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Introduction

A Steiner Quadruple System S(v, 4, 3) is a pair (X,B) where X is
a set of v elements and B is a collection of 4-subsets (blocks) of
X such that every 3-subset of X is contained in exactly one block
of B.

Hanani (1960) proved that a necessary condition for S(v, 4, 3)
v ≡ 2 or 4 (mod 6) is also sufficient. Enumeration problem of
such non-isomorphic systems is solved only for v ≤ 16:
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Introduction

Denote by γ(v) the number of non-isomorphic such systems
S(v, 4, 3). The best known lower (Doyen-Vandensavel, 1971) and
upper (Lenz, 1985) bounds are as follows:

(2)
v3

24 ≤ γ(v) ≤ (2)
v3

24
·log v(1+o(1)) .

Since v! < 2v·log v the number γv has the same coefficient near
v3/24 of the asymptotic expression (for growing v) as the number
of different systems S(v, 4, 3), which we denote by Γ(v).
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Introduction

One of the parameter of an arbitrary Sv = S(v, 4, 3) is its rank
rk(Sv) - the dimension of linear space over F2, generated by rows
of the incidence matrix of Sv.

An arbitrary Sv of order v = 2m has a rank rk(Sv) over F2 (i.e.
2-rank) in the range:

2m −m− 1 ≤ rk(Sv) ≤ 2m − 1.

Denote by Γ(v, s) the number of different Steiner systems
Sv = S(v, 4, 3) with rank rk(Sv) ≤ 2m −m− 1 + s.
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Introduction

A Steiner system S(2m, 4, 3) of the minimal rank, equal to
2m −m− 1, is called a Boolean system (its incident matrix is
formed by the codewords of weight 4 of the binary extended
Hamming code of length 2m.

Since the automorphism group of a Boolean system is the general
linear group GL(m, 2), there are

Γ(v, 0) =
v!

|GL(m, 2)|
=

=
v!

v(v − 1)(v − 2)(v − 4) · · · v/2
different such Boolean systems of order v = 2m.
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Introduction

Tonchev (2003) enumerated all different Steiner quadruple systems
S(2m, 4, 3) of rank equal to 2m −m (i.e. s = 1).

In 2007 the authors enumerated all different Steiner systems
SQS(2m) of rank rk(Sv) ≤ 2m −m+ 1 (i.e. s = 2).
The goal of the present work is to enumerate all different Steiner
systems S(2m, 4, 3) of the 2-rank not greater than 2m−m− 1 + s,
where 0 ≤ s ≤ m− 1.
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Preliminary Results

Denote by K a q-ary MDS (4, 2, q3)q-code over the alphabet
{0, 1, . . . , q − 1} and by ΓK(q) denote the number of different
such codes K.

Lemma 1.

(Potapov-Krotov-Sokolova, 2008). If q = 2s, then

ΓK(q) ≥ 2(q/2)3 .
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Construction II(s)

Suppose u = 2m−s and q = 2s. Let Xu = {1, . . . , u},
Xq(j) = {q(j − 1) + 1, . . . , qj}

Given:
• an arbitrary S(u, 4, 3), the set of elements Xu;
• arbitrary h = u(u− 1)(u− 2)/24 codes K1, . . . ,Kh;
• arbitrary u(u− 1)/2 systems S(2q, 4, 3) not of the full rank,
enumerated S2q(j1, j2), where 1 ≤ j1 < j2 ≤ u, the set of
elements Xq(j1)

⋃
Xq(j2);

• arbitrary u systems S(q, 4, 3), enumerated Sq(j), j = 1, . . . , u,
with the set of elements Xq(j).
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Construction II(s)

Define three sets: S(1,1,1,1),S(2,2),S(4) of blocks of size 4, of
elements

Xuq =

u⋃
j=1

Xq(j) = {1, 2, . . . , uq}.
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Construction II(s)

Construction II(s)

The set S(1,1,1,1) is a union of 4-sets C(ci;Ki):

S(1,1,1,1) =

h⋃
i=1

C(ci;Ki)

where h = u(u− 1)(u− 2)/24, ci ∈ S(u, 4, 3) and

C(ci;Ki) = {(qi1+a1, qi2+a2, qi3+a3, qi4+a4) : (a1, a2, a3, a4) ∈ Ki}

where ci = (i1 + 1, i2 + 1, i3 + 1, i4 + 1).
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Construction II(s)

The set S(2,2) is a union of u(u− 1)/2 sets W (j1, j2):

S(2,2) =
⋃

1≤j1<j2≤u

W (j1, j2)

where

W (j1, j2) = S2q(j1, j2) \
(
S(`)
q (j1, j2) ∪ S(r)

q (j1, j2)
)
,

where S
(`)
q (j1, j2) and S

(r)
q (j1, j2) are two subsystems of

S2q(j1, j2) with sets of elements Xq(j1) and Xq(j2);
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Construction II(s)

The set S(4) is a union of u systems Sq(j), where Sq(j) has the
element set Xq(j):

S(4) =

u⋃
j=1

Sq(j)
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Main Results

Main Results

Theorem 1. The set

S = S(1,1,1,1)
⋃
S(2,2)

⋃
S(4)

is a Steiner system S(v, 4, 3), v = uq, for any choice of the initial
systems and codes.
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Main Results

Theorem 2. Let Sv = S(v, 4, 3) be a Steiner system of order
v = 2m and of rank

rk(Sv) ≤ 2m −m− 1 + s.

Then the system Sv is obtained from a Boolean Steiner system
Su = S(u, 4, 3) of order u = 2m−s, using construction II(s),
described above, where q = 2s.
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Main Results

Theorem 3. The number Γ(v, s) of different Steiner systems
Sv = S(v, 4, 3) of order v = 2m of rank not greater than
v − 1−m+ s, whose incident matrices are all orthogonal to fixed
[v,m+ 1− s, v/2]-code, satisfies the following equality:

Γ(v, s) = (ΓK)u(u−1)(u−2)/24 ×
(

Γ(2q,s+1)
(Γ(q,s+1))2

)u(u−1)/2

× (Γ(q, s+ 1))u ,

where v = u · q and q = 2s.

Asymptotically when q is fixed and u→∞ we obtain that

Γ(v, s) > (2)c·
v3

24

where c→ 1/8.
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