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Introduction

Introduction

Let C be a self-dual [n, k, d]- code over F,.

Type | C is 2-divisible or even and g = 2

Type Il | C is 4-divisible or doubly even and g = 2
Type Il | C is 3-divisible and g = 3

Type IV | C is 2-divisible and g = 4
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S Let C be a self-dual [n, k, d]- code over Fy,.

Iniroduction Type | | C is 2-divisible or even and g = 2

Type Il | C is 4-divisible or doubly even and g = 2
Type Il | C is 3-divisible and g = 3

Type IV | C is 2-divisible and g = 4

In 1973 C.L. Mallows and N.J.A. Sloane proved that the mini-
mum distance d of a self-dual [n, k, d]-code satisfies

Type | [d<2|2|+2

Type Il | d<4|5|+4 if n#£22 mod 24
d<4 i +6, if n=22 mod 24

Type lll | d <3|45]|+3

Type IV [ d<2|2]+2

Codes reaching the bound are called Extremal.
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Introduction

Introduction

In 1969 Vera Pless discovered a family of self-dual ternary
codes P(p) of length 2(p + 1) for odd primes p with

p

!

(mod 6).
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Introduction

Introduction

In 1969 Vera Pless discovered a family of self-dual ternary
codes P(p) of length 2(p + 1) for odd primes p with

p=-—1 (mod 6).

Also the extended quadratic residue codes XQR(p) of length
p + 1, whenever p prime

p=+1 (mod 12),

define a series of self-dual ternary codes of high minimum dis-
tance.
In fact for small values of p both families define extremal codes.
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Introduction

Extremal Partial

etigitn i || Sl =4 || A =1 distance | Classification*

12 6 6 v

24 9 9 9 v

36 12 - 12 o(o) >5

48 15 15 15 o(o) >5

60 18 18 18 o(g) > 11

72 = 18 21 No extremal

* 0 € Aut(C) of prime order.
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Pless Construction

Given p an odd prime with p = —1 (mod 6). It is defined a

matrix S, € ]ngﬂ)x(pﬂ) by

0 1 1
x(=1)  x(0)  x(1)
Sy = | x(=1) x(p—1) x(0)
x=1)  x1)  x@)
where
) 0 ,pla
x(a) := (I_J) =141

—1 , otherwise

Then the code

, ais a quadratic residue mod p,p1a .

generated by the matrix ( /p41)|Sp)isa

self-dual [2(p + 1), p + 1]—code over GF(3).
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Let K be a field, n € N. Then the monomial group
Mon,(K*) = (K*)" : S, < GL,(K),

the group of monomial n x n-matrices over K, is the semidirect
product of the subgroup (K*)" of diagonal matrices in GL,(K)
with the group of permutation matrices.
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Definitions

Let K be a field, n € N. Then the monomial group
Mon,(K*) = (K*)" : S, < GL,(K),

the group of monomial n x n-matrices over K, is the semidirect
product of the subgroup (K*)" of diagonal matrices in GL,(K)
with the group of permutation matrices.

The monomial automorphism group of a code C < K" is

Aut(C) := {g € Mon,(K*) | Cg = C}.

The idea to construct good self-dual codes is to investigate
codes that are invariant under a given subgroup G of Mon,(K™).
A very fruitful source are monomial representations, for some
prime p, of G = SLy(p) .



Optimal Codes
and Related
Topics
-0C 2013-

Monomial Representations

Explicit generator matrices for the Pless codes may be obtained
from the endomorphism ring of a monomial representation. Let
p be an odd prime and

GZ:SLz(p):Z{( Z ; )EFilead—bczl},

the group of 2 x 2-matrices over the finite field F, with deter-
minant 1.
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Monomial Representations

Explicit generator matrices for the Pless codes may be obtained
from the endomorphism ring of a monomial representation. Let
p be an odd prime and

GZ:SLz(p):Z{( Z ; )EFilead—bczl},

the group of 2 x 2-matrices over the finite field F, with deter-

minant 1. Let
1 0 a 0

B::{ a 0

b d
Then B = (F,, +) : F;, [SL2(p) : Bl = p+ 1 and Z(B) = Z(SL»(p)) =
(¢P=12y = {+h,}. The mapping A: B — K% h; — 1,{ — —1 is
linear character of B with kernel (h;,¢?). It hence defines
monomial representation A = A€ : G — Mon,,1(K*) with

