An analogue of the Pless symmetry codes

Gabriele Nebe
Darwin Villar

RWTH- Aachen

September 2013

Introduction

$$
\text { Let } C \text { be a self-dual }[n, k, d] \text { - code over } \mathbb{F}_{q} \text {. }
$$

Type I	C is 2-divisible or even and $q=2$
Type II	C is 4-divisible or doubly even and $q=2$
Type III	C is 3-divisible and $q=3$
Type IV	C is 2-divisible and $q=4$

Let C be a self-dual $[n, k, d]$ - code over \mathbb{F}_{q}.

Type I	C is 2-divisible or even and $q=2$
Type II	C is 4-divisible or doubly even and $q=2$
Type III	C is 3-divisible and $q=3$
Type IV	C is 2-divisible and $q=4$

In 1973 C.L. Mallows and N.J.A. Sloane proved that the minimum distance d of a self-dual $[n, k, d]$-code satisfies

Type I	$d \leq 2\left[\frac{n}{8}\right]+2$
Type II	$d \leq 4\left[\frac{n}{24}\right]+4$, if $n \not \equiv 22 \bmod 24$
	$d \leq 4\left[\frac{n}{24}\right]+6$, if $n \equiv 22 \bmod 24$
Type III	$d \leq 3\left[\frac{n}{12}\right]+3$
Type IV	$d \leq 2\left[\frac{n}{6}\right]+2$

Codes reaching the bound are called Extremal.

In 1969 Vera Pless discovered a family of self-dual ternary codes $\mathcal{P}(p)$ of length $2(p+1)$ for odd primes p with

$$
p \equiv-1 \quad(\bmod 6)
$$

In 1969 Vera Pless discovered a family of self-dual ternary codes $\mathcal{P}(p)$ of length $2(p+1)$ for odd primes p with

$$
p \equiv-1 \quad(\bmod 6)
$$

Also the extended quadratic residue codes $\operatorname{XQR}(p)$ of length $p+1$, whenever p prime

$$
p \equiv \pm 1 \quad(\bmod 12)
$$

define a series of self-dual ternary codes of high minimum distance.
In fact for small values of p both families define extremal codes.

The known extremal ternary codes of length $12 n$.

Introduction

Length n	$S\left(\frac{n}{2}-1\right)$	$X Q R(n-1)$	Extremal distance	Partial Classification*
12	6		6	\checkmark
24	9	9	9	\checkmark
36	12	-	12	$o(\sigma) \geq 5$
48	15	15	15	$o(\sigma) \geq 5$
60	18	18	18	$o(\sigma) \geq 11$
72	-	18	21	No extremal

$* \sigma \in \operatorname{Aut}(C)$ of prime order.

Given p an odd prime with $p \equiv-1(\bmod 6)$. It is defined a matrix $S_{p} \in \mathbb{F}_{3}^{(p+1) \times(p+1)}$ by

$$
S_{p}:=\left(\begin{array}{ccccc}
0 & 1 & 1 & \cdots & 1 \\
\chi(-1) & \chi(0) & \chi(1) & \cdots & \chi(p-1) \\
\chi(-1) & \chi(p-1) & \chi(0) & \cdots & \chi(p-2) \\
\vdots & \ddots & \cdots & & \\
\chi(-1) & \chi(1) & \chi(2) & \cdots & \chi(0)
\end{array}\right)
$$

where
$x(a):=\left(\frac{a}{p}\right):= \begin{cases}0 & , p \mid a \\ 1 & , \quad a \text { is a quadratic residue } \bmod p, p \nmid a . \\ -1 & , \text { otherwise }\end{cases}$
Then the code generated by the matrix $\left(I_{(p+1)} \mid S_{p}\right)$ is a self-dual $[2(p+1), p+1]$-code over $G F(3)$.

