D.V. Zinoviev,, V.A. Zinoviev

A.A. Kharkevich Institute for Problems of Information Transmission, Moscow, Russia

OC2013 Albena, Bulgaria, September 6-12, 2013

(日) (日) (日) (日) (日) (日) (日) (日)

Outline

1 Introduction

2 Preliminary Results

3 Construction II(s)

4 Main Results

-Introduction

A Steiner Quadruple System S(v, 4, 3) is a pair (X, B) where X is a set of v elements and B is a collection of 4-subsets (blocks) of X such that every 3-subset of X is contained in exactly one block of B.

Introduction

A Steiner Quadruple System S(v, 4, 3) is a pair (X, B) where X is a set of v elements and B is a collection of 4-subsets (blocks) of X such that every 3-subset of X is contained in exactly one block of B.

Hanani (1960) proved that a necessary condition for S(v, 4, 3) $v \equiv 2 \text{ or } 4 \pmod{6}$ is also sufficient. Enumeration problem of such non-isomorphic systems is solved only for $v \leq 16$:

(日) (日) (日) (日) (日) (日) (日) (日) (日)

 Steiner quadruple systems S(n, 4, 3) of a fixed corank
 4/16

 \Box Introduction
 4/16

Denote by $\gamma(v)$ the number of non-isomorphic such systems S(v,4,3). The best known lower (Doyen-Vandensavel, 1971) and upper (Lenz, 1985) bounds are as follows:

 Steiner quadruple systems S(n, 4, 3) of a fixed corank
 4/16

 \Box Introduction
 4/16

Denote by $\gamma(v)$ the number of non-isomorphic such systems S(v,4,3). The best known lower (Doyen-Vandensavel, 1971) and upper (Lenz, 1985) bounds are as follows:

$$(2)^{\frac{v^3}{24}} \le \gamma(v) \le (2)^{\frac{v^3}{24} \cdot \log v(1+o(1))}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Denote by $\gamma(v)$ the number of non-isomorphic such systems S(v,4,3). The best known lower (Doyen-Vandensavel, 1971) and upper (Lenz, 1985) bounds are as follows:

$$(2)^{\frac{v^3}{24}} \le \gamma(v) \le (2)^{\frac{v^3}{24} \cdot \log v(1+o(1))}$$

Since $v! < 2^{v \cdot \log v}$ the number γ_v has the same coefficient near $v^3/24$ of the asymptotic expression (for growing v) as the number of different systems S(v, 4, 3), which we denote by $\Gamma(v)$.

 Steiner quadruple systems S(n, 4, 3) of a fixed corank
 5/16

 \Box Introduction
 5/16

One of the parameter of an arbitrary $S_v = S(v, 4, 3)$ is its rank $\operatorname{rk}(S_v)$ - the dimension of linear space over \mathbf{F}_2 , generated by rows of the incidence matrix of S_v .

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

5/16

- Introduction

One of the parameter of an arbitrary $S_v = S(v, 4, 3)$ is its rank $\operatorname{rk}(S_v)$ - the dimension of linear space over \mathbf{F}_2 , generated by rows of the incidence matrix of S_v . An arbitrary S_v of order $v = 2^m$ has a rank $\operatorname{rk}(S_v)$ over \mathbf{F}_2 (i.e. 2-rank) in the range:

$$2^m - m - 1 \le \operatorname{rk}(S_v) \le 2^m - 1.$$

(日) (日) (日) (日) (日) (日) (日) (日) (日)

5/16

- Introduction

One of the parameter of an arbitrary $S_v = S(v, 4, 3)$ is its rank $\operatorname{rk}(S_v)$ - the dimension of linear space over \mathbf{F}_2 , generated by rows of the incidence matrix of S_v . An arbitrary S_v of order $v = 2^m$ has a rank $\operatorname{rk}(S_v)$ over \mathbf{F}_2 (i.e. 2-rank) in the range:

$$2^m - m - 1 \le \operatorname{rk}(S_v) \le 2^m - 1.$$

Denote by $\Gamma(v, s)$ the number of different Steiner systems $S_v = S(v, 4, 3)$ with rank $\operatorname{rk}(S_v) \leq 2^m - m - 1 + s$.

- Introduction

A Steiner system $S(2^m, 4, 3)$ of the minimal rank, equal to $2^m - m - 1$, is called a Boolean system (its incident matrix is formed by the codewords of weight 4 of the binary extended Hamming code of length 2^m .

- Introduction

A Steiner system $S(2^m, 4, 3)$ of the minimal rank, equal to $2^m - m - 1$, is called a Boolean system (its incident matrix is formed by the codewords of weight 4 of the binary extended Hamming code of length 2^m .

