On McEliece's Result about Divisibility of the Weights in the Binary Reed-Muller Codes

Yuri Borissov

Department of Mathematical Foundations of Informatics IMI, BAS, Bulgaria

September 7, 2013

- Introduction
- Boolean Algebra Background
- Results and Sketch of Proofs

- the binary Reed-Muller (RM) codes
 - one of the oldest families of codes (1950's)
 - easy to decode (majority-logic circuits)

- the binary Reed-Muller (RM) codes
 - one of the oldest families of codes (1950's)
 - easy to decode (majority-logic circuits)
- but few general results for the weight structure:
 - weight distribution of RM codes known for
 - the 1st and 2nd-order by Sloane & Berlekamp (1970)
 - arbitrary order when $w \le 2.5 d_{min}$ by Kasami et al. (1976).
 - weight divisibility: McEliece's theorem (1971).

Theorem 1.

(McEliece) All weights in RM(r, m) are multiples of $2^{[(m-1)/r]}$.

applied, for instance,

• by H. van Tilborg (1971) for investigating the weight spectrums of *RM*(3,8) and *RM*(3,9)

Theorem 1.

(McEliece) All weights in RM(r, m) are multiples of $2^{[(m-1)/r]}$.

applied, for instance,

- by H. van Tilborg (1971) for investigating the weight spectrums of *RM*(3,8) and *RM*(3,9)
- to prove a recent conjecture by Cusick & Cheon on balanced words in RM(r, m), when $r \ge (m 1)/2$.

(at least) two proofs of McEliece's theorem are known:

 the original one, due to McEliece using the fact that *RM* codes are extended cyclic codes and difficult to prove theorem on divisibility of cyclic codes in terms of their nonzeros (MacWilliams & Sloane, p. 447) (at least) two proofs of McEliece's theorem are known:

- the original one, due to McEliece using the fact that *RM* codes are extended cyclic codes and difficult to prove theorem on divisibility of cyclic codes in terms of their nonzeros (MacWilliams & Sloane, p. 447)
- due to van Lint (1971), based on specific fact about the zeros of binary polynomials of many variables.

in this work, we:

 present an alternative proof in terms of Boolean functions and their weights in this work, we:

- present an alternative proof in terms of Boolean functions and their weights
- show that bound $2^{[(m-1)/r]}$ is tight for every $r \le m$ by constructing codewords of relevant weight.

1

• Boolean function *f* on *m* variables is a mapping from \mathbb{F}_2^m into \mathbb{F}_2 , where $\mathbb{F}_2 = \{0, 1\}$

- Boolean function f on m variables is a mapping from \mathbb{F}_2^m into \mathbb{F}_2 , where $\mathbb{F}_2 = \{0, 1\}$
- any function f is uniquely expressed as a polynomial called algebraic normal form of f: ANF(f)

- Boolean function f on m variables is a mapping from \mathbb{F}_2^m into \mathbb{F}_2 , where $\mathbb{F}_2 = \{0, 1\}$
- any function f is uniquely expressed as a polynomial called algebraic normal form of f: ANF(f)
- the greatest degree of monomial present in ANF(f) is called algebraic degree of f: deg(f)

- Boolean function f on m variables is a mapping from \mathbb{F}_2^m into \mathbb{F}_2 , where $\mathbb{F}_2 = \{0, 1\}$
- any function f is uniquely expressed as a polynomial called algebraic normal form of f: ANF(f)
- the greatest degree of monomial present in ANF(f) is called algebraic degree of f: deg(f)
- the number of nonzero values of the function f is called weight of f: wt(f).

the necessary properties of Boolean functions:

• $\mathcal{P}1$: For arbitrary Boolean function *f* it holds $f^2 = f$.

the necessary properties of Boolean functions:

- $\mathcal{P}1$: For arbitrary Boolean function *f* it holds $f^2 = f$.
- *P*2: Let *g* be a monomial which is product of *n* ≥ 2 monomials *g*₁, *g*₂, ... *g_n*. Then

 $deg(g) \leq \sum_{i=1}^{n} deg(g_i),$

and equality holds if and only if the sets of essential variables of any pair (g_i, g_j) are disjoint.

the necessary properties of Boolean functions:

- $\mathcal{P}1$: For arbitrary Boolean function *f* it holds $f^2 = f$.
- *P*2: Let *g* be a monomial which is product of *n* ≥ 2 monomials *g*₁, *g*₂, ... *g_n*. Then

 $deg(g) \leq \sum_{i=1}^{n} deg(g_i),$

and equality holds if and only if the sets of essential variables of any pair (g_i, g_j) are disjoint.

*P*3: The weight of any monomial g on m variables equals to 2^{m-deg(g)}. the subset of all Boolean functions on *m* variables with degree at most *r* (the set of their truth tables) is called **binary Reed-Muller code** of order *r* and length 2^m, denoted by *RM*(*r*, *m*)

- the subset of all Boolean functions on *m* variables with degree at most *r* (the set of their truth tables) is called **binary Reed-Muller code** of order *r* and length 2^{*m*}, denoted by *RM*(*r*, *m*)
- the RM(r, m) code has dimension $\sum_{i=0}^{r} {m \choose i}$ and minimum distance $d_{min} = 2^{m-r}$.