Let K be a field, $n \in \mathbb{N}$. Then the monomial group

$$
\operatorname{Mon}_{n}\left(K^{*}\right) \cong\left(K^{*}\right)^{n}: S_{n} \leq \mathrm{GL}_{n}(K)
$$

the group of monomial $n \times n$-matrices over K, is the semidirect product of the subgroup $\left(K^{*}\right)^{n}$ of diagonal matrices in $G L_{n}(K)$ with the group of permutation matrices.

Let K be a field, $n \in \mathbb{N}$. Then the monomial group

$$
\operatorname{Mon}_{n}\left(K^{*}\right) \cong\left(K^{*}\right)^{n}: S_{n} \leq \mathrm{GL}_{n}(K)
$$

the group of monomial $n \times n$-matrices over K, is the semidirect product of the subgroup $\left(K^{*}\right)^{n}$ of diagonal matrices in $G L_{n}(K)$ with the group of permutation matrices.
The monomial automorphism group of a code $C \leq K^{n}$ is

$$
\operatorname{Aut}(C):=\left\{g \in \operatorname{Mon}_{n}\left(K^{*}\right) \mid C g=C\right\} .
$$

The idea to construct good self-dual codes is to investigate codes that are invariant under a given subgroup G of $\operatorname{Mon}_{n}\left(K^{*}\right)$. A very fruitful source are monomial representations, for some prime p, of $G=\mathrm{SL}_{2}(p)$.

Monomial Representations

Explicit generator matrices for the Pless codes may be obtained from the endomorphism ring of a monomial representation. Let p be an odd prime and

$$
G:=\mathrm{SL}_{2}(p):=\left\{\left.\left(\begin{array}{ll}
a & c \\
b & d
\end{array}\right) \in \mathbb{F}_{p}^{2 \times 2} \right\rvert\, a d-b c=1\right\}
$$

the group of 2×2-matrices over the finite field \mathbb{F}_{p} with determinant 1.

Monomial Representations

Explicit generator matrices for the Pless codes may be obtained from the endomorphism ring of a monomial representation. Let p be an odd prime and

$$
G:=\mathrm{SL}_{2}(p):=\left\{\left.\left(\begin{array}{ll}
a & c \\
b & d
\end{array}\right) \in \mathbb{F}_{p}^{2 \times 2} \right\rvert\, a d-b c=1\right\}
$$

the group of 2×2-matrices over the finite field \mathbb{F}_{p} with determinant 1. Let
$B:=\left\{\left(\begin{array}{ll}a & 0 \\ b & d\end{array}\right) \in \mathrm{SL}_{2}(p)\right\}=\left\langle h_{1}:=\left(\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right), \zeta:=\left(\begin{array}{cc}\alpha & 0 \\ 0 & \alpha^{-1}\end{array}\right)\right\rangle$.
Then $B \cong\left(\mathbb{F}_{p},+\right): \mathbb{F}_{p}^{*},\left[\mathrm{SL}_{2}(p): B\right]=p+1$ and $Z(B)=Z\left(\mathrm{SL}_{2}(p)\right)=$ $\left\langle\zeta^{(p-1) / 2}\right\rangle=\left\{ \pm I_{2}\right\}$. The mapping $\lambda: B \rightarrow K^{*} ; h_{1} \mapsto 1, \zeta \mapsto-1$ is a linear character of B with kernel $\left\langle h_{1}, \zeta^{2}\right\rangle$. It hence defines a monomial representation $\Delta=\lambda^{G}: G \rightarrow \operatorname{Mon}_{p+1}\left(K^{*}\right)$ with

$$
\Delta(G) \cong\left\{\begin{array}{lll}
\mathrm{SL}_{2}(p) & p \equiv 1 & (\bmod 4) \\
\mathrm{PSL}_{2}(p) & p \equiv 3 & (\bmod 4)
\end{array}\right.
$$

Then we may highlight the following:
i. $\mathrm{SL}_{2}(p)=B \dot{\cup} B w B, w=\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)$.
ii. A right transversal of B in $\mathrm{SL}_{2}(p)$ is $\left[1, w h_{x}: x \in \mathbb{F}_{p}\right]$ where $h_{x}:=h_{1}^{x}$.
iii. $\left(I_{p+1}, S_{p}\right)$ is the Schur basis of

$$
\operatorname{End}(\Delta):=\left\{X \in K^{p+1 \times p+1} \mid X \Delta(g)=\Delta(g) X \text { for all } g \in G\right\}
$$

iv. $S_{p}^{2}=\left(\frac{-1}{p}\right) p$ and $S_{p} S_{p}^{t r}=p$.

