On the binary self-dual [96, 48, 20] codes with an automorphism of order 9

Nikolay I. Yankov

Shumen University, Bulgaria

VII-th International Workshop on Optimal Codes and Related Topics, OC 2013, Albena, Bulgaria 10.09.2013

Outline

- Introduction
- Construction method
- Binary $[96,48,20]$ self-dual code
- Results

The existence of binary self-dual [24k, 12k, 4k+4], $k \geq 3$ code

$k=1[24,12,8]-$ the Golay code G_{24} - unique (Pless, 1968),
$\operatorname{Aut}\left(G_{24}\right)=M_{24},\left|M_{24}\right|=244,823,040=2^{10} \cdot 3^{3} \cdot 5 \cdot 7 \cdot 11 \cdot 23$
$k=2$ a $[48,24,12]-$ the extended quadratic residue code
$Q R_{48}$ - unique (Houghten et al. 2003), Aut $\left(Q R_{48}\right)=P L_{2}(47)$,
$\left|P S L_{2}(47)\right|=103,776=2^{5} \cdot 3 \cdot 23 \cdot 47$
$k=3$

N.J.A. Sloane

Is there a $(72,36) d=16$ self-dual code?, IEEE Trans. Inform. Theory, vol. 19, p. 251, 1973.

Prices for this code:
S.T. Dougherty $\$ 100$ for the existence
M. Harada \$200 for the nonexistence
$k=3,[72,36,16]$ Automorphism group of order ≤ 5 :

- type $2-(36,0)$
- type $3-(24,0)$
- type 5 - $(14,2)$
$k=4,[96,48,20]$: Only 2,3 , or 5 can be primes dividing $|\operatorname{Aut}(C)|$

Bouyuklieva, Russeva, Yankov (2006) - a method for p^{2} for a prime $p>2$
Let $C-[n, k]$ binary self-dual
$\sigma-$ an automorphism of C of order p^{2} for a odd prime $p>2$

$$
\sigma=\underbrace{\Omega_{1} \ldots \Omega_{c}}_{\text {cycles of length } p^{2}} \underbrace{\Omega_{c+1} \ldots \Omega_{c+t}}_{\text {cycles of length } p} \underbrace{\Omega_{c+t+1} \ldots \Omega_{c+t+f}}_{\text {fixed points }},
$$

$\Omega_{i}=\left((i-1) p^{2}+1, \ldots, i p^{2}\right), i=1, \ldots, c-$ length p^{2}
$\Omega_{c+i}=\left(c p^{2}+(i-1) p+1, \ldots, c p^{2}+i p\right), i=1, \ldots, t,-$ length p
$\Omega_{c+t+i}=\left(c p^{2}+t p+i\right), i=1, \ldots, f,-$ fixed points
σ is of type $p^{2}-(c, t, f)$ and $c p^{2}+t p+f=n$.

We define

$$
\begin{gathered}
F_{\sigma}(C)=\{v \in C: v \sigma=v\} \\
E_{\sigma}(C)=\left\{v \in C: w t\left(v \mid \Omega_{i}\right) \equiv 0(\bmod 2)\right\}
\end{gathered}
$$

$i=1,2, \ldots, c+t+f$, where $v \mid \Omega_{i}$ is the restriction of v on Ω_{i}.

Lemma

The code C is a direct sum of the subcodes $F_{\sigma}(C)$ and $E_{\sigma}(C)$
Taking a coordinate from every cycle (they are equal) we define the projective map $\pi: F_{\sigma}(C) \rightarrow \mathbb{F}_{2}^{c+t+f}$

Lemma

If C is a binary self-dual code having an automorphism σ of type $p^{2}-(c, t, f)$ then $C_{\pi}=\pi\left(F_{\sigma}(C)\right)$ is a binary self-dual code of length $c+t+f$.

Let $E_{\sigma}(C)^{*}$ be $E_{\sigma}(C)$ with the last f coordinates deleted
$E_{\sigma}(C)^{*}$ is a self-orthogonal binary code of length $c p^{2}+t p$,

$$
\operatorname{dim} E_{\sigma}(C)^{*}=\operatorname{dim} C-\operatorname{dim} F_{\sigma}(C)=\frac{1}{2}(p-1)(c(p+1)+t) .
$$