0 o

AG) 2 SLa(p) p=1 (mod 4)
| PSLa(p) p=3 (mod 4)
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nt under

Endomorphism ring of A

Then we may highlight the following:
L SLa(p) = B U BwB, w = ( % 3 )

ii. A right transversal of B in SLy(p) is [1, why : x € F,,] where h, := hy.
iii. (lp41,Sp) is the Schur basis of

End(A) := {X € KPT*PTL X A(g) = A(g)X for all g € G}.

iv. §2= (_?1) p and S,SI = p.
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Endomorphism ring of A

Then we may highlight the following:
L SLa(p) = B U BwB, w = ( % 3 )

ii. A right transversal of B in SLy(p) is [1, why : x € F,,] where h, := hy.
iii. (lp41,Sp) is the Schur basis of

End(A) := {X € KPT*PTL X A(g) = A(g)X for all g € G}.

iv. §2= (_?1) p and S,S5 = p.

To construct monomial representations of degree 2(p + 1) we
consider the group

Al /}
olp) = < @ 0 Jz=( 0 ) ee SLz(P)> < Monagps1)(K*)
0 A(g) Jlps1 0
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Then we conclude

l. G(p) = { g: i EE2|-(2()p) ' z;; ﬁmgj 2; , is contained in the au-
tomorphism group of the Pless code P(p).

nt under
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Then we conclude

l. G(p) = { g: i EE2|-(2()p) ' z;; ﬁmgj i; , is contained in the au-
tomorphism group of the Pless code P(p).

Il. End(G(p)) = {( fé g ) ‘A,B e End(A)} is generated by

(s, o — [ 0 fn (9 5
’2(P+1)'X'_( O Sy )'Y'_(J"p+1 0 )’Xy_(jsp Op)

with X2 = —jp, Y2 = j, XY = YX, (XY)2 = —
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ebe

Endomorphism Ring

o Then we conclude

nt under

l. G(p) = { g: i EE;-(z()p) ' z;; ﬁmgj i; , is contained in the au-
tomorphism group of the Pless code P(p).

Il. End(G(p)) = {( jg g ) ’A,B e End(A)} is generated by

_ [ S © o 0 lpt1 _ 0 S
I2(p+1),X = ( Op Sp ) B Y = ( jlp+1 P6 ) ,XY = ( jsp Op )
with X2 = —jp, Y2 = j, XY = YX, (XY)? = —
If K =TF5 and p = —1 (mod 3) then (h(+1) — XY)? = 0 and the rows

of

_ fpsr S
/2(p+1)_XY—( ﬁsp Ipfl )

span the Pless code P(p).
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Definition
Let K = [F, be the finite field with g elements and assume
that there is some a € K* such that a®> = —p. Then we put

P4(p) := ab(p+1) + XY € End(G(p)) and define the generalized
Pless code P,(p) < K2P*1 to be the code spanned by the
rows of Py(p).
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Definition
Let K = [F, be the finite field with g elements and assume
that there is some a € K* such that a®> = —p. Then we put

P4(p) := ab(p+1) + XY € End(G(p)) and define the generalized
Pless code P,(p) < K2P*1 to be the code spanned by the
rows of Py(p).

Theorem
Let a € Fy such that a> = —p. The code Pg4(p) has generator

matrix (alp+1|P) and is a self-dual code in IFE,(pH). The sum of
the first two rows of this matrix has weight (p+7)/2 if q is odd
and 4 if q is even. The group G(p) is a subgroup of Aut(Pg4(p)).

