Steiner quadruple systems $S(n, 4,3)$ of a fixed corank

D.V. Zinoviev,, V.A. Zinoviev
A.A. Kharkevich Institute for Problems of Information Transmission, Moscow, Russia

OC2013 Albena, Bulgaria, September 6-12, 2013

Outline

1 Introduction
2 Preliminary Results

3 Construction II(s)
4 Main Results

A Steiner Quadruple System $S(v, 4,3)$ is a pair (X, B) where X is a set of v elements and B is a collection of 4 -subsets (blocks) of X such that every 3 -subset of X is contained in exactly one block of B.

A Steiner Quadruple System $S(v, 4,3)$ is a pair (X, B) where X is a set of v elements and B is a collection of 4 -subsets (blocks) of X such that every 3 -subset of X is contained in exactly one block of B.
Hanani (1960) proved that a necessary condition for $S(v, 4,3)$ $v \equiv 2$ or $4(\bmod 6)$ is also sufficient. Enumeration problem of such non-isomorphic systems is solved only for $v \leq 16$:

Denote by $\gamma(v)$ the number of non-isomorphic such systems $S(v, 4,3)$. The best known lower (Doyen-Vandensavel, 1971) and upper (Lenz, 1985) bounds are as follows:

Denote by $\gamma(v)$ the number of non-isomorphic such systems $S(v, 4,3)$. The best known lower (Doyen-Vandensavel, 1971) and upper (Lenz, 1985) bounds are as follows:

$$
(2)^{\frac{v^{3}}{24}} \leq \gamma(v) \leq(2)^{\frac{v^{3}}{24} \cdot \log v(1+o(1))} .
$$

Denote by $\gamma(v)$ the number of non-isomorphic such systems $S(v, 4,3)$. The best known lower (Doyen-Vandensavel, 1971) and upper (Lenz, 1985) bounds are as follows:

$$
(2)^{\frac{v^{3}}{24}} \leq \gamma(v) \leq(2)^{\frac{v^{3}}{24} \cdot \log v(1+o(1))} .
$$

Since $v!<2^{v \cdot \log v}$ the number γ_{v} has the same coefficient near $v^{3} / 24$ of the asymptotic expression (for growing v) as the number of different systems $S(v, 4,3)$, which we denote by $\Gamma(v)$.

One of the parameter of an arbitrary $S_{v}=S(v, 4,3)$ is its rank $\operatorname{rk}\left(S_{v}\right)$ - the dimension of linear space over \mathbf{F}_{2}, generated by rows of the incidence matrix of S_{v}.

One of the parameter of an arbitrary $S_{v}=S(v, 4,3)$ is its rank $\operatorname{rk}\left(S_{v}\right)$ - the dimension of linear space over \mathbf{F}_{2}, generated by rows of the incidence matrix of S_{v}.
An arbitrary S_{v} of order $v=2^{m}$ has a rank $\operatorname{rk}\left(S_{v}\right)$ over \mathbf{F}_{2} (i.e. 2 -rank) in the range:

$$
2^{m}-m-1 \leq \operatorname{rk}\left(S_{v}\right) \leq 2^{m}-1
$$

One of the parameter of an arbitrary $S_{v}=S(v, 4,3)$ is its rank $\operatorname{rk}\left(S_{v}\right)$ - the dimension of linear space over \mathbf{F}_{2}, generated by rows of the incidence matrix of S_{v}.
An arbitrary S_{v} of order $v=2^{m}$ has a rank $\operatorname{rk}\left(S_{v}\right)$ over \mathbf{F}_{2} (i.e. 2-rank) in the range:

$$
2^{m}-m-1 \leq \operatorname{rk}\left(S_{v}\right) \leq 2^{m}-1
$$

Denote by $\Gamma(v, s)$ the number of different Steiner systems $S_{v}=S(v, 4,3)$ with rank $\operatorname{rk}\left(S_{v}\right) \leq 2^{m}-m-1+s$.

A Steiner system $S\left(2^{m}, 4,3\right)$ of the minimal rank, equal to $2^{m}-m-1$, is called a Boolean system (its incident matrix is formed by the codewords of weight 4 of the binary extended Hamming code of length 2^{m}.

A Steiner system $S\left(2^{m}, 4,3\right)$ of the minimal rank, equal to $2^{m}-m-1$, is called a Boolean system (its incident matrix is formed by the codewords of weight 4 of the binary extended Hamming code of length 2^{m}.

Since the automorphism group of a Boolean system is the general linear group $G L(m, 2)$, there are

$$
\begin{gathered}
\Gamma(v, 0)=\frac{v!}{|G L(m, 2)|}= \\
=\frac{v!}{v(v-1)(v-2)(v-4) \cdots v / 2}
\end{gathered}
$$

different such Boolean systems of order $v=2^{m}$.

