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Introduction

Let C be a self-dual [n, k , d ]- code over Fq .

Type I C is 2-divisible or even and q = 2
Type II C is 4-divisible or doubly even and q = 2
Type III C is 3-divisible and q = 3
Type IV C is 2-divisible and q = 4

In 1973 C.L. Mallows and N.J.A. Sloane proved that the mini-
mum distance d of a self-dual [n, k, d ]-code satisfies

Type I d ≤ 2
⌊n

8

⌋
+ 2

Type II d ≤ 4
⌊ n

24

⌋
+ 4, if n 6≡ 22 mod 24

d ≤ 4
⌊ n

24

⌋
+ 6, if n ≡ 22 mod 24

Type III d ≤ 3
⌊ n

12

⌋
+ 3

Type IV d ≤ 2
⌊n

6

⌋
+ 2

Codes reaching the bound are called Extremal.
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Introduction

In 1969 Vera Pless discovered a family of self-dual ternary
codes P(p) of length 2(p + 1) for odd primes p with

p ≡ −1 (mod 6).

Also the extended quadratic residue codes XQR(p) of length
p + 1, whenever p prime

p ≡ ±1 (mod 12),

define a series of self-dual ternary codes of high minimum dis-
tance.
In fact for small values of p both families define extremal codes.
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The known extremal ternary codes of length 12n.

Length n S(n
2 − 1) XQR(n − 1) Extremal Partial

distance Classification∗
12 6 6 X
24 9 9 9 X
36 12 - 12 o(σ ) ≥ 5
48 15 15 15 o(σ ) ≥ 5
60 18 18 18 o(σ ) ≥ 11
72 - 18 21 No extremal

∗ σ ∈ Aut(C ) of prime order.
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Pless Construction

Given p an odd prime with p ≡ −1 (mod 6). It is defined a
matrix Sp ∈ F(p+1)×(p+1)

3 by

Sp :=





0 1 1 · · · 1
χ(−1) χ(0) χ(1) · · · χ(p − 1)
χ(−1) χ(p − 1) χ(0) · · · χ(p − 2)

... . . . · · ·
χ(−1) χ(1) χ(2) · · · χ(0)




,

where

χ(a) :=
(

a
p

)
:=






0 , p | a
1 , a is a quadratic residue mod p, p - a
−1 , otherwise

.

Then the code generated by the matrix ( I(p+1) | Sp ) is a
self-dual [2(p + 1), p + 1]−code over GF (3).
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Definitions

Let K be a field, n ∈ N. Then the monomial group

Monn(K ∗) ∼= (K ∗)n : Sn ≤ GLn(K ),

the group of monomial n× n-matrices over K , is the semidirect
product of the subgroup (K ∗)n of diagonal matrices in GLn(K )
with the group of permutation matrices.

The monomial automorphism group of a code C ≤ Kn is

Aut(C ) := {g ∈ Monn(K ∗) | Cg = C}.

The idea to construct good self-dual codes is to investigate
codes that are invariant under a given subgroup G of Monn(K ∗).
A very fruitful source are monomial representations, for some
prime p, of G = SL2(p) .
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Monomial Representations
Explicit generator matrices for the Pless codes may be obtained
from the endomorphism ring of a monomial representation. Let
p be an odd prime and

G := SL2(p) :=
{(

a c
b d

)
∈ F2×2

p | ad − bc = 1

}
,

the group of 2 × 2-matrices over the finite field Fp with deter-
minant 1.

Let

B :=
{(

a 0
b d

)
∈ SL2(p)

}
=
〈

h1 :=
(

1 0
1 1

)
, ζ :=

(
α 0
0 α−1

)〉
.

Then B ∼= (Fp,+) : F∗p , [SL2(p) : B ] = p + 1 and Z (B) = Z (SL2(p)) =
〈ζ(p−1)/2〉 = {±I2}. The mapping λ : B → K ∗; h1 7→ 1, ζ 7→ −1 is a
linear character of B with kernel 〈h1, ζ2〉. It hence defines a
monomial representation ∆ = λG : G → Monp+1(K ∗) with

∆(G ) ∼=

{
SL2(p) p ≡ 1 (mod 4)
PSL2(p) p ≡ 3 (mod 4)
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Endomorphism ring of ∆

Then we may highlight the following:

i. SL2(p) = B
.
∪ BwB , w =

(
0 1
−1 0

)
.

ii. A right transversal of B in SL2(p) is [1,whx : x ∈ Fp ] where hx := hx
1 .

iii. (Ip+1,Sp) is the Schur basis of

End(∆) := {X ∈ Kp+1×p+1|X∆(g ) = ∆(g )X for all g ∈ G}.

iv. S2
p =

(
−1
p

)
p and SpS tr

p = p.