For $v \in E_{\sigma}(C)^{*}$ we define:
$v \left\lvert\, \Omega_{i} \xrightarrow{\varphi} \begin{cases}a_{0}+a_{1} x+\cdots+a_{p^{2}-1} x^{p^{2}-1} \in T, & i=1, \ldots, c \\ a_{0}+a_{1} x+\cdots+a_{p-1} x^{p-1} \in P, & i=c+1, \ldots, c+t\end{cases}\right.$
T - set of even-weight polynomials in $\mathbb{F}_{2}[x] /\left(x^{p^{2}}-1\right)$
P - set of even-weight polynomials in $\mathbb{F}_{2}[x] /\left(x^{p}-1\right)$
The map $\varphi: E_{\sigma}(C)^{*} \rightarrow T^{c} \times P^{t}$

Definition

A linear code $C \subset T^{c} \times P^{t}$ is a subset of $T^{c} \times P^{t}$ such that $v+w \in C$ for all $v, w \in C$ and $x v \in C$ for all $v \in C$

Lemma

$C_{\varphi}=\varphi\left(E_{\sigma}(C)^{*}\right)$ is a linear code in $T^{c} \times P^{t}$
$a(x) \in T, P$ we define conjugation by $\overline{a(x)}=a\left(x^{-1}\right)$

Hermitian inner product in T is $\langle v, w\rangle=\sum_{i=1}^{c} v_{i} \overline{W_{i}}, v, w \in T^{c}$
Similarly, $\left\langle v^{\prime}, w^{\prime}\right\rangle=\sum_{i=1}^{t} v_{i}^{\prime} \overline{w_{i}^{\prime}}, v^{\prime}, w^{\prime} \in P^{t}$

Definition

If C is a linear code in $T^{c} \times P^{t}$ we define its dual code as the set C^{\perp} of all vectors ($\left.v, v^{\prime}\right), v \in T^{c}, v^{\prime} \in P^{t}$ such that $\langle v, w\rangle=Q_{p^{2}}(x)\left\langle v^{\prime}, w^{\prime}\right\rangle$ for all vectors $\left(w, w^{\prime}\right) \in C, w \in T^{c}$, $w^{\prime} \in P^{t}, Q_{p^{2}}(x)=Q_{p}\left(x^{p}\right)=x^{p(p-1)}+x^{p(p-2)}+\cdots+x^{p+1}-$ the p^{2}-th cyclotomic polynomial
If $C=C^{\perp}$ we call it self-dual

Lemma

If C is a linear code in $T^{c} \times P^{t}$, so is its dual code C^{\perp}

Theorem

A binary code C having an automorphism σ is self-dual iff C_{π} is a binary self-dual code and $C_{\varphi}=\varphi\left(E_{\sigma}(C)^{*}\right)$ is a self-dual code in $T^{c} \times P^{t}$

Consider the factor ring

$$
R=\mathbb{F}_{q}[x] /\left(x^{n}-1\right)
$$

where $\left(x^{n}-1\right)$ is the principal ideal in $\mathbb{F}_{q}[x]$ generated by $x^{n}-1$
When $n=p^{2}$ for a prime p, we have the following decomposition of the polynomial

$$
x^{p^{2}}-1=(x-1) Q_{p^{2}}(x) Q_{p}(x)
$$

where $Q_{p}(x)=1+x+\cdots+x^{p-1}$ and $Q_{p^{2}}(x)=Q_{p}\left(x^{p}\right)$ are cyclotomic polynomials
$Q_{p}(x)=g_{1}(x) \ldots g_{s}(x), Q_{p^{2}}(x)=h_{1}(x) \ldots h_{m}(x)$

Let

$$
\begin{aligned}
& G_{i}=\left\langle\frac{x^{p^{2}}-1}{g_{i}(x)}\right\rangle, i=1, \ldots, s \\
& H_{i}=\left\langle\frac{x^{p^{2}}-1}{h_{i}(x)}\right\rangle, i=1, \ldots, m
\end{aligned}
$$

We have that, G_{i} are fields with $\frac{p-1}{s}$ elements for $i=1, \ldots, s$ H_{i} are fields with $\frac{p(p-1)}{m}$ elements for $i=1, \ldots, m$

$$
R=\mathbb{F}_{q}[x] /\left(x^{n}-1\right)=G_{1} \oplus \cdots \oplus G_{s} \oplus H_{1} \oplus \cdots \oplus H_{m}
$$

