On the binary self-dual [96, 48, 20] codes with an automorphism of order 9

Nikolay I. Yankov

КОНСТАНТИН ПРЕСЛАВСКИ

Shumen University, Bulgaria

VII-th International Workshop on Optimal Codes and Related Topics, OC 2013, Albena, Bulgaria 10.09.2013

Outline

- Introduction
- Construction method
- Binary [96, 48, 20] self-dual code
- Results

The existence of binary self-dual [24k, 12k, 4k + 4], $k \ge 3$ code

k = 1 [24, 12, 8] – the Golay code G_{24} – unique (Pless, 1968), Aut(G_{24}) = M_{24} , $|M_{24}|$ = 244, 823, 040 = $2^{10} \cdot 3^3 \cdot 5 \cdot 7 \cdot 11 \cdot 23$

k = 2 a [48, 24, 12] – the extended quadratic residue code QR_{48} – unique (Houghten et al. 2003), Aut(QR_{48}) = PSL₂(47), $|PSL_2(47)| = 103,776 = 2^5 \cdot 3 \cdot 23 \cdot 47$

k = 3

N.J.A. Sloane

Is there a (72,36) d = 16 self-dual code?, *IEEE Trans. Inform. Theory*, vol. 19, p. 251, 1973.

Prices for this code: S.T. Dougherty \$100 for the existence M. Harada \$200 for the nonexistence

k = 3, [72, 36, 16] Automorphism group of order ≤ 5 :

- type 2 (36,0)
- type 3 (24,0)
- type 5 (14, 2)

k = 4, [96, 48, 20]: Only 2, 3, or 5 can be primes dividing |Aut(C)|

Bouyuklieva, Russeva, Yankov (2006) – a method for p^2 for a prime p > 2

Let C - [n, k] binary self-dual

 σ – an automorphism of *C* of order p^2 for a odd prime p > 2

$$\sigma = \underbrace{\Omega_1 \dots \Omega_c}_{\text{cycles of length } p^2} \underbrace{\underbrace{\Omega_{c+1} \dots \Omega_{c+t}}_{\text{cycles of length } p} \underbrace{\underbrace{\Omega_{c+t+1} \dots \Omega_{c+t+f}}_{\text{fixed points}}}_{\text{fixed points}},$$

$$\Omega_i = ((i-1)p^2 + 1, \dots, ip^2), i = 1, \dots, c - \text{length } p^2$$

$$\Omega_{c+i} = (cp^2 + (i-1)p + 1, \dots, cp^2 + ip), i = 1, \dots, t, - \text{length } p$$

$$\Omega_{c+t+i} = (cp^2 + tp + i), i = 1, \dots, f, - \text{fixed points}$$

$$\sigma \text{ is of type } p^2 - (c, t, f) \text{ and } cp^2 + tp + f = n.$$

We define

$$F_{\sigma}(C) = \{ v \in C : v\sigma = v \}$$

$$E_{\sigma}(C) = \{ v \in C : wt(v|\Omega_i) \equiv 0 (mod2) \},\$$

 $i = 1, 2, \ldots, c + t + f$, where $v | \Omega_i$ is the restriction of v on Ω_i .

Lemma

The code *C* is a direct sum of the subcodes $F_{\sigma}(C)$ and $E_{\sigma}(C)$

Taking a coordinate from every cycle (they are equal) we define the projective map $\pi: F_{\sigma}(C) \to \mathbb{F}_2^{c+t+f}$

Lemma

If *C* is a binary self-dual code having an automorphism σ of type $p^2 - (c, t, f)$ then $C_{\pi} = \pi(F_{\sigma}(C))$ is a binary self-dual code of length c + t + f.

Let $E_{\sigma}(C)^*$ be $E_{\sigma}(C)$ with the last *f* coordinates deleted $E_{\sigma}(C)^*$ is a self-orthogonal binary code of length $cp^2 + tp$,

dim
$$E_{\sigma}(C)^*$$
 = dim C - dim $F_{\sigma}(C) = \frac{1}{2}(p-1)(c(p+1)+t)$.

