New upper bounds on the smallest size of a complete cap in the space $P G(3, q)$

Daniele Bartoli* Alexander A. Davydov ${ }^{\circledR}$ Giorgio Faina* Stefano Marcugini* Fernanda Pambianco*

© Institute for Information Transmission Problems (Kharkevich Institute), Russian Academy of Science, Moscow, Russia

* Department of Mathematics and Informatics, Perugia University, Perugia, Italy

Seventh International Workshop on Optimal Codes and Related Topics, OC 2013, Albena, Bulgaria, September 6-12, 2013

Outline

(1) Introduction
(2) Algorithm FOP (fixed order of points)
(3) New upper bounds on $t_{2}(3, q)$

INTRODUCTION NOTATION

$P G(3, q) \Rightarrow$ projective space of dimension 3 over Galois field F_{q}
n-cap \Rightarrow a set of n points no three of which are collinear a line meeting a cap \Rightarrow tangent or bisecant
bisecant \Rightarrow a line intersecting a cap in two points

INTRODUCTION NOTATION

$P G(3, q) \Rightarrow$ projective space of dimension 3 over Galois field F_{q}
n-cap \Rightarrow a set of n points no three of which are collinear a line meeting a cap \Rightarrow tangent or bisecant
bisecant \Rightarrow a line intersecting a cap in two points
a point A of $P G(3, q)$ is covered by a cap \Rightarrow A lies on a bisecant of the cap
complete cap \Rightarrow all points of $P G(3, q)$ are covered by bisecants of the cap
\Rightarrow one may not add a new point to a complete cap

INTRODUCTION NOTATION

$t_{2}(3, q) \Rightarrow$ the smallest size of a complete cap in $P G(3, q)$
HARD OPEN CLASSICAL PROBLEM: $1950 \rightarrow$
exact value or upper bound on $t_{2}(3, q)$
$\bar{t}_{2}(3, q) \Rightarrow$ the smallest known size of a complete cap in $P G(3, q)$
including computer search

$$
t_{2}(3, q) \leq \bar{t}_{2}(3, q)
$$

exact values of $t_{2}(3, q)$ for $q \leq 7$
G. Faina, S. Marcugini, A. Milani, F. Pambianco Ars Combinatoria 1998

INTRODUCTION NOTATION

$t_{2}(3, q) \Rightarrow$ the smallest size of a complete cap in $P G(3, q)$
HARD OPEN CLASSICAL PROBLEM: $1950 \rightarrow$
exact value or upper bound on $t_{2}(3, q)$
$\bar{t}_{2}(3, q) \Rightarrow$ the smallest known size of a complete cap in $P G(3, q)$ including computer search

$$
t_{2}(3, q) \leq \bar{t}_{2}(3, q)
$$

exact values of $t_{2}(3, q)$ for $q \leq 7$
G. Faina, S. Marcugini, A. Milani, F. Pambianco

INTRODUCTION NOTATION

$t_{2}(3, q) \Rightarrow$ the smallest size of a complete cap in $P G(3, q)$
HARD OPEN CLASSICAL PROBLEM: $1950 \rightarrow$
exact value or upper bound on $t_{2}(3, q)$
$\bar{t}_{2}(3, q) \Rightarrow$ the smallest known size of a complete cap in $P G(3, q)$ including computer search

$$
t_{2}(3, q) \leq \bar{t}_{2}(3, q)
$$

exact values of $t_{2}(3, q)$ for $q \leq 7$
G. Faina, S. Marcugini, A. Milani, F. Pambianco Ars Combinatoria 1998

KNOWN BOUNDS on $t_{2}(3, q)$

trivial lower bound $\quad t_{2}(3, q)>\sqrt{2} q \quad \forall q$

* F. Pambianco, L. Storme, A.A. Davydov, S. Marcugini 1995-2009
** A.A. Davydov, G. Faina, S. Marcugini, F. Pambianco 2009
*** D. Bartoli, G. Faina, M. Giulietti, Finite Fields \& Applications, to appear

KNOWN BOUNDS on $t_{2}(3, q)$

trivial lower bound $\quad t_{2}(3, q)>\sqrt{2} q \quad \forall q$
upper bounds
$t_{2}(3, q) \leq\left\{\begin{array}{lll}2 q+t_{2}(2, q) & q \text { even } & * \\ 3 q & q \leq 17 & * * \\ 4 q & q \leq 89 & * * \\ 11 q & q<30000 & * * *\end{array}\right.$

* F. Pambianco, L. Storme, A.A. Davydov, S. Marcugini 1995-2009
** A.A. Davydov, G. Faina, S. Marcugini, F. Pambianco 2009
*** D. Bartoli, G. Faina, M. Giulietti, Finite Fields \& Applications, to appear

Algorithm FOP

FOP \Rightarrow Fixed Order of Points
Points of $P G(3, q)$ are ordered: $A_{1}, A_{2}, \ldots, A_{q^{3}+q^{2}+q+1}$

$$
\begin{aligned}
\text { ALGORITHM } & K^{(1)}=\left\{A_{1}\right\}, \quad K^{(2)}=\left\{A_{1}, A_{2}\right\}, \\
& K^{(j+1)}=K^{(j)} \cup\left\{A_{m(j)}\right\},
\end{aligned}
$$

$m(j)$ is the minimum index such that the corresponding point is not covered by $K^{(j)}$.

NEW UPPER BOUNDS on $t_{2}(3, q)$ Notation

Algorithm FOP with lexicographical order of points represented in homogenous coordinates
$R \Rightarrow$ a set of 400 prime in the interval $[3,3109]$

$$
\begin{aligned}
& \phi_{u p}(q)=\frac{1}{\ln (0.2 \cdot q)}+0.7 \\
& \theta_{u p}(q)=\frac{1}{2 \ln (0.01 \cdot q)}+0.6
\end{aligned}
$$

NEW UPPER BOUNDS on $t_{2}(3, q)$

Theorem

$$
t_{2}(3, q) \leq \begin{cases}5 q & \text { if } q \leq 223 \\ 6 q & \text { if } q \leq 3109 \\ q \ln q & \text { if } 127 \leq q \leq 3109 \\ q \ln ^{0.9} q & \text { if } 787 \leq q \leq 3109 \\ \theta_{u p}(q) q \ln q & \text { if } 101 \leq q \leq 3109 \\ q \ln ^{\phi_{u p}(q)} q & \text { if } q \leq 3109\end{cases}
$$

$q \in R$

NEW bounds based on a DEGREE OF LOGARITHM of q

on DECREASING DEGREE OF LOGARITHM of q

CDL-bound \Rightarrow upper bound with a constant degree of $\log q$

DDL-bound \Rightarrow upper bound with a decreasing degree of $\log q$

DDL-bounds are more convenient
DDL-bound and computer results $\bar{t}_{2}(3, q)$ almost coalesce but always DDL-bound $>\bar{t}_{2}(3, q)$

NEW bound based on a DECREASING DEGREE OF $\ln q$

Thank you Spasibo Mille grazie
Premnogo blagodarya
!'Muchas gracias
Toda raba
Merci beaucoup
Dankeschön
Dank u wel
Domo arigato

