ション ふゆ メ リン イロン シックション

New upper bounds on the smallest size of a complete cap in the space PG(3, q)

Daniele Bartoli* Alexander A. Davydov[@] Giorgio Faina* Stefano Marcugini* Fernanda Pambianco*

- Institute for Information Transmission Problems (Kharkevich Institute), Russian Academy of Science, Moscow, Russia
 - * Department of Mathematics and Informatics, Perugia University, Perugia, Italy

Seventh International Workshop on Optimal Codes and Related Topics, OC 2013, Albena, Bulgaria, September 6-12, 2013

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ 三臣 - のへで

 $PG(3, q) \Rightarrow$ projective space of dimension 3 over Galois field F_q

n-cap \Rightarrow a set of n points no three of which are collinear a line meeting a cap \Rightarrow tangent or bisecant

bisecant \Rightarrow a line intersecting a cap in two points

a **point** A of PG(3, q) is **covered** by a cap \Rightarrow A lies on a **bisecant** of the cap

complete cap \Rightarrow all points of PG(3, q) are covered by bisecants of the cap \Rightarrow one may not add a new point to a complete cap

 $PG(3, q) \Rightarrow$ projective space of dimension 3 over Galois field F_q

n-cap \Rightarrow a set of n points no three of which are collinear a line meeting a cap \Rightarrow tangent or bisecant

bisecant \Rightarrow a line intersecting a cap in two points

a **point** A of PG(3, q) is **covered** by a cap \Rightarrow A lies on a **bisecant** of the cap

complete cap \Rightarrow all points of PG(3, q) are covered by bisecants of the cap \Rightarrow one may not add a new point to a complete cap

ション ふゆ メ リン イロン シックション

INTRODUCTION NOTATION

 $t_2(3, q) \Rightarrow$ the smallest size of a complete cap in PG(3, q)

HARD OPEN CLASSICAL PROBLEM: 1950 \rightarrow exact value or upper bound on $t_2(3, q)$

 $t_2(3, q) \Rightarrow$ the smallest known size of a complete cap in PG(3, q)including computer search

 $t_2(3,q) \leq \overline{t}_2(3,q)$

exact values of $t_2(3, q)$ for $q \leq 7$

G. Faina, S. Marcugini, A. Milani, F. Pambianco Ars Combinatoria 19

 $t_2(3, q) \Rightarrow$ the smallest size of a complete cap in PG(3, q)

HARD OPEN CLASSICAL PROBLEM: 1950 \rightarrow exact value or upper bound on $t_2(3, q)$

 $\overline{t}_2(3, q) \Rightarrow$ the smallest known size of a complete cap in PG(3, q)including computer search

 $t_2(3,q) \leq \overline{t}_2(3,q)$

exact values of $t_2(3, q)$ for $q \leq 7$

G. Faina, S. Marcugini, A. Milani, F. Pambianco Ars Combinatoria 1

▲□▶ ▲圖▶ ▲目▶ ▲目▶ = 目 - のへで

 $t_2(3, q) \Rightarrow$ the smallest size of a complete cap in PG(3, q)

HARD OPEN CLASSICAL PROBLEM: 1950 \rightarrow exact value or upper bound on $t_2(3, q)$

 $\overline{t}_2(3, q) \Rightarrow$ the smallest known size of a complete cap in PG(3, q)including computer search

 $t_2(3,q) \leq \overline{t}_2(3,q)$

exact values of $t_2(3, q)$ for $q \leq 7$

G. Faina, S. Marcugini, A. Milani, F. Pambianco

Ars Combinatoria 1998

ション ふゆ メ リン イロン シックション

Introduction

KNOWN BOUNDS on $t_2(3, q)$

trivial lower bound $t_2(3,q) > \sqrt{2}q \quad \forall q$

 $t_2(3,q) \leq \begin{cases} 2q+t_2(2,q) & q \text{ even} \\ 3q & q \leq 17 \\ 4q & q \leq 80 \\ 11q \end{cases}$

* F. Pambianco, L. Storme, A.A. Davydov, S. Marcugini 1995–2009
** A.A. Davydov, G. Faina, S. Marcugini, F. Pambianco 2009
*** D. Bartoli, G. Faina, M. Giulietti, Finite Fields & Applications, to appear

Introduction

KNOWN BOUNDS on $t_2(3, q)$

trivial lower bound $t_2(3,q) > \sqrt{2}q \quad \forall q$

upper bounds

$$t_2(3,q) \leq \begin{cases} 2q + t_2(2,q) & q \text{ even } * \\ 3q & q \leq 17 & ** \\ 4q & q \leq 89 & ** \\ 11q & q < 30000 & *** \end{cases}$$

* F. Pambianco, L. Storme, A.A. Davydov, S. Marcugini 1995–2009
** A.A. Davydov, G. Faina, S. Marcugini, F. Pambianco 2009
*** D. Bartoli, G. Faina, M. Giulietti, Finite Fields & Applications, to appear

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

Algorithm FOP

FOP \Rightarrow Fixed Order of Points Points of PG(3, q) are ordered: $A_1, A_2, \dots, A_{q^3+q^2+q+1}$ ALGORITHM $K^{(1)} = \{A_1\}$ $K^{(2)} = \{A_1, A_2\}$

ALGORITHM
$$\mathcal{K}^{(1)} = \{A_1\}, \quad \mathcal{K}^{(2)} = \{A_1, A_2\},$$

 $\mathcal{K}^{(j+1)} = \mathcal{K}^{(j)} \cup \{A_{m(j)}\},$

m(j) is the minimum index such that the corresponding point is not covered by $K^{(j)}$.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

NEW UPPER BOUNDS on $t_2(3, q)$ Notation

Algorithm FOP with lexicographical order of points represented in homogenous coordinates

 $R \Rightarrow$ a set of 400 prime in the interval [3,3109]

$$\phi_{up}(q) = \frac{1}{\ln(0.2 \cdot q)} + 0.7$$
$$\theta_{up}(q) = \frac{1}{2\ln(0.01 \cdot q)} + 0.6$$

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

NEW UPPER BOUNDS on $t_2(3, q)$

Theorem			
$t_2(3,q) \leq \left\{$	5 <i>q</i>	if	$q \leq 223$
	6 <i>q</i>	if	$q \leq 3109$
	q ln q	if	$127 \le q \le 3109$
	q ln ^{0.9} q	if	$787 \le q \le 3109$
	$ heta_{\it up}(q)q\ln q$	if	$101 \leq q \leq 3109$
	$q \ln^{\phi_{up}(q)} q$	if	$q \leq 3109$
$q \in R$			

NEW bounds based on a DEGREE OF LOGARITHM of q

ション ふゆ メ リン イロン シックション

on DECREASING DEGREE OF LOGARITHM of q

$\begin{array}{l} \mathsf{CDL}\text{-bound} \Rightarrow \text{upper bound with a constant degree} \\ \text{of } \log q \end{array}$

 $\begin{array}{l} \mathsf{DDL-bound} \Rightarrow \mathsf{upper} \text{ bound with a decreasing degree} \\ \mathsf{of} \log q \end{array}$

DDL-bounds are more convenient

DDL-bound and computer results $\bar{t}_2(3, q)$ almost coalesce but always DDL-bound > $\bar{t}_2(3, q)$

NEW bound based on a DECREASING DEGREE OF $\ln q$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

Thank you Spasibo Mille grazie Premnogo blagodarya !'Muchas gracias Toda raba Merci beaucoup Dankeschön Dank u wel Domo arigato