An analogue of the Pless symmetry codes

Gabriele Nebe Darwin Villar

RWTH- Aachen

September 2013

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

◆□ → ◆同 → ◆回 → ◆回 → □ 回

G. Nebe D. Villar

Introduction

Pless Constructio

Codes and

monomia

groups

Definitions

Generalized Pless codes

A new series of self-dual codes invariant under SL₂(p)

Conclusions

Let *C* be a self-dual [n, k, d]- code over \mathbb{F}_q .

Type I	C is 2-divisible or even and $q = 2$
Type II	C is 4-divisible or doubly even and $q = 2$
Type III	C is 3-divisible and $q = 3$
Type IV	C is 2-divisible and $q = 4$

Introduction

Optimal Codes and Related Topics -OC 2013-

G. Nebe D. Villar

Introduction

Pless Constructio

Codes and monomial

groups

Definitions

Generalized Ples codes

A new series of self-dual codes invariant under SL₂(p)

Conclusions

Let *C* be a self-dual [n, k, d]- code over \mathbb{F}_q .

Type I	C is 2-divisible or even and $q = 2$
Type II	C is 4-divisible or doubly even and $q = 2$
Type III	C is 3-divisible and $q = 3$
Type IV	C is 2-divisible and $q = 4$

In 1973 C.L. Mallows and N.J.A. Sloane proved that the minimum distance d of a self-dual [n, k, d]-code satisfies

Type I	$d \leq 2$	$\left\lfloor \frac{n}{8} \right\rfloor + 2$	
Type II	$d \leq 4$	$\left\lfloor \frac{n}{24} \right\rfloor + 4$, if $n \not\equiv 22 \mod 2$	24
	<i>d</i> ≤ 4	$\left[\frac{n}{24}\right] + 6$, if $n \equiv 22 \mod 2$	24
Type III	$d \leq 3$	$\left[\frac{n}{12}\right] + 3$	
Type IV	$d \leq 2$	$\left\lfloor \frac{n}{6} \right\rfloor + 2$	

Codes reaching the bound are called Extremal.

・ロト・日本・山下・ 山下・ 日下・ シック

> G. Nebe D. Villar

Introduction

Pless Construction

Codes and monomial

groups

Definitions

Generalized Pless codes

A new series of self-dual codes invariant under SL₂(p)

Conclusions

In 1969 Vera Pless discovered a family of self-dual ternary codes $\mathcal{P}(p)$ of length 2(p + 1) for odd primes p with

 $p \equiv -1 \pmod{6}$.

Introduction

> G. Nebe D. Villar

Introduction

Pless Construction

Codes and monomial

groups

Generalized Pless codes

A new series of self-dual codes invariant under SL₂(p)

Conclusions

In 1969 Vera Pless discovered a family of self-dual ternary codes $\mathcal{P}(p)$ of length 2(p + 1) for odd primes p with

 $p \equiv -1 \pmod{6}$.

Also the extended quadratic residue codes XQR(p) of length p + 1, whenever p prime

 $p \equiv \pm 1 \pmod{12}$,

define a series of self-dual ternary codes of high minimum distance.

In fact for small values of *p* both families define extremal codes.

Introduction

G. Nebe

D. Villar

Introduction

Pless Construction

Codes and monomial groups

Definitions

Generalized Ples codes

A new series of self-dual codes invariant under SL₂(p)

Conclusions

The known extremal ternary codes of length 12*n*.

	Length <i>n</i>	S(n = 1)	VOP(n = 1)	Extremal	Partial
		$3(\frac{1}{2} - 1)$	$\lambda Q \Lambda (n-1)$	distance	Classification*
	12		6	6	\checkmark
	24	9	9	9	\checkmark
	36	12	-	12	$o(\sigma) \ge 5$
	48	15	15	15	$o(\sigma) \ge 5$
	60	18	18	18	$o(\sigma) \ge 11$
	72	-	18	21	No extremal

イロト イポト イヨト イヨト

1

* $\sigma \in Aut(C)$ of prime order.