Then we may highlight the following:
i. $\mathrm{SL}_{2}(p)=B \dot{\cup} B w B, w=\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)$.
ii. A right transversal of B in $\mathrm{SL}_{2}(p)$ is $\left[1, w h_{x}: x \in \mathbb{F}_{p}\right]$ where $h_{x}:=h_{1}^{x}$.
iii. $\left(I_{p+1}, S_{p}\right)$ is the Schur basis of

$$
\operatorname{End}(\Delta):=\left\{X \in K^{p+1 \times p+1} \mid X \Delta(g)=\Delta(g) X \text { for all } g \in G\right\}
$$

iv. $S_{p}^{2}=\left(\frac{-1}{p}\right) p$ and $S_{p} S_{p}^{t r}=p$.

To construct monomial representations of degree $2(p+1)$ we consider the group
$\mathcal{G}(p):=\left\langle\left(\begin{array}{cc}\Delta(g) & 0 \\ 0 & \Delta(g)\end{array}\right), Z: \left.=\left(\begin{array}{cc}0 & I_{p+1} \\ j l_{p+1} & 0\end{array}\right) \right\rvert\, g \in \operatorname{SL}_{2}(p)\right\rangle \leq \operatorname{Mon}_{2(p+1)}\left(K^{*}\right)$
where $j=-\left(\frac{-1}{p}\right)= \begin{cases}1 & , p \equiv 3(\bmod 4) \\ -1 & , p \equiv 1(\bmod 4) .\end{cases}$

Endomorphism Ring

Then we conclude
I. $\mathcal{G}(p) \cong\left\{\begin{array}{ll}C_{4} \times \operatorname{PSL}_{2}(p) & , p \equiv 1(\bmod 4) \\ C_{2} \times \operatorname{SL}_{2}(p) & , p \equiv 3(\bmod 4)\end{array}\right.$, is contained in the automorphism group of the Pless code $\mathcal{P}(p)$.

Endomorphism Ring

Then we conclude
I. $\mathcal{G}(p) \cong\left\{\begin{array}{ll}C_{4} \times \operatorname{PSL}_{2}(p) & , p \equiv 1(\bmod 4) \\ C_{2} \times \operatorname{SL}_{2}(p) & , p \equiv 3(\bmod 4)\end{array}\right.$, is contained in the automorphism group of the Pless code $\mathcal{P}(p)$.
II. $\operatorname{End}(\mathcal{G}(p))=\left\{\left.\left(\begin{array}{cc}A & B \\ j B & A\end{array}\right) \right\rvert\, A, B \in \operatorname{End}(\Delta)\right\}$ is generated by
$I_{2(p+1)}, X:=\left(\begin{array}{cc}S_{p} & 0 \\ 0 & S_{p}\end{array}\right), Y:=\left(\begin{array}{cc}0 & I_{p+1} \\ j l_{p+1} & 0\end{array}\right), X Y=\left(\begin{array}{cc}0 & S_{p} \\ j S_{p} & 0\end{array}\right)$
with $X^{2}=-j p, Y^{2}=j, X Y=Y X,(X Y)^{2}=-p$.