Since the automorphism group of a Boolean system is the general linear group GL(m,2), there are

.

$$\Gamma(v,0) = \frac{v!}{|GL(m,2)|} = \frac{v!}{v(v-1)(v-2)(v-4)\cdots v/2}$$

different such Boolean systems of order $v = 2^m$.

Steiner quadruple systems S(n, 4, 3) of a fixed corank 7/16 Introduction 7/16

Tonchev (2003) enumerated all different Steiner quadruple systems $S(2^m, 4, 3)$ of rank equal to $2^m - m$ (i.e. s = 1).

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

- Introduction

Tonchev (2003) enumerated all different Steiner quadruple systems $S(2^m, 4, 3)$ of rank equal to $2^m - m$ (i.e. s = 1). In 2007 the authors enumerated all different Steiner systems $SQS(2^m)$ of rank $rk(S_v) \leq 2^m - m + 1$ (i.e. s = 2).

-Introduction

Tonchev (2003) enumerated all different Steiner quadruple systems $S(2^m, 4, 3)$ of rank equal to $2^m - m$ (i.e. s = 1). In 2007 the authors enumerated all different Steiner systems $SQS(2^m)$ of rank $rk(S_v) \leq 2^m - m + 1$ (i.e. s = 2). The goal of the present work is to enumerate all different Steiner systems $S(2^m, 4, 3)$ of the 2-rank not greater than $2^m - m - 1 + s$, where $0 \leq s \leq m - 1$.

Preliminary Results

Denote by K a q-ary MDS $(4, 2, q^3)_q$ -code over the alphabet $\{0, 1, \ldots, q-1\}$ and by $\Gamma_K(q)$ denote the number of different such codes K.

Preliminary Results

Denote by K a q-ary MDS $(4, 2, q^3)_q$ -code over the alphabet $\{0, 1, \ldots, q-1\}$ and by $\Gamma_K(q)$ denote the number of different such codes K.

Lemma 1.

(Potapov-Krotov-Sokolova, 2008). If $q = 2^s$, then

 $\Gamma_K(q) \ge 2^{(q/2)^3}.$

(日) (日) (日) (日) (日) (日) (日) (日) (日)

9/16

(ロト (個) (E) (E) (E) (の)()

Construction II(s)

Suppose
$$u = 2^{m-s}$$
 and $q = 2^s$. Let $X_u = \{1, ..., u\}$,
 $X_q(j) = \{q(j-1) + 1, ..., qj\}$

Construction II(s)

Suppose
$$u = 2^{m-s}$$
 and $q = 2^{s}$. Let $X_u = \{1, ..., u\}$,
 $X_q(j) = \{q(j-1) + 1, ..., qj\}$
Given:

9/16

・ロト・4回ト・モミト・モー・シュル

• an arbitrary S(u, 4, 3), the set of elements X_u ;

9/16

・ロト ・ 戸 ・ ・ ヨ ・ ・ ヨ ・ ・ クタマ

Construction II(s)

Suppose
$$u = 2^{m-s}$$
 and $q = 2^s$. Let $X_u = \{1, \ldots, u\}$, $X_q(j) = \{q(j-1) + 1, \ldots, qj\}$
Given:

- an arbitrary S(u, 4, 3), the set of elements X_u ;
- arbitrary h = u(u-1)(u-2)/24 codes K_1, \ldots, K_h ;

9/16

Construction II(s)

Suppose
$$u = 2^{m-s}$$
 and $q = 2^{s}$. Let $X_u = \{1, ..., u\}$,
 $X_q(j) = \{q(j-1) + 1, ..., qj\}$
Given:

- an arbitrary S(u, 4, 3), the set of elements X_u ;
- arbitrary h = u(u-1)(u-2)/24 codes K_1, \ldots, K_h ;

• arbitrary u(u-1)/2 systems S(2q, 4, 3) not of the full rank, enumerated $S_{2q}(j_1, j_2)$, where $1 \leq j_1 < j_2 \leq u$, the set of elements $X_q(j_1) \bigcup X_q(j_2)$;

Construction II(s)

Suppose
$$u = 2^{m-s}$$
 and $q = 2^{s}$. Let $X_u = \{1, ..., u\}$,
 $X_q(j) = \{q(j-1) + 1, ..., qj\}$
Given:

- an arbitrary S(u, 4, 3), the set of elements X_u ;
- arbitrary h = u(u 1)(u 2)/24 codes $K_1, ..., K_h$;
- arbitrary u(u-1)/2 systems S(2q, 4, 3) not of the full rank, enumerated $S_{2q}(j_1, j_2)$, where $1 \leq j_1 < j_2 \leq u$, the set of elements $X_q(j_1) \bigcup X_q(j_2)$;
- arbitrary u systems S(q, 4, 3), enumerated $S_q(j)$, j = 1, ..., u, with the set of elements $X_q(j)$.