Pless Construction

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Optimal Codes and Related Topics -OC 2013-

> G. Nebe D. Villar

Introduction

Pless Construction

Codes and monomial

groups

Definitions Generalized P

A new series of self-dual codes invariant under SL₂(p)

Conclusions

Given p an odd prime with $p \equiv -1 \pmod{6}$. It is defined a matrix $S_p \in \mathbb{F}_3^{(p+1) \times (p+1)}$ by

$$S_{p} := \begin{pmatrix} 0 & 1 & 1 & \cdots & 1 \\ \chi(-1) & \chi(0) & \chi(1) & \cdots & \chi(p-1) \\ \chi(-1) & \chi(p-1) & \chi(0) & \cdots & \chi(p-2) \\ \vdots & \ddots & \cdots & \\ \chi(-1) & \chi(1) & \chi(2) & \cdots & \chi(0) \end{pmatrix}$$

where

$$\chi(a) := \left(\frac{a}{p}\right) := \begin{cases} 0 & , p \mid a \\ 1 & , a \text{ is a quadratic residue mod } p, p \nmid a \\ -1 & , \text{ otherwise} \end{cases}$$

Then the code generated by the matrix ($I_{(p+1)} | S_p$) is a self-dual [2(p+1), p+1]-code over GF(3).

> G. Nebe D. Villar

Introduction Pless Construction

Codes and monomial

Definitions

Generalized Ples codes

A new series of self-dual codes invariant under SL₂(p)

Conclusions

Let *K* be a field, $n \in \mathbb{N}$. Then the **monomial group**

$$\operatorname{Mon}_n(K^*) \cong (K^*)^n : S_n \leq \operatorname{GL}_n(K),$$

Definitions

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

the group of monomial $n \times n$ -matrices over K, is the semidirect product of the subgroup $(K^*)^n$ of diagonal matrices in $GL_n(K)$ with the group of permutation matrices.

Definitions

Optimal Codes and Related Topics -OC 2013-

> G. Nebe D. Villar

Introduction Pless Construction

Codes and monomial

Definitions

Generalized Ples codes

A new series of self-dual codes invariant under SL₂(p)

Conclusions

Let *K* be a field, $n \in \mathbb{N}$. Then the **monomial group**

$$\operatorname{Mon}_n(K^*) \cong (K^*)^n : S_n \leq \operatorname{GL}_n(K),$$

the group of monomial $n \times n$ -matrices over K, is the semidirect product of the subgroup $(K^*)^n$ of diagonal matrices in $GL_n(K)$ with the group of permutation matrices.

The monomial automorphism group of a code $C \leq K^n$ is

$$\operatorname{Aut}(C) := \{g \in \operatorname{Mon}_n(K^*) \mid Cg = C\}.$$

The idea to construct good self-dual codes is to investigate codes that are invariant under a given subgroup G of $Mon_n(K^*)$. A very fruitful source are monomial representations, for some prime p, of $G = SL_2(p)$.

D. Villa

Introduction Pless Construction

Codes and monomial

Definition

Generalized Pless codes

A new series of self-dual codes invariant under SL₂(p)

Conclusions

Monomial Representations

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

Explicit generator matrices for the Pless codes may be obtained from the endomorphism ring of a monomial representation. Let p be an odd prime and

$$G := \operatorname{SL}_2(p) := \left\{ \left(egin{array}{cc} a & c \\ b & d \end{array}
ight) \in \mathbb{F}_p^{2 imes 2} \mid ad - bc = 1
ight\},$$

the group of 2 \times 2-matrices over the finite field \mathbb{F}_p with determinant 1.