For $v \in E_{\sigma}(C)^*$ we define:

$$\mathbf{v}|\Omega_i \xrightarrow{\varphi} \begin{cases} a_0 + a_1 x + \dots + a_{p^2 - 1} x^{p^2 - 1} \in \mathbf{T}, & i = 1, \dots, \mathbf{c} \\ a_0 + a_1 x + \dots + a_{p-1} x^{p-1} \in \mathbf{P}, & i = \mathbf{c} + 1, \dots, \mathbf{c} + \mathbf{t} \end{cases}$$

T – set of even-weight polynomials in $\mathbb{F}_2[x]/(x^{p^2}-1)$ P – set of even-weight polynomials in $\mathbb{F}_2[x]/(x^p-1)$ The map $\varphi: E_{\sigma}(C)^* \to T^c \times P^t$

Definition

A linear code $C \subset T^c \times P^t$ is a subset of $T^c \times P^t$ such that $v + w \in C$ for all $v, w \in C$ and $xv \in C$ for all $v \in C$

Lemma

$$\mathcal{C}_{arphi} = arphi(\mathcal{E}_{\sigma}(\mathcal{C})^*)$$
 is a linear code in $\mathcal{T}^c imes \mathcal{P}^c$

 $a(x) \in T, P$ we define conjugation by $\overline{a(x)} = a(x^{-1})$

Hermitian inner product in *T* is $\langle v, w \rangle = \sum_{i=1}^{c} v_i \overline{w_i}, v, w \in T^c$

Similarly,
$$\langle v', w' \rangle = \sum_{i=1}^{t} v'_i \overline{w'_i}, v', w' \in P^t$$

Definition

If *C* is a linear code in $T^c \times P^t$ we define its dual code as the set C^{\perp} of all vectors $(v, v'), v \in T^c, v' \in P^t$ such that $\langle v, w \rangle = Q_{p^2}(x) \langle v', w' \rangle$ for all vectors $(w, w') \in C, w \in T^c, w' \in P^t, Q_{p^2}(x) = Q_p(x^p) = x^{p(p-1)} + x^{p(p-2)} + \dots + x^{p+1}$ – the p^2 -th cyclotomic polynomial If $C = C^{\perp}$ we call it self-dual

Lemma

If C is a linear code in $T^c \times P^t$, so is its dual code C^{\perp}

Theorem

A binary code C having an automorphism σ is self-dual iff C_{π} is a binary self-dual code and $C_{\varphi} = \varphi(E_{\sigma}(C)^*)$ is a self-dual code in $T^c \times P^t$

Consider the factor ring

$$R = \mathbb{F}_q[x]/(x^n - 1),$$

where $(x^n - 1)$ is the principal ideal in $\mathbb{F}_q[x]$ generated by $x^n - 1$ When $n = p^2$ for a prime p, we have the following decomposition of the polynomial

$$x^{p^2} - 1 = (x - 1)Q_{p^2}(x)Q_p(x),$$

where $Q_p(x) = 1 + x + \dots + x^{p-1}$ and $Q_{p^2}(x) = Q_p(x^p)$ are cyclotomic polynomials

$$Q_p(x) = g_1(x) \dots g_s(x), \ Q_{p^2}(x) = h_1(x) \dots h_m(x)$$

Let

$$G_{i} = \left\langle \frac{x^{p^{2}} - 1}{g_{i}(x)} \right\rangle, i = 1, \dots, s$$
$$H_{i} = \left\langle \frac{x^{p^{2}} - 1}{h_{i}(x)} \right\rangle, i = 1, \dots, m$$

We have that, G_i are fields with $\frac{p-1}{s}$ elements for i = 1, ..., s H_i are fields with $\frac{p(p-1)}{m}$ elements for i = 1, ..., m

$$R = \mathbb{F}_q[x]/(x^n - 1) = G_1 \oplus \cdots \oplus G_s \oplus H_1 \oplus \cdots \oplus H_m$$

$$\forall a(x) \in T, a = a'_1 + \dots + a'_s + a''_1 + \dots + a''_m$$
, where $a'_i \in G_i$, $a''_j \in H_j$