To construct monomial representations of degree 2(p + 1) we
consider the group

G(p) :=
〈

 ∆(g ) 0

0 ∆(g )



 ,Z :=



 0 Ip+1

jIp+1 0




∣∣∣∣g ∈ SL2(p)

〉
≤Mon2(p+1)(K ∗)

where j = −
(
−1
p

)
=





1 , p ≡ 3 (mod 4)
−1 , p ≡ 1 (mod 4).



Optimal Codes
and Related

Topics
-OC 2013-

G. Nebe
D. Villar

Introduction
Pless Construction

Codes and
monomial
groups
Definitions

Generalized Pless
codes

A new series of
self-dual codes
invariant under
SL2 (p)

Conclusions

Endomorphism ring of ∆

Then we may highlight the following:

i. SL2(p) = B
.
∪ BwB , w =

(
0 1
−1 0

)
.

ii. A right transversal of B in SL2(p) is [1,whx : x ∈ Fp ] where hx := hx
1 .

iii. (Ip+1,Sp) is the Schur basis of

End(∆) := {X ∈ Kp+1×p+1|X∆(g ) = ∆(g )X for all g ∈ G}.

iv. S2
p =

(
−1
p

)
p and SpS tr

p = p.

To construct monomial representations of degree 2(p + 1) we
consider the group

G(p) :=
〈

 ∆(g ) 0

0 ∆(g )



 ,Z :=



 0 Ip+1

jIp+1 0




∣∣∣∣g ∈ SL2(p)

〉
≤Mon2(p+1)(K ∗)

where j = −
(
−1
p

)
=





1 , p ≡ 3 (mod 4)
−1 , p ≡ 1 (mod 4).



Optimal Codes
and Related

Topics
-OC 2013-

G. Nebe
D. Villar

Introduction
Pless Construction

Codes and
monomial
groups
Definitions

Generalized Pless
codes

A new series of
self-dual codes
invariant under
SL2 (p)

Conclusions

Endomorphism Ring

Then we conclude
I. G(p) ∼=

{
C4 × PSL2(p) , p ≡ 1 (mod 4)
C2 × SL2(p) , p ≡ 3 (mod 4) , is contained in the au-

tomorphism group of the Pless code P(p).

II. End(G(p)) =
{(

A B
jB A

) ∣∣∣∣A,B ∈ End(∆)
}

is generated by

I2(p+1),X :=
(

Sp 0
0 Sp

)
,Y :=

(
0 Ip+1

jIp+1 0

)
,XY =

(
0 Sp

jSp 0

)

with X 2 = −jp, Y 2 = j , XY = YX , (XY )2 = −p.

III. If K = F3 and p ≡ −1 (mod 3) then (I2(p+1) − XY )2 = 0 and the rows
of

I2(p+1) − XY =
(

Ip+1 Sp
jSp Ip+1

)

span the Pless code P(p).
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Generalized Code

Definition
Let K = Fq be the finite field with q elements and assume
that there is some a ∈ K ∗ such that a2 = −p. Then we put
Pq(p) := aI2(p+1) + XY ∈ End(G(p)) and define the generalized
Pless code Pq(p) ≤ K 2(p+1) to be the code spanned by the
rows of Pq(p).

Theorem
Let a ∈ F∗q such that a2 = −p. The code Pq(p) has generator
matrix (aIp+1|P) and is a self-dual code in F2(p+1)

q . The sum of
the first two rows of this matrix has weight (p + 7)/2 if q is odd
and 4 if q is even. The group G(p) is a subgroup of Aut(Pq(p)).
In particular P3(p) is the Pless symmetry code P(p) as given
in [5].
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Generalized Code

Minimum distance of the Pless codes computed with MAGMA.
p 5 11 17 23 29 41 47

2(p + 1) 12 24 36 48 60 84 96
d (P3(p)) 6 9 12 15 18 21 24

Aut(P3(p)) 2.M12 G(11).2 G(17).2 G(23).2 G(29).2 ≥ G(41) ≥ G(47)

For q = 5, 7, and 11 we computed d (Pq(p)) with MAGMA:

(p, q) (11, 5)(19, 5)(29, 5)(31, 5) (3, 7)(5, 7)(13, 7)
2(p + 1) 12 40 60 64 8 12 28
d (Pq(p)) 9 13 18 18 4 6 10

(p, q) (17, 7)(19, 7) (7, 11)(13, 11)(17, 11)(19, 11)
2(p + 1) 36 40 16 28 36 40
d (Pq(p)) 12 13 7 10 12 13
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Endomorphisms of monomial representations

We now construct for odd primes q and p a prime number
such that p − 1 ≡ 4 (mod 8) a monomial representation of
∆′ : SL2(p)→ Mon2(p+1)(F∗q).