> G. Nebe D. Villa

Introduction Pless Construction

Codes and monomial groups

Definitions

Generalized Ples codes

A new series of self-dual codes invariant under SL₂(p)

Conclusions

Monomial Representations

Explicit generator matrices for the Pless codes may be obtained from the endomorphism ring of a monomial representation. Let *p* be an odd prime and

$$G := \mathsf{SL}_2(p) := \left\{ \left(egin{array}{cc} \mathsf{a} & c \\ b & d \end{array}
ight) \in \mathbb{F}_p^{2 imes 2} \mid \mathsf{ad} - \mathsf{bc} = 1
ight\},$$

the group of 2 \times 2-matrices over the finite field \mathbb{F}_p with determinant 1. Let

$B := \left\{ \left(\begin{array}{cc} a & 0 \\ b & d \end{array} \right) \in \mathsf{SL}_2(p) \right\} = \left\langle h_1 := \left(\begin{array}{cc} 1 & 0 \\ 1 & 1 \end{array} \right), \zeta := \left(\begin{array}{cc} \alpha & 0 \\ 0 & \alpha^{-1} \end{array} \right) \right\rangle.$

Then $B \cong (\mathbb{F}_{p_{r}}, +) : \mathbb{F}_{p'}^{*} [SL_{2}(p) : B] = p + 1 \text{ and } Z(B) = Z(SL_{2}(p)) = \langle \zeta^{(p-1)/2} \rangle = \{\pm l_{2}\}.$ The mapping $\lambda : B \to K^{*}; h_{1} \mapsto 1, \zeta \mapsto -1$ is a linear character of B with kernel $\langle h_{1}, \zeta^{2} \rangle$. It hence defines a monomial representation $\Delta = \lambda^{G} : G \to Mon_{p+1}(K^{*})$ with

$$\Delta(G) \cong \begin{cases} \mathsf{SL}_2(p) & p \equiv 1 \pmod{4} \\ \mathsf{PSL}_2(p) & p \equiv 3 \pmod{4} \end{cases}$$

G. Nebe D. Villar

Introduction Pless Construction

Codes and monomial groups

Definitions Generalized F

A new series of self-dual codes invariant under SL₂ (p)

Conclusions

Endomorphism ring of Δ

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

Then we may highlight the following:

i.
$$SL_2(p) = B \stackrel{.}{\cup} BwB, w = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}.$$

ii. A right transversal of B in $SL_2(p)$ is $[1, wh_x : x \in \mathbb{F}_p]$ where $h_x := h_1^x$. iii. (I_{p+1}, S_p) is the Schur basis of

 $\mathsf{End}(\Delta) := \{ X \in K^{p+1 \times p+1} | X \Delta(g) = \Delta(g) X \text{ for all } g \in G \}.$

iv.
$$S_p^2 = \left(rac{-1}{p}
ight) p$$
 and $S_p S_p^{tr} = p$.

Endomorphism ring of Δ

Optimal Codes and Related Topics -OC 2013-

G. Nebe D. Villar

Introduction Pless Construction

Codes and monomial groups

Generalized Pless codes

A new series of self-dual codes invariant under SL₂(p)

Conclusions

Then we may highlight the following:

i.
$$SL_2(p) = B \cup BwB$$
, $w = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$.

ii. A right transversal of B in $SL_2(p)$ is $[1, wh_x : x \in \mathbb{F}_p]$ where $h_x := h_1^x$. iii. (I_{p+1}, S_p) is the Schur basis of

$$\operatorname{End}(\Delta) := \{ X \in K^{p+1 \times p+1} | X \Delta(g) = \Delta(g) X \text{ for all } g \in G \}.$$

iv.
$$S_p^2 = \left(\frac{-1}{p}\right) p$$
 and $S_p S_p^{tr} = p$.

To construct monomial representations of degree 2(p + 1) we consider the group

$$\mathcal{G}(p) := \left\langle \left(\begin{array}{cc} \Delta(g) & 0 \\ 0 & \Delta(g) \end{array} \right), Z := \left(\begin{array}{cc} 0 & I_{p+1} \\ jI_{p+1} & 0 \end{array} \right) \left| g \in \mathsf{SL}_2(p) \right\rangle \le \mathsf{Mon}_{2(p+1)}(K^*)$$

where $j = -\left(\frac{-1}{p}\right) = \begin{cases} 1 & , p \equiv 3 \pmod{4} \\ -1 & , p \equiv 1 \pmod{4}. \end{cases}$