Tonchev (2003) enumerated all different Steiner quadruple systems $S\left(2^{m}, 4,3\right)$ of rank equal to $2^{m}-m$ (i.e. $s=1$).

Tonchev (2003) enumerated all different Steiner quadruple systems $S\left(2^{m}, 4,3\right)$ of rank equal to $2^{m}-m$ (i.e. $s=1$). In 2007 the authors enumerated all different Steiner systems $\operatorname{SQS}\left(2^{m}\right)$ of $\operatorname{rank} \operatorname{rk}\left(S_{v}\right) \leq 2^{m}-m+1$ (i.e. $s=2$).

Tonchev (2003) enumerated all different Steiner quadruple systems $S\left(2^{m}, 4,3\right)$ of rank equal to $2^{m}-m$ (i.e. $s=1$).
In 2007 the authors enumerated all different Steiner systems
$\operatorname{SQS}\left(2^{m}\right)$ of $\operatorname{rank} \operatorname{rk}\left(S_{v}\right) \leq 2^{m}-m+1$ (i.e. $s=2$).
The goal of the present work is to enumerate all different Steiner systems $S\left(2^{m}, 4,3\right)$ of the 2 -rank not greater than $2^{m}-m-1+s$, where $0 \leq s \leq m-1$.

Denote by K a q-ary $\operatorname{MDS}\left(4,2, q^{3}\right)_{q}$-code over the alphabet $\{0,1, \ldots, q-1\}$ and by $\Gamma_{K}(q)$ denote the number of different such codes K.

Denote by K a q-ary MDS $\left(4,2, q^{3}\right)_{q}$-code over the alphabet $\{0,1, \ldots, q-1\}$ and by $\Gamma_{K}(q)$ denote the number of different such codes K.

Lemma 1.
(Potapov-Krotov-Sokolova, 2008). If $q=2^{s}$, then

$$
\Gamma_{K}(q) \geq 2^{(q / 2)^{3}}
$$

Suppose $u=2^{m-s}$ and $q=2^{s}$. Let $X_{u}=\{1, \ldots, u\}$, $X_{q}(j)=\{q(j-1)+1, \ldots, q j\}$

Suppose $u=2^{m-s}$ and $q=2^{s}$. Let $X_{u}=\{1, \ldots, u\}$, $X_{q}(j)=\{q(j-1)+1, \ldots, q j\}$
Given:

- an arbitrary $S(u, 4,3)$, the set of elements X_{u};

Suppose $u=2^{m-s}$ and $q=2^{s}$. Let $X_{u}=\{1, \ldots, u\}$, $X_{q}(j)=\{q(j-1)+1, \ldots, q j\}$
Given:

- an arbitrary $S(u, 4,3)$, the set of elements X_{u};
- arbitrary $h=u(u-1)(u-2) / 24$ codes K_{1}, \ldots, K_{h};

Suppose $u=2^{m-s}$ and $q=2^{s}$. Let $X_{u}=\{1, \ldots, u\}$, $X_{q}(j)=\{q(j-1)+1, \ldots, q j\}$
Given:

- an arbitrary $S(u, 4,3)$, the set of elements X_{u};
- arbitrary $h=u(u-1)(u-2) / 24$ codes K_{1}, \ldots, K_{h};
- arbitrary $u(u-1) / 2$ systems $S(2 q, 4,3)$ not of the full rank, enumerated $S_{2 q}\left(j_{1}, j_{2}\right)$, where $1 \leq j_{1}<j_{2} \leq u$, the set of elements $X_{q}\left(j_{1}\right) \bigcup X_{q}\left(j_{2}\right)$;

Suppose $u=2^{m-s}$ and $q=2^{s}$. Let $X_{u}=\{1, \ldots, u\}$, $X_{q}(j)=\{q(j-1)+1, \ldots, q j\}$
Given:

- an arbitrary $S(u, 4,3)$, the set of elements X_{u};
- arbitrary $h=u(u-1)(u-2) / 24$ codes K_{1}, \ldots, K_{h};
- arbitrary $u(u-1) / 2$ systems $S(2 q, 4,3)$ not of the full rank, enumerated $S_{2 q}\left(j_{1}, j_{2}\right)$, where $1 \leq j_{1}<j_{2} \leq u$, the set of elements $X_{q}\left(j_{1}\right) \cup X_{q}\left(j_{2}\right)$;
- arbitrary u systems $S(q, 4,3)$, enumerated $S_{q}(j), \quad j=1, \ldots, u$, with the set of elements $X_{q}(j)$.