$\forall a(x) \in T, \boldsymbol{a}=a_{1}^{\prime}+\cdots+a_{s}^{\prime}+a_{1}^{\prime \prime}+\cdots+a_{m}^{\prime \prime}$, where $a_{i}^{\prime} \in G_{i}$, $a_{j}^{\prime \prime} \in H_{j}$
$A-$ a binary linear code of length $c p^{2}$ having an automorphism of order p^{2} with c independent p^{2}-cycles

$$
\begin{aligned}
M_{j}^{\prime} & =\left\{u \in E_{\sigma}(A): u_{i} \in G_{j}, i=1, \ldots, c\right\}, j=1, \ldots, s \\
M_{j}^{\prime \prime} & =\left\{u \in E_{\sigma}(A): u_{i} \in H_{j}, i=1, \ldots, c\right\}, j=1, \ldots, m
\end{aligned}
$$

M_{j}^{\prime} - a linear space over $G_{j}, j=1, \ldots, s, M_{j}^{\prime \prime}$ - a linear space over $H_{j}, j=1, \ldots, m$

Lemma

$$
\begin{gathered}
M=\varphi\left(E_{\sigma}(A)\right)=M_{1}^{\prime} \oplus \cdots \oplus M_{s}^{\prime} \oplus M_{1}^{\prime \prime} \oplus \cdots \oplus M_{m}^{\prime \prime} \\
(p-1) \sum_{j=1}^{s} \operatorname{dim}_{G_{j}} M_{j}^{\prime}+\left(p^{2}-p\right) \sum_{j=1}^{s} \operatorname{dim}_{H_{j}} M_{j}^{\prime \prime}=\operatorname{dim} E_{\sigma}(A)
\end{gathered}
$$

2 - a primitive root $\bmod p^{2} \Rightarrow Q_{p}(x)$ and $Q_{p^{2}}(x)-\mathbb{F}_{2}$-irreducible $P \cong \mathbb{F}_{2^{p-1}}$

$$
T=I_{1} \oplus I_{2},
$$

I_{1} and I_{2} are cyclic codes with parity check $Q_{p}(x)$ and $Q_{p^{2}}(x)$

Theorem

When $t=0, M_{1}$ and M_{2} are Hermitian SD codes over I_{1} and I_{2}

$$
I_{1} \cong \mathbb{F}_{2^{p-1}}, \quad I_{2} \cong \mathbb{F}_{2^{p^{2}-p}}, \quad \varphi\left(E_{\sigma}(C)^{*}\right)=M_{1} \oplus M_{2}
$$

J. De la Cruz

Über die Automorphismengruppe extremaler Codes der Langen 96 und 120. Otto-von-Guericke-Universitat Magdeburg, PhD Thesis (2012)

For a binary self-dual $[96,48,20]$ code:

- only 2 , 3 , or 5 can be primes dividing $|\operatorname{Aut}(C)|$
- for an automorphism of order p^{2} we have $p=3$ and the following types:
- 9 - ($10,0,6$)
- 9 - (10, 2, 0)
[$72,36,16$] code with automorphism of order 9 - nonexistent:

N. Yankov

A Putative Doubly Even [72, 36, 16] Code Does Not Have an Automorphism of Order 9, IEEE Trans. Inform. Theory, 58(1), pp. 159-163 (2012)

Let C be a binary self-dual doubly even $[96,48,20]$ codes with an automorphism of order 9

According to the method that C has a generator matrix of the form

$$
\mathcal{G}=\left(\begin{array}{c}
\varphi^{-1}\left(M_{2}\right) \\
\varphi^{-1}\left(M_{1}\right) \\
F_{\sigma}
\end{array}\right) .
$$

Every code satisfies the Singleton bound $d \leq n-k+1$
A code is maximum distance separable or MDS if $d=n-k+1$
A code is a near MDS or NMDS if $d=n-k$
M_{2} is a $[10,5]$ Hermitian self-dual code over $I_{2} \cong \mathbb{F}_{64}, d \geq 5$
By Singleton' bound $d \leq n-k+1 \Rightarrow d=6$ or $d=5$
We need to investigate both MDS and NMDS codes
C^{\prime} - MDS [10, 5,6$]$ Hermitian self-dual codes over I_{2},
$\alpha=(x+1) e_{2}-$ primitive element,
$\mathbb{F}_{64} \cong I_{2}=\left\{0, \alpha^{k} \mid 0 \leq k \leq 62\right\}$
$\delta=\alpha^{9}=x^{2}+x^{4}+x^{5}+x^{7}$ of multiplicative order 7
$I_{2}=\left\{0, x^{s} \delta^{\prime} \mid 0 \leq s \leq 8,0 \leq I \leq 6\right\}$.