◆□ > ◆母 > ◆臣 > ◆臣 > 善臣 - のへで

Endomorphism Ring

◆□ → ◆同 → ◆回 → ◆回 → □ 回

Optimal Codes and Related Topics -OC 2013-

G. Nebe D. Villar

Introduction

Pless Construction

Codes and monomial

groups

Definitions

Generalized Pless codes

A new series of self-dual codes invariant under SL₂(p)

Conclusions

Then we conclude

$$I. \ \mathcal{G}(p) \cong \left\{ \begin{array}{ll} C_4 \times \mathsf{PSL}_2(p) & , \ p \equiv 1 \pmod{4} \\ C_2 \times \mathsf{SL}_2(p) & , \ p \equiv 3 \pmod{4} \end{array} \right. \text{, is co}$$

is contained in the au-

tomorphism group of the Pless code $\mathcal{P}(p)$.

Endomorphism Ring

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Optimal Codes and Related Topics -OC 2013-

Then we conclude

A new series of SL₂(p)

 $\mathsf{I.} \ \mathcal{G}(p) \cong \left\{ \begin{array}{ll} C_4 \times \mathsf{PSL}_2(p) & , \ p \equiv 1 \pmod{4} \\ C_2 \times \mathsf{SL}_2(p) & , \ p \equiv 3 \pmod{4} \end{array} \right.$, is contained in the automorphism group of the Pless code $\mathcal{P}(p)$.

I.
$$\operatorname{End}(\mathcal{G}(p)) = \left\{ \begin{pmatrix} A & B \\ jB & A \end{pmatrix} \middle| A, B \in \operatorname{End}(\Delta) \right\}$$
 is generated by

$$I_{2(p+1)}, X := \begin{pmatrix} S_p & 0\\ 0 & S_p \end{pmatrix}, Y := \begin{pmatrix} 0 & I_{p+1}\\ jI_{p+1} & 0 \end{pmatrix}, XY = \begin{pmatrix} 0 & S_p\\ jS_p & 0 \end{pmatrix}$$

with $X^2 = -ip$, $Y^2 = i$, XY = YX, $(XY)^2 = -p$.

Endomorphism Ring

Optimal Codes and Related Topics -OC 2013-

Then we conclude

A new series of invariant under SL₂(p)

 $\mathsf{I.} \ \mathcal{G}(p) \cong \left\{ \begin{array}{ll} C_4 \times \mathsf{PSL}_2(p) & , \ p \equiv 1 \pmod{4} \\ C_2 \times \mathsf{SL}_2(p) & , \ p \equiv 3 \pmod{4} \end{array} \right.$, is contained in the automorphism group of the Pless code $\mathcal{P}(p)$.

I.
$$\operatorname{End}(\mathcal{G}(p)) = \left\{ \left(\begin{array}{cc} A & B \\ jB & A \end{array} \right) \middle| A, B \in \operatorname{End}(\Delta) \right\}$$
 is generated by

$$I_{2(p+1)}, X := \begin{pmatrix} S_p & 0\\ 0 & S_p \end{pmatrix}, Y := \begin{pmatrix} 0 & I_{p+1}\\ jI_{p+1} & 0 \end{pmatrix}, XY = \begin{pmatrix} 0 & S_p\\ jS_p & 0 \end{pmatrix}$$

with $X^2 = -ip$, $Y^2 = i$, XY = YX, $(XY)^2 = -p$.

III. If $K = \mathbb{F}_3$ and $p \equiv -1 \pmod{3}$ then $(I_{2(p+1)} - XY)^2 = 0$ and the rows of 11.

$$I_{2(p+1)} - XY = \begin{pmatrix} I_{p+1} & S_p \\ jS_p & I_{p+1} \end{pmatrix}$$

span the Pless code $\mathcal{P}(p)$.

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Optimal Codes and Related Topics -OC 2013-

G. Nebe D. Villar

Introduction Pless Construction

Codes and monomial groups

Definitions

Generalized Ples codes

A new series of self-dual codes invariant under SL₂(p)

Conclusions

Definition

Let $K = \mathbb{F}_q$ be the finite field with q elements and assume that there is some $a \in K^*$ such that $a^2 = -p$. Then we put $P_q(p) := a I_{2(p+1)} + XY \in \text{End}(\mathcal{G}(p))$ and define the **generalized Pless code** $\mathcal{P}_q(p) \leq K^{2(p+1)}$ to be the code spanned by the rows of $P_q(p)$.