Define three sets: $S^{(1,1,1,1)}, S^{(2,2)}, S^{(4)}$ of blocks of size 4, of elements

$$
X_{u q}=\bigcup_{j=1}^{u} X_{q}(j)=\{1,2, \ldots, u q\}
$$

Construction II(s)

The set $S^{(1,1,1,1)}$ is a union of 4 -sets $C\left(\boldsymbol{c}_{i} ; K_{i}\right)$:

$$
S^{(1,1,1,1)}=\bigcup_{i=1}^{h} C\left(\boldsymbol{c}_{i} ; K_{i}\right)
$$

where $h=u(u-1)(u-2) / 24, \boldsymbol{c}_{i} \in S(u, 4,3)$ and
$C\left(\boldsymbol{c}_{i} ; K_{i}\right)=\left\{\left(q i_{1}+a_{1}, q i_{2}+a_{2}, q i_{3}+a_{3}, q i_{4}+a_{4}\right):\left(a_{1}, a_{2}, a_{3}, a_{4}\right) \in K_{i}\right\}$
where $\boldsymbol{c}_{i}=\left(i_{1}+1, i_{2}+1, i_{3}+1, i_{4}+1\right)$.

The set $S^{(2,2)}$ is a union of $u(u-1) / 2$ sets $W\left(j_{1}, j_{2}\right)$:

$$
S^{(2,2)}=\bigcup_{1 \leq j_{1}<j_{2} \leq u} W\left(j_{1}, j_{2}\right)
$$

where

$$
W\left(j_{1}, j_{2}\right)=S_{2 q}\left(j_{1}, j_{2}\right) \backslash\left(S_{q}^{(\ell)}\left(j_{1}, j_{2}\right) \cup S_{q}^{(r)}\left(j_{1}, j_{2}\right)\right)
$$

where $S_{q}^{(\ell)}\left(j_{1}, j_{2}\right)$ and $S_{q}^{(r)}\left(j_{1}, j_{2}\right)$ are two subsystems of $S_{2 q}\left(j_{1}, j_{2}\right)$ with sets of elements $X_{q}\left(j_{1}\right)$ and $X_{q}\left(j_{2}\right)$;

The set $S^{(4)}$ is a union of u systems $S_{q}(j)$, where $S_{q}(j)$ has the element set $X_{q}(j)$:

$$
S^{(4)}=\bigcup_{j=1}^{u} S_{q}(j)
$$

Main Results

Theorem 1. The set

$$
S=S^{(1,1,1,1)} \bigcup S^{(2,2)} \bigcup S^{(4)}
$$

is a Steiner system $S(v, 4,3), v=u q$, for any choice of the initial systems and codes.

Theorem 2. Let $S_{v}=S(v, 4,3)$ be a Steiner system of order $v=2^{m}$ and of rank

$$
\operatorname{rk}\left(S_{v}\right) \leq 2^{m}-m-1+s
$$

Then the system S_{v} is obtained from a Boolean Steiner system $S_{u}=S(u, 4,3)$ of order $u=2^{m-s}$, using construction II(s), described above, where $q=2^{s}$.

Theorem 3. The number $\Gamma(v, s)$ of different Steiner systems $S_{v}=S(v, 4,3)$ of order $v=2^{m}$ of rank not greater than
$v-1-m+s$, whose incident matrices are all orthogonal to fixed $[v, m+1-s, v / 2]$-code, satisfies the following equality:

$$
\begin{gathered}
\Gamma(v, s)=\left(\Gamma_{K}\right)^{u(u-1)(u-2) / 24} \times\left(\frac{\Gamma(2 q, s+1)}{(\Gamma(q, s+1))^{2}}\right)^{u(u-1) / 2} \\
\times(\Gamma(q, s+1))^{u},
\end{gathered}
$$

where $v=u \cdot q$ and $q=2^{s}$.

Theorem 3. The number $\Gamma(v, s)$ of different Steiner systems $S_{v}=S(v, 4,3)$ of order $v=2^{m}$ of rank not greater than
$v-1-m+s$, whose incident matrices are all orthogonal to fixed $[v, m+1-s, v / 2]$-code, satisfies the following equality:

$$
\begin{gathered}
\Gamma(v, s)=\left(\Gamma_{K}\right)^{u(u-1)(u-2) / 24} \times\left(\frac{\Gamma(2 q, s+1)}{(\Gamma(q, s+1))^{2}}\right)^{u(u-1) / 2} \\
\times(\Gamma(q, s+1))^{u},
\end{gathered}
$$

where $v=u \cdot q$ and $q=2^{s}$.
Asymptotically when q is fixed and $u \rightarrow \infty$ we obtain that

$$
\Gamma(v, s)>(2)^{c \cdot \frac{v^{3}}{24}}
$$

where $c \rightarrow 1 / 8$.

