DNA Codes based on additive self-dual codes over \mathbb{F}_4

Zlatko Varbanov, Todor Todorov

University of Veliko Tarnovo, Bulgaria

7th Int.Workshop on Optimal Codes and Related Topics, Albena, Bulgaria

September 10, 2013

Construction of DNA codes

Zlatko Varbanov, Todor Todorov (VTU) DNA Codes based on additive self-dual codes

э

DNA codes

- DNA codes sets of words of fixed length *n* over the alphabet {*A*, *C*, *G*, *T*}
- We use a hat to denote the Watson-Crick complement of a nucleotide, so $\hat{A} = T$, $\hat{T} = A$, $\hat{C} = G$, and $\hat{G} = C$

DNA codes problems

- Looking for code that satisfy certain combinatorial constraints reliably storing and retrieving information in synthetic DNA strands
- Good codes can be used in particular for DNA computing or as molecular bar-codes

- \mathbb{F}_q a field with q elements.
- Linear [n, k] code C of length n k-dimensional linear subspace of \mathbb{F}_q^n .
- Weight of a codeword c ∈ C (wt(c)) the number of nonzero components of c.
- Hamming distance H(x, y) between two codewords x and y the number of coordinates in which x and y differ.
- Minimum weight (distance):
- $d = d(C) = min\{wt(c)|c \in C, c \neq 0\} \rightarrow [n, k, d]$ code.
- Generator matrix of $C k \times n$ matrix with entries in \mathbb{F}_q whose rows are a basis of C.
- Weight enumerator of C: $C(y) = \sum_{i=0}^{n} A_i y^i$

Self-orthogonal and self-dual codes

- Inner product $x.y = \sum_{i=1}^{n} x_i y_i, \quad x, y \in \mathbb{F}_q^n$
- Dual code $C^{\perp} = \{x \in \mathbb{F}_q^n \mid x.c = 0, \forall c \in C\}$
- *C* self-orthogonal code if $C \subseteq C^{\perp}$
- C self-dual code if $C = C^{\perp}$ (k = n/2)

Additive code

Let $\mathbb{F}_4 = \{0, 1, \omega, \omega^2\}$. An additive code *C* over \mathbb{F}_4 of length *n* is an additive subgroup of \mathbb{F}_4^n . We call *C* an $(n, 2^k)$ code.

Trace map

Trace map $Tr : \mathbb{F}_4 \to \mathbb{F}_2$ is given by $Tr(x) = x + x^2$. In particular Tr(0) = Tr(1) = 0 and $Tr(\omega) = Tr(\omega^2) = 1$. The *conjugate* of $x \in \mathbb{F}_4$ (denoted \bar{x}) is the following image of x: $\bar{0} = 0, \bar{1} = 1$, and $\bar{\omega} = \omega^2$.

Trace inner product

The trace inner product of two vectors $x = (x_1, x_2, ..., x_n), y = (y_1, y_2, ..., y_n)$ in \mathbb{F}_4^n is

$$x \star y = \sum_{i=1}^{n} Tr(x_i \bar{y}_i)$$

Self-dual codes

- Dual code $C^{\perp} = \{x \in \mathbb{F}_4^n \mid x \star c = 0, \forall c \in C\}$
- *C* self-orthogonal code if $C \subseteq C^{\perp}$
- C self-dual code if $C = C^{\perp}$ (it is $(n, 2^n)$ code)

(1)

DNA codes

DNA codes

- The reverse of a codeword $x = (x_1, ..., x_n)$ is denoted by $x^R = (x_n, ..., x_1)$
- The reverse-complement of $x = (x_1, ..., x_n)$ is denoted by $x^{RC} = (\hat{x}_n, ..., \hat{x}_1)$

Mapping

- In our work we will the following map: 0 ightarrow A, 1 ightarrow T, ω ightarrow C, and ω^2 ightarrow G
- In this case the Watson-Crick complement (the transpositions A ↔ T and C ↔ G) is presented as x̂ = x + 1, for x ∈ 𝔽₄
- These transpositions do not affect the GC-weight of the codeword

Hamming distance constraint

 $H(x, y) \ge d$ for all $x, y \in C$ with $x \ne y$, for some prescribed minimum distance d.

Reverse constraint

$$H(x^{R}, y) \ge d$$
 for all $x, y \in C$, including $x = y$.

Reverse-complement constraint

 $H(x^{RC}, y) \ge d$ for all $x, y \in C$, including x = y.