Optimal Codes and Related Topics -OC 2013-

G. Nebe D. Villar

Introduction Pless Construction

Codes and monomial groups

Definitions

Generalized Ples codes

A new series of self-dual codes invariant under SL₂(p)

Conclusions

Definition

Let $K = \mathbb{F}_q$ be the finite field with q elements and assume that there is some $a \in K^*$ such that $a^2 = -p$. Then we put $P_q(p) := a I_{2(p+1)} + XY \in \text{End}(\mathcal{G}(p))$ and define the **generalized Pless code** $\mathcal{P}_q(p) \leq K^{2(p+1)}$ to be the code spanned by the rows of $P_q(p)$.

Theorem

Let $a \in \mathbb{F}_q^*$ such that $a^2 = -p$. The code $\mathcal{P}_q(p)$ has generator matrix $(aI_{p+1}|P)$ and is a self-dual code in $\mathbb{F}_q^{2(p+1)}$. The sum of the first two rows of this matrix has weight (p+7)/2 if q is odd and 4 if q is even. The group $\mathcal{G}(p)$ is a subgroup of $\operatorname{Aut}(\mathcal{P}_q(p))$. In particular $\mathcal{P}_3(p)$ is the Pless symmetry code $\mathcal{P}(p)$ as given in [5].

Optimal Codes and Related Topics -OC 2013-

> G. Nebe D. Villar

Introduction

Pless Construction

Codes and monomial groups

- . Definitions

Generalized Pless codes

A new series of self-dual codes invariant under SL₂(p)

Conclusions

Minimum distance of the Pless codes computed with MAGMA.

p	5	11	17	23	29	41	47
2(p+1)	12	24	36	48	60	84	96
$d(\mathcal{P}_3(p))$	6	9	12	15	18	21	24
$Aut(\mathcal{P}_3(p))$	2. <i>M</i> ₁₂	<i>G</i> (11).2	<i>G</i> (17).2	<i>G</i> (23).2	<i>G</i> (29).2	$\geq \mathcal{G}(41)$	$\geq \mathcal{G}(47)$

Optimal Codes and Related Topics -OC 2013-

> G. Nebe D. Villar

Introduction

Pless Construction

Codes and monomial groups

Definitions

Generalized Ples codes

A new series of self-dual codes invariant under SL₂(p)

Conclusions

Minimum distance of the Pless codes computed with MAGMA.

p	5	11	17	23	29	41	47
2(p+1)	12	24	36	48	60	84	96
$d(\mathcal{P}_3(p))$	6	9	12	15	18	21	24
$\operatorname{Aut}(\mathcal{P}_3(p))$	2. <i>M</i> ₁₂	G(11).2	G(17).2	<i>G</i> (23).2	<i>G</i> (29).2	$\geq \mathcal{G}(41)$	$\geq \mathcal{G}(47)$

For q = 5, 7, and 11 we computed $d(\mathcal{P}_q(p))$ with MAGMA:

12

13

 $d(\mathcal{P}_{q}(p)$

	(11 -)	(10 -		(01 E)	(2 7)	/F 7	(10 7)
(p,q)	(11, 5)	(19, 5)	(29, 5)	(31,5)	(3,7)	(5,7))(13,7)
2(p+1)	12	40	60	64	8	12	28
$d(\mathcal{P}_q(p))$	9	13	18	18	4	6	10
							·
(p,q)	(17, 7)	(19, 7) (7,11	.)(13, 1	.1)(17	, 11)	(19, 11)
2(p+1)	36	40	16	28	3	36	40

7

10

12

13

> G. Nebe D. Villa

Introduction Pless Construction

Codes and monomial

Definition

Generalized Ples codes

A new series of self-dual codes invariant under SL₂(p)