A – a binary linear code of length cp^2 having an automorphism of order p^2 with c independent p^2 -cycles

$$M'_{j} = \{ u \in E_{\sigma}(A) : u_{i} \in G_{j}, i = 1, ..., c \}, j = 1, ..., s$$

 $M''_{j} = \{ u \in E_{\sigma}(A) : u_{i} \in H_{j}, i = 1, ..., c \}, j = 1, ..., m$

 M'_j – a linear space over G_j , j = 1, ..., s, M''_j – a linear space over H_j , j = 1, ..., m

Lemma

$$M = \varphi(E_{\sigma}(A)) = M'_{1} \oplus \cdots \oplus M'_{s} \oplus M''_{1} \oplus \cdots \oplus M''_{m}$$

$$(p-1)\sum_{j=1}^{s} \dim_{G_{j}} M'_{j} + (p^{2}-p)\sum_{j=1}^{s} \dim_{H_{j}} M''_{j} = \dim E_{\sigma}(A)$$

2 – a primitive root mod $p^2 \Rightarrow Q_p(x)$ and $Q_{p^2}(x) - \mathbb{F}_2$ -irreducible $P \cong \mathbb{F}_{2^{p-1}}$ $T = l_1 \oplus l_2$.

 I_1 and I_2 are cyclic codes with parity check $Q_p(x)$ and $Q_{p^2}(x)$

Theorem

When t = 0, M_1 and M_2 are Hermitian SD codes over I_1 and I_2

$$I_1 \cong \mathbb{F}_{2^{p-1}}, \qquad I_2 \cong \mathbb{F}_{2^{p^2-p}}, \qquad \varphi(E_{\sigma}(C)^*) = M_1 \oplus M_2$$

J. De la Cruz

Über die Automorphismengruppe extremaler Codes der Langen 96 und 120. Otto-von-Guericke-Universitat Magdeburg, PhD Thesis (2012)

For a binary self-dual [96, 48, 20] code:

- only 2, 3, or 5 can be primes dividing |Aut(C)|
- for an automorphism of order p² we have p = 3 and the following types:
 - 9-(10,0,6)
 - 9 (10, 2, 0)

[72, 36, 16] code with automorphism of order 9 – nonexistent:

N. Yankov

A Putative Doubly Even [72, 36, 16] Code Does Not Have an Automorphism of Order 9, *IEEE Trans. Inform. Theory*, **58(1)**, pp. 159–163 (2012)

Let C be a binary self-dual doubly even [96, 48, 20] codes with an automorphism of order 9

According to the method that *C* has a generator matrix of the form

$$\mathcal{G} = \left(egin{array}{c} arphi^{-1}(M_2) \ arphi^{-1}(M_1) \ F_\sigma \end{array}
ight)$$

Every code satisfies the Singleton bound $d \le n - k + 1$

A code is maximum distance separable or MDS if d = n - k + 1A code is a near MDS or NMDS if d = n - k

 M_2 is a [10, 5] Hermitian self-dual code over $I_2 \cong \mathbb{F}_{64}$, d > 5By Singleton' bound $d < n - k + 1 \Rightarrow d = 6$ or d = 5We need to investigate both MDS and NMDS codes C' - MDS [10, 5, 6] Hermitian self-dual codes over I_2 , $\alpha = (x + 1)e_2$ – primitive element, $\mathbb{F}_{64} \cong l_2 = \{0, \alpha^k | 0 < k < 62\}$ $\delta = \alpha^9 = x^2 + x^4 + x^5 + x^7$ of multiplicative order 7 $I_{2} = \{0, x^{s} \delta^{l} | 0 < s < 8, 0 \le l \le 6\}.$