GC-content constraint

Each codeword $x \in C$ has the same *GC*-weight. Starting from a linear code, the question is how to compute the *GC*-weight enumerator.

(日) (周) (王) (王)

Some constructions on DNA codes as:

- Binary construction
- Lexicographic construction
- Linear reverse construction
- Cyclic (and extended cyclic) code construction
- Shortening and puncturing

Gaborit and King, 2005; Niema, 2011

10 / 20

Graph code

A graph code is an additive self-dual code over \mathbb{F}_4 with generator matrix $G = \Gamma + \omega I$ where I is the identity matrix and Γ is the adjacency matrix of a simple undirected graph, which must be symmetric with 0's along the diagonal.

$$\Gamma = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}, \qquad G = \begin{pmatrix} \omega & 1 & 1 \\ 1 & \omega & 1 \\ 1 & 1 & \omega \end{pmatrix}$$

There is a one-to-one correspondence between the set of simple undirected graphs and the set of additive self-dual codes over \mathbb{F}_4 [Schlingemann, 2002].

A $n \times n$ matrix B of the form

$$B = \begin{pmatrix} b_0 & b_1 & \dots & b_{n-2} & b_{n-1} \\ b_{n-1} & b_0 & b_1 & \dots & b_{n-2} \\ \dots & \dots & \dots & \dots & \dots \\ b_2 & \dots & b_{n-1} & b_0 & b_1 \\ b_1 & b_2 & \dots & b_{n-1} & b_0 \end{pmatrix}$$

is called a circulant matrix. The vector $(b_0, b_1, \ldots, b_{n-1})$ is called generator vector for the matrix B. An additive self-dual code with circulant generator matrix is called additive circulant code.

- An additive circulant graph (ACG) code is a code corresponding to graph with circulant adjacency matrix.
- The generator vector of such a matrix has the following property: $b_i = b_{n-i}$, for all i = 1, ..., n 1, and $b_0 = \omega$.
- Then, the entries in the generator matrix of ACG code depend on the coordinates (b₁, b₂, ..., b_[n/2])

Construction

- We consider DNA codes with fixed *GC*-content that satisfy given Hamming distance constraint
- By $A_4^{GC}(n, d, u)$ we denote the maximum size of a DNA code of length *n* with constant *GC*-content *u* that satisfies the Hamming distance constraint for a given *d*.
- We present new construction based on additive self-dual codes with circulant generator matrix in graph form

Construction

The graph codes are proper to construct DNA codes with fixed GC-content u that satisfy Hamming distance constraint for given d:

- $H(x,y) \geq d$
- G just one position in any row (and column) that is neither 0 nor 1
- Any codeword that is a sum of *u* rows has *GC*-weight *u*

Theorem

Any graph code of length n with minimum distance d consists of DNA codes of length n with $H(x, y) \ge d$, fixed GC-content u $(1 \le u \le n)$, and $A_4^{GC}(n, d, u) = \binom{n}{u}$

Example (new lower bound)

• We construct $(29, 2^{29}, d \ge 10)$ ACG code. For this code the largest value for $A_4^{GC}(n, d, u) = {n \choose u}$ code is when u = 14 or 15. This value is ${29 \choose 14} = 77558760$ (old bound 4859904 [Niema, 2011]).

Example (new lower bound)

- There exists $(31, 2^{31}, d \ge 10)$ ACG code [Varbanov, 2009]. For this code the largest value for $A_4^{GC}(n, d, u) = \binom{n}{u}$ code is when u = 15 or 16. This value is $\binom{31}{15} = 300540195$
- All of the entries for n > 30 are new bests

n/d	10	11	old bound
29	77 558 760	-	4 859 904 [Niema, 2011]
30	_	155 117 520	1 417 920 [Niema, 2011]
31	300 540 195	_	_
32	601 080 390	_	_
33	1 166 803 110	-	-
34	2 333 606 220	-	-

Table : New lower bounds on $A_4^{GC}(n, d, u)$, $29 \le n \le 34, d = 10$ or 11

Gaborit, P., King, O.D. (2005)

Linear constructions for DNA codes

Theoretical Computer Science 334, 99–113.

Niema, A.A.(2011)

The construction of DNA codes using a computer algebra system *PhD Thesis, University of Glamorgan.*

Varbanov, Z.(2009)

Additive circulant graph codes over GF(4),

6th Int. Workshop on Optimal Codes and Related Topics, Varna, Bulgaria, 189–195.

19 / 20

Tnanks for your attention!