Endomorphism Ring

Then we conclude
I. $\mathcal{G}(p) \cong\left\{\begin{array}{ll}C_{4} \times \operatorname{PSL}_{2}(p) & , p \equiv 1(\bmod 4) \\ C_{2} \times \operatorname{SL}_{2}(p) & , p \equiv 3(\bmod 4)\end{array}\right.$, is contained in the automorphism group of the Pless code $\mathcal{P}(p)$.
II. $\operatorname{End}(\mathcal{G}(p))=\left\{\left.\left(\begin{array}{cc}A & B \\ j B & A\end{array}\right) \right\rvert\, A, B \in \operatorname{End}(\Delta)\right\}$ is generated by
$I_{2(p+1)}, X:=\left(\begin{array}{cc}S_{p} & 0 \\ 0 & S_{p}\end{array}\right), Y:=\left(\begin{array}{cc}0 & I_{p+1} \\ j l_{p+1} & 0\end{array}\right), X Y=\left(\begin{array}{cc}0 & S_{p} \\ j S_{p} & 0\end{array}\right)$
with $X^{2}=-j p, Y^{2}=j, X Y=Y X,(X Y)^{2}=-p$.
III. If $K=\mathbb{F}_{3}$ and $p \equiv-1(\bmod 3)$ then $\left(I_{2(p+1)}-X Y\right)^{2}=0$ and the rows of

$$
I_{2(p+1)}-X Y=\left(\begin{array}{cc}
I_{p+1} & S_{p} \\
j S_{p} & I_{p+1}
\end{array}\right)
$$

span the Pless code $\mathcal{P}(p)$.

Generalized Code

Definition

Let $K=\mathbb{F}_{q}$ be the finite field with q elements and assume that there is some $a \in K^{*}$ such that $a^{2}=-p$. Then we put $P_{q}(p):=a l_{2(p+1)}+X Y \in \operatorname{End}(\mathcal{G}(p))$ and define the generalized Pless code $\mathcal{P}_{q}(p) \leq K^{2(p+1)}$ to be the code spanned by the rows of $P_{q}(p)$.

Generalized Code

Definition

Let $K=\mathbb{F}_{q}$ be the finite field with q elements and assume that there is some $a \in K^{*}$ such that $a^{2}=-p$. Then we put $P_{q}(p):=a l_{2(p+1)}+X Y \in \operatorname{End}(\mathcal{G}(p))$ and define the generalized Pless code $\mathcal{P}_{q}(p) \leq K^{2(p+1)}$ to be the code spanned by the rows of $P_{q}(p)$.

Theorem

Let $a \in \mathbb{F}_{q}^{*}$ such that $a^{2}=-p$. The code $\mathcal{P}_{q}(p)$ has generator matrix $\left(a l_{p+1} \mid P\right)$ and is a self-dual code in $\mathbb{F}_{q}^{2(p+1)}$. The sum of the first two rows of this matrix has weight $(p+7) / 2$ if q is odd and 4 if q is even. The group $\mathcal{G}(p)$ is a subgroup of $\operatorname{Aut}\left(\mathcal{P}_{q}(p)\right)$. In particular $\mathcal{P}_{3}(p)$ is the Pless symmetry code $\mathcal{P}(p)$ as given in [5].

Generalized Code

Minimum distance of the Pless codes computed with Magma.

p	5	11	17	23	29	41	47
$2(p+1)$	12	24	36	48	60	84	96
$d\left(\mathcal{P}_{3}(p)\right)$	6	9	12	15	18	21	24
$\operatorname{Aut}\left(\mathcal{P}_{3}(p)\right)$	$2 . M_{12}$	$\mathcal{G}(11) \cdot 2$	$\mathcal{G}(17) .2$	$\mathcal{G}(23) .2$	$\mathcal{G}(29) .2$	$\geq \mathcal{G}(41)$	$\geq \mathcal{G}(47)$

Generalized Code

Minimum distance of the Pless codes computed with Magma.

p	5	11	17	23	29	41	47
$2(p+1)$	12	24	36	48	60	84	96
$d\left(\mathcal{P}_{3}(p)\right)$	6	9	12	15	18	21	24
$\operatorname{Aut}\left(\mathcal{P}_{3}(p)\right)$	$2 . M_{12}$	$\mathcal{G}(11) \cdot 2$	$\mathcal{G}(17) \cdot 2$	$\mathcal{G}(23) .2$	$\mathcal{G}(29) .2$	$\geq \mathcal{G}(41)$	$\geq \mathcal{G}(47)$