Conclusions

Endomorphisms of monomial representations

We now construct for odd primes q and p a prime number such that $p-1 \equiv 4 \pmod{8}$ a monomial representation of $\Delta' : SL_2(p) \rightarrow Mon_{2(p+1)}(\mathbb{F}_q^*).$

$$B^{(2)} := \left\{ \left(\begin{array}{cc} a^2 & 0 \\ b & a^{-2} \end{array} \right) \middle| a \in \mathbb{F}_p^*, b \in \mathbb{F}_p \right\} \leq \mathsf{SL}_2(p),$$

of index $[SL_2(p) : B^{(2)}] = 2(p + 1)$ with an unique linear representation

$$\gamma: B^{(2)} \to \mathbb{F}_q^*, \ \gamma\left(\left(\begin{array}{cc} a^2 & 0\\ b & a^{-2}\end{array}\right)\right) = \left(\frac{a}{p}\right)$$

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

> G. Nebe D. Villar

Introduction Pless Construction

Codes and monomial

Definitions

Generalized Ples codes

A new series of self-dual codes invariant under SL₂(p)

Conclusions

Endomorphisms of monomial representations

We now construct for odd primes q and p a prime number such that $p-1 \equiv 4 \pmod{8}$ a monomial representation of $\Delta' : SL_2(p) \rightarrow Mon_{2(p+1)}(\mathbb{F}_q^*).$

$$B^{(2)} := \left\{ \left(\begin{array}{cc} a^2 & 0 \\ b & a^{-2} \end{array} \right) \middle| a \in \mathbb{F}_p^*, b \in \mathbb{F}_p \right\} \leq \mathsf{SL}_2(p),$$

of index $[SL_2(p) : B^{(2)}] = 2(p + 1)$ with an unique linear representation

$$\gamma: B^{(2)} \to \mathbb{F}_{q}^{*}, \ \gamma\left(\left(\begin{array}{cc} a^{2} & 0\\ b & a^{-2} \end{array}\right)\right) = \left(\frac{a}{p}\right)$$

Then $\Delta' := \gamma_{B^{(2)}}^{SL_2(p)}$ is a faithful monomial representation of degree 2(p + 1). Taking $w := \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$, as before, we obtain explicit matrices.

> G. Nebe D. Villa

Introduction Pless Construction

Codes and monomial

Definition

Generalized Pless codes

A new series of self-dual codes invariant under SL₂(p)

Conclusions

Endomorphisms of monomial representations

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

By assumption $2 \in \mathbb{F}_p^* \setminus (\mathbb{F}_p^*)^2$. Put $\epsilon := \text{Diag}(2, 2^{-1})$. Then $B = B^{(2)} \cup B^{(2)} \epsilon$ and

 $\mathsf{SL}_2(p) = B \stackrel{\cdot}{\cup} BwB = B^{(2)} \stackrel{\cdot}{\cup} B^{(2)}wB^{(2)} \stackrel{\cdot}{\cup} B^{(2)}\epsilon \stackrel{\cdot}{\cup} B^{(2)}\epsilon wB^{(2)}$

and a right transversal is given by $[1, wh_x, \epsilon, \epsilon wh_x : x \in \mathbb{F}_p]$.

> G. Nebe D. Villa

Introduction Pless Construction

Codes and monomial

Definitions

Generalized Pless codes

A new series of self-dual codes invariant under SL₂(p)

Conclusions

Endomorphisms of monomial representations

By assumption $2 \in \mathbb{F}_p^* \setminus (\mathbb{F}_p^*)^2$. Put $\epsilon := \text{Diag}(2, 2^{-1})$. Then $B = B^{(2)} \cup B^{(2)} \epsilon$ and

 $\mathsf{SL}_2(p) = B \stackrel{\cdot}{\cup} BwB = B^{(2)} \stackrel{\cdot}{\cup} B^{(2)}wB^{(2)} \stackrel{\cdot}{\cup} B^{(2)}\epsilon \stackrel{\cdot}{\cup} B^{(2)}\epsilon wB^{(2)}$

and a right transversal is given by $[1, wh_x, \epsilon, \epsilon wh_x : x \in \mathbb{F}_p]$.

