On McEliece's Result about Divisibility of the Weights in the Binary Reed-Muller Codes

Yuri Borissov

Department of Mathematical Foundations of Informatics IMI, BAS, Bulgaria

September 7, 2013

Outline of Topics

- Introduction
- Boolean Algebra Background
- Results and Sketch of Proofs

Introduction

- the binary Reed-Muller (RM) codes
- one of the oldest families of codes (1950's)
- easy to decode (majority-logic circuits)

Introduction

- the binary Reed-Muller (RM) codes
- one of the oldest families of codes (1950's)
- easy to decode (majority-logic circuits)
- but few general results for the weight structure:
- weight distribution of $R M$ codes known for
- the 1st and 2nd-order by Sloane \& Berlekamp (1970)
- arbitrary order when $w \leq 2.5 d_{\text {min }}$ by Kasami et al. (1976).
- weight divisibility: McEliece's theorem (1971).

Introduction

Theorem 1.

(McEliece) All weights in RM(r, m) are multiples of $2^{[(m-1) / r]}$.
applied, for instance,

- by H. van Tilborg (1971) for investigating the weight spectrums of $R M(3,8)$ and $R M(3,9)$

Introduction

Theorem 1.

(McEliece) All weights in RM(r, m) are multiples of $2^{[(m-1) / r]}$. applied, for instance,

- by H. van Tilborg (1971) for investigating the weight spectrums of $R M(3,8)$ and $R M(3,9)$
- to prove a recent conjecture by Cusick \& Cheon on balanced words in $R M(r, m)$, when $r \geq(m-1) / 2$.

Introduction

(at least) two proofs of McEliece's theorem are known:

- the original one, due to McEliece using the fact that RM codes are extended cyclic codes and difficult to prove theorem on divisibility of cyclic codes in terms of their nonzeros (MacWilliams \& Sloane, p. 447)

Introduction

(at least) two proofs of McEliece's theorem are known:

- the original one, due to McEliece using the fact that RM codes are extended cyclic codes and difficult to prove theorem on divisibility of cyclic codes in terms of their nonzeros (MacWilliams \& Sloane, p. 447)
- due to van Lint (1971), based on specific fact about the zeros of binary polynomials of many variables.

Introduction

in this work, we:

- present an alternative proof in terms of Boolean functions and their weights

Introduction

in this work, we:

- present an alternative proof in terms of Boolean functions and their weights
- show that bound $2^{[(m-1) / r]}$ is tight for every $r \leq m$ by constructing codewords of relevant weight.

Boolean Algebra Background

- Boolean function f on m variables is a mapping from \mathbb{F}_{2}^{m} into \mathbb{F}_{2}, where $\mathbb{F}_{2}=\{0,1\}$

Boolean Algebra Background

- Boolean function f on m variables is a mapping from \mathbb{F}_{2}^{m} into \mathbb{F}_{2}, where $\mathbb{F}_{2}=\{0,1\}$
- any function f is uniquely expressed as a polynomial called algebraic normal form of $f: \operatorname{ANF}(f)$

Boolean Algebra Background

- Boolean function f on m variables is a mapping from \mathbb{F}_{2}^{m} into \mathbb{F}_{2}, where $\mathbb{F}_{2}=\{0,1\}$
- any function f is uniquely expressed as a polynomial called algebraic normal form of f : ANF (f)
- the greatest degree of monomial present in $\operatorname{ANF}(f)$ is called algebraic degree of $f: \operatorname{deg}(f)$

Boolean Algebra Background

- Boolean function f on m variables is a mapping from \mathbb{F}_{2}^{m} into \mathbb{F}_{2}, where $\mathbb{F}_{2}=\{0,1\}$
- any function f is uniquely expressed as a polynomial called algebraic normal form of f : ANF (f)
- the greatest degree of monomial present in $\operatorname{ANF}(f)$ is called algebraic degree of $f: \operatorname{deg}(f)$
- the number of nonzero values of the function f is called weight of $f: w t(f)$.

Boolean Algebra Background

the necessary properties of Boolean functions:

- $\mathcal{P} 1$: For arbitrary Boolean function f it holds $f^{2}=f$.

