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n-cap =-a set of n points no three of which are collinear
a line meeting a cap = tangent or bisecant

bisecant = a line intersecting a cap in two points

a point A of PG(3,q) is covered by a cap =
A lies on a bisecant of the cap

complete cap =- all points of PG(3, q) are covered
by bisecants of the cap

= one may not add a new point to a complete cap
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t_'2(3, q) = the smallest known size of a complete cap in PG(3, q)

including computer search

t(3,9) < t(3,q)

exact values of t,(3,q) for g <7

G. Faina, S. Marcugini, A. Milani, F. Pambianco  Ars Combinatoria 1998
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KNOWN BOUNDS on (3, q)

trivial lower bound  t(3,9) > v2q Vg



KNOWN BOUNDS on (3, q)

trivial lower bound  t(3,9) > v2q Vg

upper bounds

(2g+t(2,q) qeven ¥
3q q <17 *
t2(37 q) < <
4q q <89 *
| 11q g < 30000 * *x
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Algorithm FOP (fixed order of points)

Algorithm FOP

FOP = Fixed Order of Points
Points of PG(3, q) are ordered: A1, Ay, ..., Aq3+q2+q+1
ALGORITHM KW {Al} K@ = {A;, A},
KU = U {Am(_/)}a

m(j) is the minimum index such that the
corresponding point is not covered by KU),



New upper bounds on t2(3, q)

NEW UPPER BOUNDS on t(3,q) Notation

Algorithm FOP with lexicographical order of points
represented in homogenous coordinates

R = a set of 400 prime in the interval [3,3109]

1
dup(q) = m + 0.7
1

= 0.6
21n(0.01-q) ©

eup(q)
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NEW UPPER BOUNDS on t,(3, q)

5q if g <223
6q if g <3109
glng if 127 < g < 3109

t2(3,q) < g1n® g if 787 < q <3109

0up(q)gIng if 101 < g < 3109
gn® (9 g if g<3109

geER




sizes of caps

New upper bounds on t2(3, q)

NEW bounds based on a DEGREE OF LOGARITHM of g
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¢up(Q) - m + 0.7
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on DECREASING DEGREE OF LOGARITHM of g

CDL-bound = upper bound with a constant degree
of log g

DDL-bound = upper bound with a decreasing degree
of log g

| DDL-bounds are more convenient |

DDL-bound and computer results (3, g) almost
coalesce but always DDL-bound > (3, q)
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NEW bound based on a DECREASING DEGREE OF In g

:54_8;‘ (1nq)¢up(q) > {2(2"])
4.6
4.4
42 (,bup(Q)— 021nq+07
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New upper bounds on t2(3, q)
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