Lemma End(Δ') $\cong \mathbb{F}_q^{2\times 2}$ has a Schur basis (B_1 , B_w , B_ϵ , $B_{\epsilon w} = B_\epsilon B_w$), where $B_\epsilon = \begin{pmatrix} 0 & I \\ -I & 0 \end{pmatrix}$ and $B_w = \begin{pmatrix} X & Y \\ -Y^{tr} & X^{tr} \end{pmatrix}$ with $X = \begin{pmatrix} 0 & 1 & \dots & 1 \\ -1 & & \\ \vdots & & R_X \end{pmatrix}$, $Y = \begin{pmatrix} 0 & 0 & \dots & 0 \\ 0 & & & \\ \vdots & & R_Y \end{pmatrix}$.

Here the rows and columns of R_X and R_Y are indexed by $\{0,\ldots,p-1\}$ the elements of \mathbb{F}_p and

$$(R_{\mathbf{X}})_{\mathbf{a},\mathbf{b}} = \begin{cases} 0 & , b-a \notin (\mathbb{F}_{p}^{*})^{2} \\ \left(\frac{c}{p}\right) & , b-a=c^{2} \in (\mathbb{F}_{p}^{*})^{2} \end{cases}, \ (R_{\mathbf{Y}})_{\mathbf{a},\mathbf{b}} = \begin{cases} 0 & , 2(b-a) \notin (\mathbb{F}_{p}^{*})^{2} \\ \left(\frac{c}{p}\right) & , 2(b-a)=c^{2} \in (\mathbb{F}_{p}^{*})^{2} \end{cases}$$

The new series of Codes

Definition

Let *p* be a prime $p \equiv_8 5$ and assume that there is $a \in \mathbb{F}_q^*$ such that $a^2 = -tp$ for t = 1 or t = 2. We then put

$$V_t(p) := \begin{cases} al_{2(p+1)} + B_w &, t = 1\\ al_{2(p+1)} + B_w + B_{\epsilon w} &, t = 2 \end{cases}$$

and let $\mathcal{V}_q(p)$ be the linear code spanned by the rows of $V_t(p)$.

D. VIIId

Optimal Codes

and Related Topics -OC 2013-

Pless Construction

Codes and monomial groups

Generalized Ples

A new series of self-dual codes invariant under SL₂(p)

Conclusions

The new series of Codes

Definition

Optimal Codes

and Related Topics -OC 2013-

Let *p* be a prime $p \equiv_8 5$ and assume that there is $a \in \mathbb{F}_q^*$ such that $a^2 = -tp$ for t = 1 or t = 2. We then put

$$V_t(p) := \begin{cases} al_{2(p+1)} + B_w &, t = 1\\ al_{2(p+1)} + B_w + B_{\epsilon w} &, t = 2 \end{cases}$$

and let $\mathcal{V}_q(p)$ be the linear code spanned by the rows of $V_t(p)$.

Theorem $\mathcal{V}_q(p)$ is a self-dual code in $\mathbb{F}_q^{2(p+1)}$. Its monomial automorphism group contains the group $SL_2(p)$.

◆□ > ◆□ > ◆三 > ◆三 > ● ● ● ●

The new series of Codes

Optimal Codes and Related Topics -OC 2013-

G. Nebe D. Villar

Introduction

Codes and monomial

groups

Definitions

Generalized Pless codes

A new series of self-dual codes invariant under SL₂(p)

Conclusions

Minimum distance of $\mathcal{V}_3(p)$ computed with MAGMA:

р	5	13	29	37	53
2(p+1)	12	28	60	76	108
$d(\mathcal{V}_3(p))$	6	9	18	18	24
$Aut(\mathcal{V}_3(p))$	2. <i>M</i> ₁₂	SL ₂ (13)	SL ₂ (29)	\geq SL ₂ (37)	\geq SL ₂ (53)

> G. Nebe D. Villar

Introduction Pless Construction

Codes and monomial

Definitions

Generalized Pless codes

A new series of self-dual codes invariant under SL₂(p)