Proposition 2.

+(

Let g_1, g_2, \ldots, g_n be n arbitrary Boolean functions. Then it holds

$$wt(\sum_{i=1}^{n} g_i) = \sum_{i=1}^{n} wt(g_i) - 2\sum_{i,j} wt(g_ig_j) + \dots$$
(1)
$$-2)^{l-1} \sum_{i_1, i_2, \dots, i_l} wt(g_{i_1}g_{i_2} \dots g_{i_l}) + \dots + (-2)^{n-1} wt(g_1g_2 \dots g_n)$$

Proof: by induction on *n* using the well-known fact:

$$wt(g_1+g_2)=wt(g_1)+wt(g_2)-2wt(g_1g_2)$$

Remarks

- the above proposition is analogous to the inclusionexclusion principle from elementary combinatorics
- a powerful technique called combinatorial polarization related to this proposition was developed by H.Ward (1979, 1990) to study the divisibility of group-algebra codes.

Lemma 3.

Let $f \in RM(r, m)$. Then (up to sign) the terms involving the products of I monomials from equation (1) applied for the ANF(f), are powers of 2 not less than $2^{m-(r-1)/-1}$.

Proof: by properties P3 and P2 for the weight of product g = g₁...g_l of *l* monomials present in the ANF(f), we have:

$$wt(g) = 2^{m-deg(g)} \ge 2^{m-\sum_{i=1}^{l} deg(g_i)} \ge 2^{m-rl}.$$

Lemma 3.

Let $f \in RM(r, m)$. Then (up to sign) the terms involving the products of I monomials from equation (1) applied for the ANF(f), are powers of 2 not less than $2^{m-(r-1)/-1}$.

Proof: by properties P3 and P2 for the weight of product g = g₁...g_l of *l* monomials present in the ANF(f), we have:

$$\mathit{wt}(g) = 2^{m-\mathit{deg}(g)} \geq 2^{m-\sum_{i=1}^l \mathit{deg}(g_i)} \geq 2^{m-rl}.$$

• Note: the above estimate is nontrivial if $I \le \alpha$, where $\alpha = [(m-1)/r]$

Proof of McEliece's theorem

4

recall that $\alpha = [(m-1)/r]$.

for the proof is sufficient to show that all terms in equation (1) applied for the ANF(f) with I ≤ α, are powers of 2 not less than 2^α.

Proof of McEliece's theorem

recall that $\alpha = [(m-1)/r]$.

- for the proof is sufficient to show that all terms in equation (1) applied for the ANF(f) with I ≤ α, are powers of 2 not less than 2^α.
- but this follows by the previous lemma and easy to check inequality: m − (r − 1)l − 1 ≥ α for those l.

Theorem 4.

Any Reed-Muller code RM(r, m) contains codeword such that the highest power of 2 which divides its weight is exactly 2^{α} , where $\alpha = [(m-1)/r]$.

Proof: we may assume r > 1.

- if $\alpha = 0$, i.e. m = r, $x_1 x_2 \dots x_m$ has weight 1.
- if $\alpha > 0$ and let $f_1 = g_1 + \ldots g_{\alpha}$:
 - each g_i is a monomial of $deg(g_i) = r$;
 - the sets of variables for any (g_i, g_j) , $1 \le i, j \le \alpha$ are disjoint.

let $\beta = m - \alpha r \ge 1$; the proof is split into two cases:

5

Theorem 4.

Any Reed-Muller code RM(r, m) contains codeword such that the highest power of 2 which divides its weight is exactly 2^{α} , where $\alpha = [(m-1)/r]$.

Proof: we may assume r > 1.

- if $\alpha = 0$, i.e. m = r, $x_1 x_2 \dots x_m$ has weight 1.
- if $\alpha > 0$ and let $f_1 = g_1 + \ldots g_{\alpha}$:
 - each g_i is a monomial of $deg(g_i) = r$;
 - the sets of variables for any (g_i, g_j) , $1 \le i, j \le \alpha$ are disjoint.

let $\beta = m - \alpha r \ge 1$; the proof is split into two cases:

- $\beta = 1$, then eq. (1) implies $wt(f_1)$ is suitable;
- β > 1, put f₂ = f₁ + g_{α+1}, where the last monomial is a product of the remaining m − αr = β ≤ r variables; then then eq. (1) implies wt(f₂) is suitable.

Results and Sketch of Proofs

Example 5.

6

•
$$\alpha = 0, m = 3, wt(x_1x_2x_3) = 1$$

• $\alpha = 1,$

$$m = 4, wt(x_1x_2x_3) = 2;$$

$$m = 5, wt(x_1x_2x_3 + x_4x_5) = 10;$$

$$m = 6, wt(x_1x_2x_3 + x_4x_5x_6) = 14$$

•
$$\alpha = 2$$
,
 $m = 7$, $wt(x_1x_2x_3 + x_4x_5x_6) = 28$;
 $m = 8$, $wt(x_1x_2x_3 + x_4x_5x_6 + x_7x_8) = 92$;
 $m = 9$, $wt(x_1x_2x_3 + x_4x_5x_6 + x_7x_8x_9) = 148$

• ...

THANK YOU FOR ATTENTION!

Yuri L. Borissov On McEliece's Result about Divisibility ...