For $q=5,7$, and 11 we computed $d\left(\mathcal{P}_{q}(p)\right)$ with MaGma:

(p, q)	$(11,5)$	$(19,5)(29,5)(31,5)$	$(3,7)$	$(5,7)$	$(13,7)$	
$2(p+1)$	12	40	60	64	8	12
28						
$d\left(\mathcal{P}_{q}(p)\right)$	9	13	18	18	4	6

(p, q)	$(17,7)$	$(19,7)$	$(7,11)$	$(13,11)$	$(17,11)$
$2(p+19,11)$	36	40	16	28	36
40					
$d\left(\mathcal{P}_{q}(p)\right)$	12	13	7	10	12

Endomorphisms of monomial representations

We now construct for odd primes q and p a prime number such that $p-1 \equiv 4(\bmod 8)$ a monomial representation of $\Delta^{\prime}: \operatorname{SL}_{2}(p) \rightarrow \operatorname{Mon}_{2(p+1)}\left(\mathbb{F}_{q}^{*}\right)$.

$$
B^{(2)}:=\left\{\left.\left(\begin{array}{cc}
a^{2} & 0 \\
b & a^{-2}
\end{array}\right) \right\rvert\, a \in \mathbb{F}_{p}^{*}, b \in \mathbb{F}_{p}\right\} \leq \mathrm{SL}_{2}(p)
$$

of index $\left[\mathrm{SL}_{2}(p): B^{(2)}\right]=2(p+1)$ with an unique linear representation

$$
\gamma: B^{(2)} \rightarrow \mathbb{F}_{q}^{*}, \gamma\left(\left(\begin{array}{cc}
a^{2} & 0 \\
b & a^{-2}
\end{array}\right)\right)=\left(\frac{a}{p}\right) .
$$

Endomorphisms of monomial representations

We now construct for odd primes q and p a prime number such that $p-1 \equiv 4(\bmod 8)$ a monomial representation of $\Delta^{\prime}: \operatorname{SL}_{2}(p) \rightarrow \operatorname{Mon}_{2(p+1)}\left(\mathbb{F}_{q}^{*}\right)$.

$$
B^{(2)}:=\left\{\left.\left(\begin{array}{cc}
a^{2} & 0 \\
b & a^{-2}
\end{array}\right) \right\rvert\, a \in \mathbb{F}_{p}^{*}, b \in \mathbb{F}_{p}\right\} \leq \mathrm{SL}_{2}(p)
$$

of index $\left[\mathrm{SL}_{2}(p): B^{(2)}\right]=2(p+1)$ with an unique linear representation

$$
\gamma: B^{(2)} \rightarrow \mathbb{F}_{q}^{*}, \gamma\left(\left(\begin{array}{cc}
a^{2} & 0 \\
b & a^{-2}
\end{array}\right)\right)=\left(\frac{a}{p}\right) .
$$

Then $\Delta^{\prime}:=\gamma_{B^{(2)}}^{\mathrm{SL}_{2}(p)}$ is a faithful monomial representation of degree $2(p+1)$.
Taking $\quad w:=\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right), \quad$ as before, \quad we obtain explicit matrices.

Endomorphisms of monomial representations

By assumption $2 \in \mathbb{F}_{p}^{*} \backslash\left(\mathbb{F}_{p}^{*}\right)^{2}$. Put $\epsilon:=\operatorname{Diag}\left(2,2^{-1}\right)$. Then $B=B^{(2)} \cup B^{(2)} \epsilon$ and

$$
\mathrm{SL}_{2}(p)=B \dot{\cup} B w B=B^{(2)} \dot{\cup} B^{(2)} w B^{(2)} \dot{\cup} B^{(2)} \epsilon \dot{\cup} B^{(2)} \epsilon w B^{(2)}
$$

and a right transversal is given by $\left[1, w h_{x}, \epsilon, \epsilon w h_{x}: x \in \mathbb{F}_{p}\right]$.