Boolean Algebra Background

the necessary properties of Boolean functions:

- \mathcal{P} 1: For arbitrary Boolean function f it holds $f^{2}=f$.
- \mathcal{P} 2: Let g be a monomial which is product of $n \geq 2$ monomials $g_{1}, g_{2}, \ldots g_{n}$. Then

$$
\operatorname{deg}(g) \leq \sum_{i=1}^{n} \operatorname{deg}\left(g_{i}\right),
$$

and equality holds if and only if the sets of essential variables of any pair (g_{i}, g_{j}) are disjoint.

Boolean Algebra Background

the necessary properties of Boolean functions:

- $\mathcal{P} 1$: For arbitrary Boolean function f it holds $f^{2}=f$.
- $\mathcal{P} 2$: Let g be a monomial which is product of $n \geq 2$ monomials $g_{1}, g_{2}, \ldots g_{n}$. Then

$$
\operatorname{deg}(g) \leq \sum_{i=1}^{n} \operatorname{deg}\left(g_{i}\right)
$$

and equality holds if and only if the sets of essential variables of any pair $\left(g_{i}, g_{j}\right)$ are disjoint.

- $\mathcal{P} 3$: The weight of any monomial g on m variables equals to $2^{m-\operatorname{deg}(g)}$.

Boolean Algebra Background

- the subset of all Boolean functions on m variables with degree at most r (the set of their truth tables) is called binary Reed-Muller code of order r and length 2^{m}, denoted by $R M(r, m)$

Boolean Algebra Background

- the subset of all Boolean functions on m variables with degree at most r (the set of their truth tables) is called binary Reed-Muller code of order r and length 2^{m}, denoted by $R M(r, m)$
- the $R M(r, m)$ code has dimension $\sum_{i=0}^{r}\binom{m}{i}$ and minimum distance $d_{\text {min }}=2^{m-r}$.

Results and Sketch of Proofs

Proposition 2.

Let $g_{1}, g_{2}, \ldots, g_{n}$ be n arbitrary Boolean functions. Then it holds

$$
\begin{equation*}
w t\left(\sum_{i=1}^{n} g_{i}\right)=\sum_{i=1}^{n} w t\left(g_{i}\right)-2 \sum_{i, j} w t\left(g_{i} g_{j}\right)+\ldots \tag{1}
\end{equation*}
$$

$$
+(-2)^{I-1} \sum_{i_{1}, i_{2}, \ldots, i_{l}} w t\left(g_{i_{1}} g_{i_{2}} \ldots g_{i_{I}}\right)+\ldots+(-2)^{n-1} w t\left(g_{1} g_{2} \ldots g_{n}\right)
$$

Proof: by induction on n using the well-known fact:

$$
w t\left(g_{1}+g_{2}\right)=w t\left(g_{1}\right)+w t\left(g_{2}\right)-2 w t\left(g_{1} g_{2}\right)
$$

Results and Sketch of Proofs

Remarks

- the above proposition is analogous to the inclusionexclusion principle from elementary combinatorics
- a powerful technique called combinatorial polarization related to this proposition was developed by H.Ward $(1979,1990)$ to study the divisibility of group-algebra codes.

Results and Sketch of Proofs

Lemma 3.

Let $f \in R M(r, m)$. Then (up to sign) the terms involving the products of I monomials from equation (1) applied for the ANF (f), are powers of 2 not less than $2^{m-(r-1) l-1}$.

- Proof: by properties $\mathcal{P} 3$ and $\mathcal{P} 2$ for the weight of product $g=g_{1} \ldots g_{l}$ of I monomials present in the ANF (f), we have:

$$
w t(g)=2^{m-\operatorname{deg}(g)} \geq 2^{m-\sum_{i=1}^{\prime} \operatorname{deg}\left(g_{i}\right)} \geq 2^{m-r l}
$$

Results and Sketch of Proofs

Lemma 3.

Let $f \in R M(r, m)$. Then (up to sign) the terms involving the products of I monomials from equation (1) applied for the ANF (f), are powers of 2 not less than $2^{m-(r-1) l-1}$.