The minimum distance of $\varphi^{-1}(C')$ must be $d' \ge 20$. The orthogonal condition is $(u, v) = \sum_{i=1}^{n} u_i \overline{v_i} = 0$, $\overline{a} = a^8$, $a \in I_2$

Lemma

The generator matrix of MDS [10, 5, 6] code C' is $G' = (E_5|A')$ for

	$\int \delta^{a_{11}}$	$\delta^{a_{12}}$	$\delta^{a_{13}}$	$\delta^{a_{14}}$	$\delta^{a_{15}}$	
	$\delta^{a_{21}}$	γ_{22}	$\gamma_{\rm 23}$	$\gamma_{\rm 24}$	γ_{25}	
A' =	$\delta^{a_{31}}$	γ_{32}	γ_{33}	γ_{34}	γ_{35}	
	$\delta^{a_{41}}$	$\gamma_{\rm 42}$	γ_{43}	γ_{44}	γ_{45}	
	$\delta^{a_{51}}$	γ_{52}	γ_{53}	γ_{54}	γ_{55} /	

where $0 \le a_{11} \le a_{12} \le a_{13} \le a_{14} \le a_{15} \le 6$, $0 \le a_{21} \le a_{31} \le a_{41} \le a_{51} \le 6$, $\gamma_{ij} \in I_2^*$, $i = 2, \dots, 5$, $j = 2, \dots, 5$. We have 7 cases for the first row:

- (e, 0, 0, 0, 0, 0, e, e, e, δ³, δ³)
- $(e, 0, 0, 0, 0, 0, e, e, \delta, \delta^2, \delta^5)$
- $(e, 0, 0, 0, 0, 0, e, e, \delta^3, \delta^5, \delta^6)$
- (e, 0, 0, 0, 0, 0, e, δ, δ, δ², δ²)
- (e, 0, 0, 0, 0, 0, e, δ, δ, δ³, δ³)
- (e, 0, 0, 0, 0, 0, e, δ, δ, δ⁵, δ⁵)
- (e, 0, 0, 0, 0, 0, e, δ, δ², δ³, δ⁶)

A computer program constructed all 5 rows of A' in each of these 7 cases and found exactly 3144 inequivalent codes

Let C'' be a NMDS [10, 5, 5] Hermitian self-dual codes over I_2 such that the minimum distance of $\varphi^{-1}(C'')$ is $d'' \ge 20$.

Lemma

The generator matrix of the code C'' is $G'' = (E_5|A'')$ for

	(0	$\delta^{a_{12}}$	$\delta^{a_{13}}$	$\delta^{a_{14}}$	$\delta^{a_{15}}$	
	$\delta^{a_{21}}$	γ_{22}	$\gamma_{\rm 23}$	$\gamma_{\rm 24}$	γ_{25}	
A'' =	$\delta^{a_{31}}$	γ_{32}	γ_{33}	γ_{34}	γ_{35}	
	$\delta^{a_{41}}$	$\gamma_{\rm 42}$	$\gamma_{\rm 43}$	γ_{44}	γ_{45}	
	$\langle \delta^{a_{51}}$	γ_{52}	γ_{53}	γ_{54}	γ_{55} /	

where $0 \le a_{12} \le a_{13} \le a_{14} \le a_{15} \le 6$, $0 \le a_{21} \le a_{31} \le a_{41} \le a_{51} \le 6$ (or we have zeros in column 1), $\gamma_{ij} \in I_2, i = 2, \dots, 5, j = 2, \dots, 5$ A unique possibility for the first row

$$(e, 0, 0, 0, 0, 0, e, \delta, \delta^5, \delta^6).$$

A computer program computing all codes with generator matrix G'' turn out exactly 6703 codes

.