Endomorphisms of monomial representations

By assumption $2 \in \mathbb{F}_{p}^{*} \backslash\left(\mathbb{F}_{p}^{*}\right)^{2}$. Put $\epsilon:=\operatorname{Diag}\left(2,2^{-1}\right)$. Then $B=B^{(2)} \dot{\cup} B^{(2)} \epsilon$ and

$$
\mathrm{SL}_{2}(p)=B \dot{\cup} B w B=B^{(2)} \dot{\cup} B^{(2)} w B^{(2)} \dot{\cup} B^{(2)} \epsilon \dot{\cup} B^{(2)} \epsilon w B^{(2)}
$$

and a right transversal is given by $\left[1, w h_{x}, \epsilon, \epsilon w h_{x}: x \in \mathbb{F}_{p}\right]$.
$\operatorname{Lemma}\left(\Delta^{\prime}\right) \cong \mathbb{F}_{q}^{2 \times 2}$ has a Schur basis $\left(B_{1}, B_{w}, B_{\epsilon}, B_{\epsilon w}=B_{\epsilon} B_{w}\right)$, where $B_{\epsilon}=\left(\begin{array}{cc}0 & 1 \\ -I & 0\end{array}\right)$ and $B_{w}=\left(\begin{array}{cc}X & Y \\ -Y^{t r} & X^{t r}\end{array}\right)$ with

$$
X=\left(\begin{array}{cccc}
0 & 1 & \ldots & 1 \\
-1 & & & \\
\vdots & & R_{X} & \\
-1 & & &
\end{array}\right), Y=\left(\begin{array}{cccc}
0 & 0 & \ldots & 0 \\
0 & & & \\
\vdots & & R_{Y} & \\
0 & & &
\end{array}\right)
$$

Here the rows and columns of R_{X} and R_{Y} are indexed by $\{0, \ldots, p-1\}$ the elements of \mathbb{F}_{p} and

Definition

Let p be a prime $p \equiv_{8} 5$ and assume that there is $a \in \mathbb{F}_{q}^{*}$ such that $a^{2}=-t p$ for $t=1$ or $t=2$. We then put

$$
V_{t}(p):= \begin{cases}a l_{2(p+1)}+B_{w} & , t=1 \\ a l_{2(p+1)}+B_{w}+B_{\epsilon w} & , t=2\end{cases}
$$

and let $\mathcal{V}_{q}(p)$ be the linear code spanned by the rows of $V_{t}(p)$.

Definition

Let p be a prime $p \equiv_{8} 5$ and assume that there is $a \in \mathbb{F}_{q}^{*}$ such that $a^{2}=-t p$ for $t=1$ or $t=2$. We then put

$$
V_{t}(p):= \begin{cases}a l_{2(p+1)}+B_{w} & , t=1 \\ a l_{2(p+1)}+B_{w}+B_{\epsilon w} & , t=2\end{cases}
$$

and let $\mathcal{V}_{q}(p)$ be the linear code spanned by the rows of $V_{t}(p)$.

Theorem

$\mathcal{V}_{q}(p)$ is a self-dual code in $\mathbb{F}_{q}^{2(p+1)}$. Its monomial automorphism group contains the group $\mathrm{SL}_{2}(p)$.

The new series of Codes

Minimum distance of $\mathcal{V}_{3}(p)$ computed with Magma:

p	5	13	29	37	53
$2(p+1)$	12	28	60	76	108
$d\left(\mathcal{V}_{3}(p)\right)$	6	9	18	18	24
$\operatorname{Aut}\left(\mathcal{V}_{3}(p)\right)$	$2 . M_{12}$	$\mathrm{SL}_{2}(13)$	$\mathrm{SL}_{2}(29)$	$\geq \mathrm{SL}_{2}(37)$	$\geq \mathrm{SL}_{2}(53)$

