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INTRODUCTION NOTATION

PG (2, q) ⇒ projective space of dimension 2 over Galois field Fq

n-arc ⇒a set of n points no three of which are collinear
a line meeting an arc ⇒ tangent or bisecant

bisecant ⇒ a line intersecting an arc in two points

a point A of PG (2, q) is covered by an arc ⇒
A lies on a bisecant of the arc

complete arc ⇒ all points of PG (2, q) are covered
by bisecants of the arc

⇒ one may not add a new point to a complete arc
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INTRODUCTION NOTATION

t2(2, q) ⇒ the smallest size of a complete arc in PG (2, q)

HARD OPEN CLASSICAL PROBLEM: 1950 →
exact value or upper bound on t2(2, q)

t̄2(2, q) ⇒ the smallest known size of a complete arc in PG (2, q)

including computer search

t2(2, q) ≤ t̄2(2, q)

exact values of t2(2, q) for q ≤ 32

for q = 31, 32 D. Bartoli, A. Milani, S. Marcugini, F. Pambianco,

Journal of Geometry, to appear
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KNOWN BOUNDS on t2(2, q)

lower bound for q = p
3 O. Polverino 1999

t2(2, q) >

{ √
2q + 1 ∀ q

√
3q + 1

2 q = ph, h = 1, 2, 3

CDL-bound ⇒ upper bound with a constant degree
of log q

DDL-bound ⇒ upper bound with a decreasing degree
of log q

DDL-bounds are more convenient



Introduction Bound with a decreasing degree of ln q (estimates of computer results) Probabilistic bounds (uniform-distribution-assumption+theo

KNOWN BOUNDS with a DEGREE of LOGARITHM

CDL-bound t2(2, q) ≤ d
√
q logc q, c ≤ 300

c , d constants independent of q J.H. Kim, V. Vu 2003

theoretical bound; probabilistic methods

CDL-bound t2(2, q) <
√
q ln0.73 q

DDL-bound t2(2, q) < 0.7
√
q(ln q)

1

ln q
+0.78

estimates of computer results for all q ≤ 13627

D. Bartoli, A.A. Davydov, G. Faina, S. Marcugini, F. Pambianco 2005–2013

small arcs + BDFMP = big love
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NEW DDL-bound with a DECREASING DEGREE of ln q

Theorem

DDL-bound t2(2, q) < 0.6
√
q(ln q)ϕ(q)

ϕ(q) =
1.5

ln q
+ 0.8

all q ≤ 49727, all prime q ≤ 89113

100 sporadic prime q with 90001 ≤ q ≤ 350003

estimates of computer results in HUGE region
ALL prime q WITHOUT GAPS



Introduction Bound with a decreasing degree of ln q (estimates of computer results) Probabilistic bounds (uniform-distribution-assumption+theo

Randomized greedy algorithms

New arcs have been obtained using resources of Multipurpose Computing

Complex of National Research Centre “Kurchatov Institute”

A greedy algorithm is an algorithm that makes the

locally optimal choice at each stage with the hope of

finding a global optimum or, at least, a global “good”

solution.

A randomized greedy algorithm executes some stages
in a random manner without the local optimum.
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One step of greedy algorithm
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DECREASING-DEGREE-LOGARITHM-bound > Arc’s Size
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(ln q)ϕ(q) > t̄2(2, q)/(0.6
√
q)
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Assumption of a uniform distribution

θ = q2 + q + 1 ⇒ the number of points in PG (2, q)

NONcovi ⇒ the number of noncovered points of PG (2, q) after
the i-th step of the algorithm.

Assumption 1

Covered and noncovered points of the plane are

distributed uniformly. The proportion NONcovi
θ

of
noncovered points is the probability that a random
point of the plane is noncovered on the i + 1-th step.
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PROBABILISTIC UPPER BOUNDS

Theorem

Under Assumption 1,

2
√
q ln0.5 q > B(q) > t2(2, q).

B(q) = x is the solution of equation

x
∏

i=1

(

1 − i
q

)

= 1
θ

(

1 +
x
∑

j=1

x
∏

i=j

(

1 − i
q

)

)

assumption on uniform distribution + theoretical way
2
√
q ln0.5 q ⇒ rough estimate of B(q)
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Probabilistic upper bounds
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everything will be fine

All above mentioned new upper bounds are confirmed in huge
region of q.

Conjecture

All above mentioned new upper

bounds hold for all q.
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