. Inform. Theory, 57, 6089–6093,
 2011.
[2] S.A. Cook, The Complexity of Theorem Proving Procedures, in STOC ’71: Proceedings
 of the third annual ACM symposium on Theory of computing, Shaker Heights, Ohio,
 United States, 1971, 151– 158.
[3] W. Gropp, E. Lusk and A. Skjellum, UsingMPI: Portable parallel programming with the

 message-passing Interface, The MIT Press, 1994.
[4] P.R. J. Östergård, A fast algorithm for the maximum clique problem, Discrete Applied

 Mathematics, 120, 197–207, 2002.
[5] CP.R.J. Östergård, Constructing combinatorial objects via cliques, in: Surveys in

 Combinatorics, B. S. Webb (Editor), Cambridge University Press, Cambridge, 57–82,
 2005.
[6] P. R. J. Östergård, T. Baicheva and E. Kolev, Optimal binary One-Error-Correcting codes
 of length 10 have 72 codewords, IEEE Trans. Inform. Theory, 45, 1229–1231, 1999.

[7] Chad Brewbaker, Parallel implementation of the CLIQUER algorithm for the computing
 the MAX CLIQUE of a random graph of order 900, 2005.

[8] P. S. Pacheco, Parallel programming with MPI, San Francisco, Calif.: Morgan Kaufmann
 Publishers, 1997.