The new series of Codes

Minimum distance of $\mathcal{V}_{3}(p)$ computed with Magma:

p	5	13	29	37	53
$2(p+1)$	12	28	60	76	108
$d\left(\mathcal{V}_{3}(p)\right)$	6	9	18	18	24
Aut $\left(\mathcal{V}_{3}(p)\right)$	$2 \cdot M_{12}$	$\mathrm{SL}_{2}(13)$	$\mathrm{SL}_{2}(29)$	$\geq \mathrm{SL}_{2}(37)$	$\geq \mathrm{SL}_{2}(53)$

For $q=5,7$, and 11 and small lengths we computed $d\left(\mathcal{V}_{q}(p)\right)$ with Magma:

(p, q)	$(13,5)$	$(29,5)$	$(5,7)$	$(13,7)$	$(5,11)$	$(13,11)$
$2(p+1)$	28	60	12	28	12	28
$d\left(\mathcal{V}_{q}(p)\right)$	10	16	6	9	7	11

The matrices of rank $p+1$ in $\operatorname{End}\left(\Delta^{\prime}\right)$ yield $q+1$ different selfdual codes invariant under $\Delta^{\prime}\left(\mathrm{SL}_{2}(p)\right)$. In general these fall into different equivalence classes.

For instance for $q=7$, where 2 is a square $\bmod 7$, the codes spanned by the rows of $V_{1}(p)$ and $V_{2}(p)$ are inequivalent for $p=5$ and $p=13$ but have the same minimum distance.

Some related research topics are:
(1) What can be established about the weight distribution of $\mathcal{V}_{q}(p)$ codes?
(2) Are there extremal unimodular lattices related to extremal codes in the new series?
(3) Do these codes yield another extremal codes?

Optimal Codes
and Related Topics
-OC 2013-
G. Nebe
D. Villar

Introduction
Pless Construction
Codes and
monomial groups
Definitions
Generalized Pless
Generat
codes
Thanks for your attention Aew series of invariant under 2

Conclusions

BIBLIOGRAFÍA

回 E．F．Assmus，Jr．，H，F．Mattson，Jr．，and R．J．Turyn， Research to develop the algebraic theory of codes，Air force Cambridge Res．Lab．，Bedford，MA，Report AFCRL－ 67－0365，June 1967.
围 A．M．Gleason，Weight polynomials of self－dual codes an the MacWilliams identities，in 1970 Actes Congres Internal de Mathematique，vol 3．Paris：Gauthier－Villars，1971，pp． 211－215．
［i］C．L．Mallows，and N．J．A．Sloane，An upper bound for self－ dual codes．Inform．and Control．v22．188－200．
围 E．M．Rains，Shadow Bounds for Self－Dual Codes，IEEE Trans．Info．Theory，44，pp．134－139， 1998.
回 S．Zhang，On the nonexsitence of extremal self－dual codes， Discrete Applied Mathematics，v． 91 n．1－3，pp．277－286， 1999.
［ W．Bosma，J．Cannon，C．Playoust，The Magma algebra system．I．The user language．J．Symbolic Comput． 24 （1997） 235－265．
目 Andrew M．Gleason，Weight polynomials of self－dual codes and the MacWilliams identities．Actes du Congrès Interna－ tional des Mathématiciens（Nice，1970），Tome 3，pp．211－ 215．Gauthier－Villars，Paris， 1971.
圁 F．J．MacWilliams and N．J．A．Sloane，The theory of error－ correcting codes．North－Holland Mathematical Library，Vol． 16．North－Holland Publishing Co．，Amsterdam－New York－ Oxford， 1977.
圁 Jürgen Müller，On endomorphism rings and character ta－ bles．Habilitationsschrift，RWTH Aachen， 2003.
圊 Vera Pless，On a new family of symmetry codes and related new five－designs．Bull．Amer．Math．Soc． 75 （1969）1339－ 1342.

Rera Pless，Symmetry codes over $G F(3)$ and new five－ designs．J．Combinatorial Theory Ser．A $42(1972)=119=142$.