(日) (日) (日) (日) (日) (日) (日) (日) (日)

9/16

Construction II(s)

Define three sets: $S^{(1,1,1,1)}, S^{(2,2)}, S^{(4)}$ of blocks of size 4, of elements

$$X_{uq} = \bigcup_{j=1}^{u} X_q(j) = \{1, 2, \dots, uq\}.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Steiner quadruple systems S(n, 4, 3) of a fixed corank 11/16 Construction II(s)

Construction II(s)

The set $S^{(1,1,1,1)}$ is a union of 4-sets $C(c_i; K_i)$:

$$S^{(1,1,1,1)} = \bigcup_{i=1}^{h} C(c_i; K_i)$$

where h = u(u-1)(u-2)/24, $c_i \in S(u,4,3)$ and

 $C(\mathbf{c}_i; K_i) = \{(qi_1+a_1, qi_2+a_2, qi_3+a_3, qi_4+a_4) : (a_1, a_2, a_3, a_4) \in K_i\}$ where $\mathbf{c}_i = (i_1 + 1, i_2 + 1, i_3 + 1, i_4 + 1).$

Construction II(s)

The set $S^{(2,2)}$ is a union of u(u-1)/2 sets $W(j_1, j_2)$:

$$S^{(2,2)} = \bigcup_{1 \le j_1 < j_2 \le u} W(j_1, j_2)$$

where

$$W(j_1, j_2) = S_{2q}(j_1, j_2) \setminus \left(S_q^{(\ell)}(j_1, j_2) \cup S_q^{(r)}(j_1, j_2) \right),$$

(日) (日) (日) (日) (日) (日) (日) (日) (日)

where $S_q^{(\ell)}(j_1, j_2)$ and $S_q^{(r)}(j_1, j_2)$ are two subsystems of $S_{2q}(j_1, j_2)$ with sets of elements $X_q(j_1)$ and $X_q(j_2)$;

Construction II(s)

The set $S^{(4)}$ is a union of u systems $S_q(j)$, where $S_q(j)$ has the element set $X_q(j)$:

$$S^{(4)} = \bigcup_{j=1}^{u} S_q(j)$$

・ロト・4回ト・モミト・モー・シュル

Steiner quadruple systems $S(n,4,3)$ of a fixed corank	14/16	
— Main Results		

Theorem 1. The set

$$S = S^{(1,1,1,1)} \bigcup S^{(2,2)} \bigcup S^{(4)}$$

is a Steiner system S(v, 4, 3), v = uq, for any choice of the initial systems and codes.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Main Results

Theorem 2. Let $S_v = S(v, 4, 3)$ be a Steiner system of order $v = 2^m$ and of rank

$$\operatorname{rk}(S_v) \le 2^m - m - 1 + s.$$

Then the system S_v is obtained from a Boolean Steiner system $S_u = S(u, 4, 3)$ of order $u = 2^{m-s}$, using construction II(s), described above, where $q = 2^s$.

Main Results

Theorem 3. The number $\Gamma(v, s)$ of different Steiner systems $S_v = S(v, 4, 3)$ of order $v = 2^m$ of rank not greater than v - 1 - m + s, whose incident matrices are all orthogonal to fixed [v, m + 1 - s, v/2]-code, satisfies the following equality:

$$\Gamma(v,s) = (\Gamma_K)^{u(u-1)(u-2)/24} \times \left(\frac{\Gamma(2q,s+1)}{(\Gamma(q,s+1))^2}\right)^{u(u-1)/2} \times (\Gamma(q,s+1))^u,$$

where $v = u \cdot q$ and $q = 2^s$.

Main Results

Theorem 3. The number $\Gamma(v, s)$ of different Steiner systems $S_v = S(v, 4, 3)$ of order $v = 2^m$ of rank not greater than v - 1 - m + s, whose incident matrices are all orthogonal to fixed [v, m + 1 - s, v/2]-code, satisfies the following equality:

16/16

$$\Gamma(v,s) = (\Gamma_K)^{u(u-1)(u-2)/24} \times \left(\frac{\Gamma(2q,s+1)}{(\Gamma(q,s+1))^2}\right)^{u(u-1)/2} \\ \times (\Gamma(q,s+1))^u ,$$

where $v = u \cdot q$ and $q = 2^s$. Asymptotically when q is fixed and $u \to \infty$ we obtain that

$$\Gamma(v,s) > (2)^{c \cdot \frac{v^3}{24}}$$

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

where $c \to 1/8$.