 M_1 is a quaternary Hermitian self-dual [10, 5, \geq 4] code There exists two such code with generator matrices $T_k = (E_5|X_i), i = 1, 2$, where

$$X_{1} = \begin{pmatrix} 1 & 1 & 1 & w & w^{2} \\ 1 & 1 & 1 & w^{2} & w \\ 1 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 \end{pmatrix}, X_{2} = \begin{pmatrix} 1 & 1 & 1 & 1 & 1 \\ 1 & w & w^{2} & w^{2} & w^{2} \\ 1 & w^{2} & w & w & w \\ 0 & 0 & w & w^{2} & 1 \\ 0 & 0 & w^{2} & w & 1 \end{pmatrix}$$

 $C_{\pi} = \pi(F_{\sigma}(C))$ – binary self-dual [16, 8, \geq 4], 3 such codes: a singly-even d_8^{2+} ; 2 doubly-even: d_{16}^+ , and e_8^2

Sets $X_c, X_f \subset \{1, \dots, 16\}, |X_c| = 10, |X_f| = 6, X_c \cap X_f = \emptyset$

 $w \in C_{\pi}, wt(w) = 6, |Supp(w) \cap X_c| = I \Rightarrow$ $|Supp(w) \cap X_f| = 6 - I \text{ and } wt(\pi^{-1}(w)) = 8I + 6 - singly-even #$

Computer check for X_c and X_f for d_{16}^+ , and e_8^2 – unique possible doubly-even code from d_{16}^+

	/ 100000001	000101 \
B =	0100000011	111110
	0010000010	111111
	0001000001	010001
	0000100001	100001
	0000010011	000001
	0000001001	001001
	000000101	000011 /

$$\mathcal{G} = \begin{pmatrix} \varphi^{-1}(M_2) \\ \varphi^{-1}(M_1) \\ B \end{pmatrix}$$

We fix the first block $\varphi^{-1}(H_i)$, $i = 1, \ldots, 9847$

 $G^{ au}$ – the matrix G with columns permuted by $au \in S_m$ $F_{\sigma}^{ au}$ – the code with generator matrix $\pi^{-1}(B^{ au})$

 $I \subseteq \{1, \dots, 9847\} - \text{the set of indices that there exists subcode} C' \text{ of } C, d' \ge 20 \text{ with generator matrix } G_{1,i,\tau} = \begin{pmatrix} \varphi^{-1}(H_i) \\ F_{\sigma}^{\tau} \end{pmatrix}$

By a computer for $G_{1,i, au}, i=1,\ldots,9847, au\in S_{10}$ we have |I|=390

$$\mathcal{G} = \left(\begin{array}{c} \varphi^{-1}(M_2) \\ \varphi^{-1}(M_1) \\ B \end{array}\right)$$

For k = 1, 2 we consider all images $\gamma(T_k)$ of T_k , k = 1, 2 using compositions of the following maps:

(i) a permutation $au \in S_{10}$ acting on the set of columns

- (ii) a multiplication of each column by e_1, ω or $\overline{\omega}$ from I_1
- (iii) a Galois automorphism γ which interchanges ω and $\overline{\omega}$

Set of indices $J \subseteq I$ such that there exists a subcode C'' of C, $d'' \ge 20$ with generator matrix

$$G_{2,j,k} = \begin{pmatrix} \varphi^{-1}(H_j) \\ \varphi^{-1}(\gamma(T_k)) \end{pmatrix}, k = 1, 2$$

For k = 1, 2 and $j \in I$ we have calculate all codes using only compositions of the maps (iii), (ii); and (i) for all permutations $\mu \in S_{10}$ from the right transversal R_k , of S_{10} with respect to PAut(T_k)

$$\mathcal{G} = \left(\begin{array}{c} \varphi^{-1}(M_2) \\ \varphi^{-1}(M_1) \\ B \end{array}\right)$$

all have minimum distance d < 20

Theorem

There does not exists a binary self-dual doubly-even [96, 48, 20] code with an automorphism of type 9 - (10, 0, 6)

Open cases for odd composite order

Study the existence of a [96, 48, 20] code with an automorphism of type:

- 9 (10, 2, 0)
- 3.5 (6, 2, 0, 0)