The minimum distance of $\varphi^{-1}\left(C^{\prime}\right)$ must be $d^{\prime} \geq 20$. The orthogonal condition is $(u, v)=\sum_{i=1}^{n} u_{i} \bar{v}_{i}=0, \bar{a}=a^{8}, a \in I_{2}$

Lemma

The generator matrix of $M D S[10,5,6]$ code C^{\prime} is $G^{\prime}=\left(E_{5} \mid A^{\prime}\right)$ for

$$
A^{\prime}=\left(\begin{array}{lllll}
\delta^{a_{11}} & \delta^{a_{12}} & \delta^{a_{13}} & \delta^{a_{14}} & \delta^{a_{15}} \\
\delta^{a_{21}} & \gamma_{22} & \gamma_{23} & \gamma_{24} & \gamma_{25} \\
\delta^{a_{31}} & \gamma_{32} & \gamma_{33} & \gamma_{34} & \gamma_{35} \\
\delta^{a_{14}} & \gamma_{42} & \gamma_{43} & \gamma_{44} & \gamma_{45} \\
\delta_{51}^{a_{11}} & \gamma_{52} & \gamma_{53} & \gamma_{54} & \gamma_{55}
\end{array}\right),
$$

where $0 \leq a_{11} \leq a_{12} \leq a_{13} \leq a_{14} \leq a_{15} \leq 6$,
$0 \leq a_{21} \leq a_{31} \leq a_{41} \leq a_{51} \leq 6, \gamma_{i j} \in l_{2}^{*}, i=2, \ldots, 5$, $j=2, \ldots, 5$.

We have 7 cases for the first row:

- (e, 0, 0, 0, 0, 0, e, e, e, $\left.\delta^{3}, \delta^{3}\right)$
- (e, 0, 0, 0, 0, 0, e, e, $\left.\delta, \delta^{2}, \delta^{5}\right)$
- (e, 0, 0, 0, 0, 0, e, e, $\left.\delta^{3}, \delta^{5}, \delta^{6}\right)$
- (e, 0, 0, 0, 0, 0, e, $\left.\delta, \delta, \delta^{2}, \delta^{2}\right)$
- $\left(e, 0,0,0,0,0, e, \delta, \delta, \delta^{3}, \delta^{3}\right)$
- (e, 0, 0, 0, 0, 0, e, $\left.\delta, \delta, \delta^{5}, \delta^{5}\right)$
- (e, 0, 0, 0, 0, 0, e, $\left.\delta, \delta^{2}, \delta^{3}, \delta^{6}\right)$

A computer program constructed all 5 rows of A^{\prime} in each of these 7 cases and found exactly 3144 inequivalent codes

Let $C^{\prime \prime}$ be a NMDS $[10,5,5]$ Hermitian self-dual codes over I_{2} such that the minimum distance of $\varphi^{-1}\left(C^{\prime \prime}\right)$ is $d^{\prime \prime} \geq 20$.

Lemma

The generator matrix of the code $C^{\prime \prime}$ is $G^{\prime \prime}=\left(E_{5} \mid A^{\prime \prime}\right)$ for

$$
A^{\prime \prime}=\left(\begin{array}{ccccc}
0 & \delta^{a_{12}} & \delta^{a_{13}} & \delta^{a_{14}} & \delta^{a_{15}} \\
\delta^{a_{21}} & \gamma_{22} & \gamma_{23} & \gamma_{24} & \gamma_{25} \\
\delta^{a_{31}} & \gamma_{32} & \gamma_{33} & \gamma_{34} & \gamma_{35} \\
\delta^{a_{41}} & \gamma_{42} & \gamma_{43} & \gamma_{44} & \gamma_{45} \\
\delta^{a_{51}} & \gamma_{52} & \gamma_{53} & \gamma_{54} & \gamma_{55}
\end{array}\right)
$$

where $0 \leq a_{12} \leq a_{13} \leq a_{14} \leq a_{15} \leq 6$,
$0 \leq a_{21} \leq a_{31} \leq a_{41} \leq a_{51} \leq 6$ (or we have zeros in column 1),
$\gamma_{i j} \in I_{2}, i=2, \ldots, 5, j=2, \ldots, 5$