- Proof: by properties $\mathcal{P} 3$ and $\mathcal{P} 2$ for the weight of product $g=g_{1} \ldots g_{l}$ of I monomials present in the ANF (f), we have:

$$
w t(g)=2^{m-\operatorname{deg}(g)} \geq 2^{m-\sum_{i=1}^{l} \operatorname{deg}\left(g_{i}\right)} \geq 2^{m-r l}
$$

- Note: the above estimate is nontrivial if $I \leq \alpha$, where

$$
\alpha=[(m-1) / r]
$$

Results and Sketch of Proofs

Proof of McEliece's theorem

recall that $\alpha=[(m-1) / r]$.

- for the proof is sufficient to show that all terms in equation (1) applied for the $\operatorname{ANF}(f)$ with $I \leq \alpha$, are powers of 2 not less than $\mathbf{2}^{\alpha}$.

Results and Sketch of Proofs

Proof of McEliece's theorem

recall that $\alpha=[(m-1) / r]$.

- for the proof is sufficient to show that all terms in equation (1) applied for the $\operatorname{ANF}(f)$ with $I \leq \alpha$, are powers of 2 not less than 2^{α}.
- but this follows by the previous lemma and easy to check inequality: $m-(r-1) I-1 \geq \alpha$ for those I.

Results and Sketch of Proofs

Theorem 4.

Any Reed-Muller code RM(r,m) contains codeword such that the highest power of 2 which divides its weight is exactly 2^{α}, where $\alpha=[(m-1) / r]$.

Proof: we may assume $r>1$.

- if $\alpha=0$, i.e. $m=r, x_{1} x_{2} \ldots x_{m}$ has weight 1 .
- if $\alpha>0$ and let $f_{1}=g_{1}+\ldots g_{\alpha}$:
- each g_{i} is a monomial of $\operatorname{deg}\left(g_{i}\right)=r$;
- the sets of variables for any $\left(g_{i}, g_{j}\right), 1 \leq i, j \leq \alpha$ are disjoint. let $\beta=m-\alpha r \geq 1$; the proof is split into two cases:

Results and Sketch of Proofs

Theorem 4.

Any Reed-Muller code RM(r,m) contains codeword such that the highest power of 2 which divides its weight is exactly 2^{α}, where $\alpha=[(m-1) / r]$.

Proof: we may assume $r>1$.

- if $\alpha=0$, i.e. $m=r, x_{1} x_{2} \ldots x_{m}$ has weight 1 .
- if $\alpha>0$ and let $f_{1}=g_{1}+\ldots g_{\alpha}$:
- each g_{i} is a monomial of $\operatorname{deg}\left(g_{i}\right)=r$;
- the sets of variables for any $\left(g_{i}, g_{j}\right), 1 \leq i, j \leq \alpha$ are disjoint. let $\beta=m-\alpha r \geq 1$; the proof is split into two cases:
- $\beta=1$, then eq. (1) implies $w t\left(f_{1}\right)$ is suitable;
- $\beta>1$, put $f_{2}=f_{1}+g_{\alpha+1}$, where the last monomial is a product of the remaining $m-\alpha r=\beta \leq r$ variables; then then eq. (1) implies $w t\left(f_{2}\right)$ is suitable.

Results and Sketch of Proofs

Example 5.

$$
r=3
$$

- $\alpha=0, m=3, w t\left(x_{1} x_{2} x_{3}\right)=1$
- $\alpha=1$,
$m=4, w t\left(x_{1} x_{2} x_{3}\right)=2$;
$m=5, w t\left(x_{1} x_{2} x_{3}+x_{4} x_{5}\right)=10 ;$
$m=6, w t\left(x_{1} x_{2} x_{3}+x_{4} x_{5} x_{6}\right)=14$
- $\alpha=2$,
$m=7, w t\left(x_{1} x_{2} x_{3}+x_{4} x_{5} x_{6}\right)=28 ;$
$m=8, w t\left(x_{1} x_{2} x_{3}+x_{4} x_{5} x_{6}+x_{7} x_{8}\right)=92 ;$
$m=9, w t\left(x_{1} x_{2} x_{3}+x_{4} x_{5} x_{6}+x_{7} x_{8} x_{9}\right)=148$
- ...

The End

THANK YOU FOR ATTENTION!