B (2) :=
{(

a2 0
b a−2

) ∣∣∣∣a ∈ F∗p, b ∈ Fp

}
≤ SL2(p),

of index [SL2(p) : B (2)] = 2(p + 1) with an unique linear repre-
sentation

γ : B (2) → F∗q, γ
((

a2 0
b a−2

))
=
(

a
p

)
.

Then ∆′ := γSL2(p)
B (2) is a faithful monomial representation of

degree 2(p + 1).

Taking w :=
(

0 1
−1 0

)
, as before, we obtain explicit

matrices.
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Endomorphisms of monomial representations
By assumption 2 ∈ F∗p \ (F∗p)2. Put ε := Diag(2, 2−1). Then
B = B (2) .

∪ B (2)ε and
SL2(p) = B

.
∪ BwB = B (2) .

∪ B (2)wB (2) .
∪ B (2)ε

.
∪ B (2)εwB (2)

and a right transversal is given by [1,whx , ε, εwhx : x ∈ Fp ].

Lemma
End( ∆′ ) ∼= F2×2

q has a Schur basis ( B1, Bw , Bε, Bεw = BεBw ), where
Bε =

( 0 I
−I 0

)
and Bw =

( X Y
−Y tr X tr

)
with

X =





0 1 . . . 1
−1
... RX
−1



 ,Y =





0 0 . . . 0
0
... RY
0



 .

Here the rows and columns of RX and RY are indexed by {0, . . . , p− 1} the
elements of Fp and

(RX )a,b =
{

0 , b − a 6∈ (F∗p )2(
c
p

)
, b − a = c2 ∈ (F∗p )2 , (RY )a,b =

{
0 , 2(b − a) 6∈ (F∗p )2(

c
p

)
, 2(b − a) = c2 ∈ (F∗p )2
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elements of Fp and

(RX )a,b =
{

0 , b − a 6∈ (F∗p )2(
c
p

)
, b − a = c2 ∈ (F∗p )2 , (RY )a,b =

{
0 , 2(b − a) 6∈ (F∗p )2(

c
p

)
, 2(b − a) = c2 ∈ (F∗p )2
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The new series of Codes

Definition
Let p be a prime p ≡8 5 and assume that there is a ∈ F∗q such
that a2 = −tp for t = 1 or t = 2. We then put

Vt (p) :=
{

aI2(p+1) + Bw , t = 1
aI2(p+1) + Bw + Bεw , t = 2

and let Vq(p) be the linear code spanned by the rows of Vt (p).

Theorem
Vq(p) is a self-dual code in F2(p+1)

q . Its monomial automorphism
group contains the group SL2(p).
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The new series of Codes

Minimum distance of V3(p) computed with MAGMA:

p 5 13 29 37 53
2(p + 1) 12 28 60 76 108
d (V3(p)) 6 9 18 18 24

Aut(V3(p)) 2.M12 SL2(13) SL2(29) ≥ SL2(37) ≥ SL2(53)

For q = 5, 7, and 11 and small lengths we computed d (Vq(p))
with MAGMA:

(p, q) (13, 5) (29, 5) (5, 7) (13, 7) (5, 11) (13, 11)
2(p + 1) 28 60 12 28 12 28
d (Vq(p)) 10 16 6 9 7 11
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Conclusions

The matrices of rank p + 1 in End(∆′) yield q + 1 different self-
dual codes invariant under ∆′(SL2(p)). In general these fall into
different equivalence classes.

For instance for q = 7, where 2 is a square mod 7, the codes
spanned by the rows of V1(p) and V2(p) are inequivalent for
p = 5 and p = 13 but have the same minimum distance.
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Some related research topics are:
1 What can be established about the weight distribution of
Vq(p) codes?

2 Are there extremal unimodular lattices related to extremal
codes in the new series?

3 Do these codes yield another extremal codes?
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Thanks for your attention
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