A unique possibility for the first row

$$
\left(e, 0,0,0,0,0, e, \delta, \delta^{5}, \delta^{6}\right)
$$

A computer program computing all codes with generator matrix $G^{\prime \prime}$ turn out exactly 6703 codes
M_{1} is a quaternary Hermitian self-dual [$10,5, \geq 4$] code
There exists two such code with generator matrices
$T_{k}=\left(E_{5} \mid X_{i}\right), i=1,2$, where
$X_{1}=\left(\begin{array}{ccccc}1 & 1 & 1 & w & w^{2} \\ 1 & 1 & 1 & w^{2} & w \\ 1 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1\end{array}\right), X_{2}=\left(\begin{array}{ccccc}1 & 1 & 1 & 1 & 1 \\ 1 & w & w^{2} & w^{2} & w^{2} \\ 1 & w^{2} & w & w & w \\ 0 & 0 & w & w^{2} & 1 \\ 0 & 0 & w^{2} & w & 1\end{array}\right)$.
$C_{\pi}=\pi\left(F_{\sigma}(C)\right)$ - binary self-dual [16, $\left.8, \geq 4\right]$, 3 such codes: a singly-even $d_{8}^{2+} ; 2$ doubly-even: d_{16}^{+}, and e_{8}^{2}
Sets $X_{c}, X_{f} \subset\{1, \ldots, 16\},\left|X_{c}\right|=10,\left|X_{f}\right|=6, X_{c} \cap X_{f}=\emptyset$ $w \in C_{\pi}, \operatorname{wt}(w)=6,\left|\operatorname{Supp}(w) \cap X_{c}\right|=I \Rightarrow$ $\left|\operatorname{Supp}(w) \cap X_{f}\right|=6-I$ and $w t\left(\pi^{-1}(w)\right)=8 I+6-$ singly-even \# Computer check for X_{c} and X_{f} for d_{16}^{+}, and e_{8}^{2} - unique possible doubly-even code from d_{16}^{+}
$B=\left(\begin{array}{l|l}1000000001 & 000101 \\ 0100000011 & 111110 \\ 0010000010 & 111111 \\ 0001000001 & 010001 \\ 0000100001 & 100001 \\ 0000010011 & 000001 \\ 0000001001 & 001001 \\ 0000000101 & 000011\end{array}\right)$

$$
\mathcal{G}=\left(\begin{array}{c}
\varphi^{-1}\left(M_{2}\right) \\
\varphi^{-1}\left(M_{1}\right) \\
B
\end{array}\right)
$$

We fix the first block $\varphi^{-1}\left(H_{i}\right), i=1, \ldots, 9847$
G^{τ} - the matrix G with columns permuted by $\tau \in S_{m}$
F_{σ}^{τ} - the code with generator matrix $\pi^{-1}\left(B^{\tau}\right)$
$I \subseteq\{1, \ldots, 9847\}$ - the set of indices that there exists subcode
C^{\prime} of $C, d^{\prime} \geq 20$ with generator matrix $G_{1, i, \tau}=\binom{\varphi^{-1}\left(H_{i}\right)}{F_{\sigma}^{\tau}}$

By a computer for $G_{1, i, \tau}, i=1, \ldots, 9847, \tau \in S_{10}$ we have $|I|=390$

$$
\mathcal{G}=\left(\begin{array}{c}
\varphi^{-1}\left(M_{2}\right) \\
\varphi^{-1}\left(M_{1}\right) \\
B
\end{array}\right)
$$

For $k=1,2$ we consider all images $\gamma\left(T_{k}\right)$ of $T_{k}, k=1,2$ using compositions of the following maps:
(i) a permutation $\tau \in S_{10}$ acting on the set of columns
(ii) a multiplication of each column by e_{1}, ω or $\bar{\omega}$ from I_{1}
(iii) a Galois automorphism γ which interchanges ω and $\bar{\omega}$

Set of indices $J \subseteq I$ such that there exists a subcode $C^{\prime \prime}$ of C, $d^{\prime \prime} \geq 20$ with generator matrix

$$
G_{2, j, k}=\binom{\varphi^{-1}\left(H_{j}\right)}{\varphi^{-1}\left(\gamma\left(T_{k}\right)\right)}, k=1,2
$$

For $k=1,2$ and $j \in I$ we have calculate all codes using only compositions of the maps (iii), (ii); and (i) for all permutations $\mu \in S_{10}$ from the right transversal R_{k}, of S_{10} with respect to $\operatorname{PAut}\left(T_{k}\right)$

$$
\mathcal{G}=\left(\begin{array}{c}
\varphi^{-1}\left(M_{2}\right) \\
\varphi^{-1}\left(M_{1}\right) \\
B
\end{array}\right)
$$

all have minimum distance $d<20$

Theorem

There does not exists a binary self-dual doubly-even [96, 48, 20] code with an automorphism of type $9-(10,0,6)$

Open cases for odd composite order

Study the existence of a $[96,48,20]$ code with an automorphism of type:

- 9 - $(10,2,0)$
- 3.5 - $(6,2,0,0)$