Conclusions

Minimum distance of $\mathcal{V}_3(p)$ computed with MAGMA:

р	5	13	29	37	53
2(p+1)	12	28	60	76	108
$d(\mathcal{V}_3(p))$	6	9	18	18	24
$\operatorname{Aut}(\mathcal{V}_3(p))$	2. <i>M</i> ₁₂	SL ₂ (13)	SL ₂ (29)	\geq SL ₂ (37)	\geq SL ₂ (53)

For q = 5, 7, and 11 and small lengths we computed $d(\mathcal{V}_q(p))$ with MAGMA:

(p, q)	(13, 5)	(29, 5)	(5,7)	(13, 7)	(5, 11)	(13, 11)
2(p + 1)	28	60	12	28	12	28
$d(\mathcal{V}_q(p))$	10	16	6	9	7	11

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Optimal Codes and Related Topics -OC 2013-

> G. Nebe D. Villar

Introduction Pless Construction

Codes and monomial groups

Definitions Generalized Pl

codes

A new series of self-dual codes invariant under SL₂(p)

Conclusions

The matrices of rank p + 1 in End(Δ') yield q + 1 different selfdual codes invariant under $\Delta'(SL_2(p))$. In general these fall into different equivalence classes.

For instance for q = 7, where 2 is a square mod 7, the codes spanned by the rows of $V_1(p)$ and $V_2(p)$ are inequivalent for p = 5 and p = 13 but have the same minimum distance.

> G. Nebe D. Villar

Introduction Pless Construction

Codes and monomial groups

Definitions

Generalized Pless codes

A new series of self-dual codes invariant under SL₂(p)

Conclusions

Some related research topics are:

- **1** What can be established about the weight distribution of $\mathcal{V}_q(p)$ codes?
- Are there extremal unimodular lattices related to extremal codes in the new series?

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

3 Do these codes yield another extremal codes?

> G. Nebe D. Villar

Introduction

Codes and monomial

groups

Generalized Ples

A new series of self-dual codes invariant under SL₂(p)

Conclusions

Thanks for your attention

Conclusions

BIBLIOGRAFÍA

E. F. Assmus, jr., H, F. Mattson, Jr., and R. J. Turyn, Research to develop the algebraic theory of codes, Air force Cambridge Res. Lab., Bedford, MA, Report AFCRL-67-0365, June 1967.

- A. M. GLEASON, Weight polynomials of self-dual codes an the MacWilliams identities, in 1970 Actes Congres Internal de Mathematique, vol 3. Paris: Gauthier-Villars, 1971, pp. 211-215.
- C.L. MALLOWS, AND N.J.A. SLOANE, An upper bound for selfdual codes. Inform. and Control. v22, 188–200.
- E.M. RAINS, Shadow Bounds for Self-Dual Codes, IEEE Trans. Info. Theory, 44, pp. 134 – 139, 1998.
- **S**. ZHANG, On the nonexsitence of extremal self-dual codes, Discrete Applied Mathematics, v.91 n.1-3, pp. 277-286, 1999.

Conclusions

- W. Bosma, J. Cannon, C. Playoust, *The Magma algebra* system. I. The user language. J. Symbolic Comput. 24 (1997) 235-265.
- Andrew M. Gleason, Weight polynomials of self-dual codes and the MacWilliams identities. Actes du Congrès International des Mathématiciens (Nice, 1970), Tome 3, pp. 211-215. Gauthier-Villars, Paris, 1971.
- F.J. MacWilliams and N.J.A. Sloane, The theory of error-correcting codes. North-Holland Mathematical Library, Vol. 16. North-Holland Publishing Co., Amsterdam-New York-Oxford. 1977.
- Jürgen Müller, On endomorphism rings and character ta-bles. Habilitationsschrift, RWTH Aachen, 2003.

 - Vera Pless, On a new family of symmetry codes and related new five-designs. Bull. Amer. Math. Soc. 75 (1969) 1339-1342.
 - Vera Pless, Symmetry codes over GF(3) and new fivedesigns. J. Combinatorial Theory Ser. A 42 (1972)≡119≡142.0