In particular P3(p) is the Pless symmetry code P(p) as given
in [5].
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Minimum distance of the Pless codes computed with MAGMA.

p 5 11 17 23 29 41 47
2p+1) | 12 24 36 48 60 84 96
d(Ps(p)) | 6 9 12 15 18 21 24
Aut(P3(p)) | 2.Mip | G(11).2 | G(17).2 | G(23).2 | G(29).2 | > G(41) | > G(47)

es of
ual codes

ant under
Sla(p)
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Minimum distance of the Pless codes computed with MAGMA.

p 5 11 17 23 29 41 47
2p+1) | 12 24 36 48 60 84 96
d(Ps(p)) | 6 9 12 15 18 21 24
Aut(P3(p)) | 2.M1p | G(11).2 | G(17).2 | G(23).2 | G(29).2 | > G(41) | > G(47)

For g = 5,7, and 11 we computed d(P4(p)) with MAGMA:

(p. q) [11,5)(19,5)[29,5)(31, 5)[(3, 7)(5., 713, 7)
20p+1)| 12 | 40 | 60 | 64 | 8 | 12| 28
d(Pg(p)) 9 | 13 | 18 | 18 | 4 | 6 | 10

(p, q) [(17,7)(19, 7)[(7, 11)(13, 11)[17, 11)(19, 11)
2(p+1)| 36 | 40 || 16 | 28 | 36 | 40
dPg(p)) 12 | 13 || 7 | 10 | 12 | 13
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Endomorphisms of monomial representations

We now construct for odd primes g and p a prime number
such that p—1 = 4 (mod 8) a monomial representation of
JAE SLg(p) — Mong(p+1)(FZ).

2
2 ._ a 0
o7 1)

of index [SLa(p) : BP@] = 2(p + 1) with an unique linear repre-
sentation

. 2 0 a
par((£2))- ()

ael,be IF,,} < SLa(p),
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Endomorphisms of monomial representations

We now construct for odd primes g and p a prime number
such that p—1 = 4 (mod 8) a monomial representation of
JAE SLg(p) — Mong(p+1)(FZ).

2
2 ._ a 0
o7 1)

of index [SLa(p) : BP@] = 2(p + 1) with an unique linear repre-
sentation

. 2 0 a
par((£2))- ()

Then A’ = yzl('zz)(p) is a faithful monomial representation of
degree 2(p + 1).

Taking w := (

ael,be IF,,} < SLa(p),

0 1

10 ) , as before, we obtain explicit

matrices.
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By assumption 2 € F% \ (F5)?. Put € := Diag(2,27"). Then
B = B@ U B@¢ and
SLy(p) = BU BwB = B® U B@AwB® U BPe U BPewB®?

and a right transversal is given by [1, wh,, €, ewh, : x € F,].
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Endomorphisms of monomial representations
By assumption 2 € F% \ (F5)?. Put € := Diag(2,27"). Then
B = B® U BP¢ and

SLy(p) = BU BwB = B® U B@AwB® U BPe U BPewB®?

and a right transversal is given by [1, wh,, €, ewh, : x € F,].

Lemma
End( A") = F2*? has a Schur basis ( By, By, Be, Bew = B.B,), where
0o |/ X Y .

B. = ( ~/ 0 ) and B,, = ( _ytr  xtr ) with

0 1 1 0 O 0

-1 0

Rx . Ry
-1 0

Here the rows and columns of Rx and Ry are indexed by {0, . .., p—1} the
elements of F, and

P

0 b—a¢ (F5)? 0 ,2(b— a) & (F5)?
(Rx)ab = (%) h—a=PE (F;)z , (Ry)ab = (5) ,2(b—a)=c2 € (F;)z
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Definition
Let p be a prime p =g 5 and assume that there is a € F such
that a2 = —tp for t = 1 or t = 2. We then put

| abpsy + By t=1
ek { a/2(p+1) + By +Beyy ,t=2

and let V4(p) be the linear code spanned by the rows of V;(p).
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The new series of Codes

Definition
Let p be a prime p =g 5 and assume that there is a € F such
that a2 = —tp for t = 1 or t = 2. We then put

| abpsy + By t=1
ek { a/2(p+1) + By +Beyy ,t=2

and let V4(p) be the linear code spanned by the rows of V;(p).

Theorem
Vq(p) is a self-dual code in Ff,(pﬂ). Its monomial automorphism

group contains the group SLj(p).
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The new series of Codes
Minimum distance of V3(p) computed with MaGMmA:

p 5 13 29 37 53
2(p+1) 12 28 60 76 108
d(V3(p)) 6 9 18 18 24

Aut(V3(p)) | 2.My2 | SL2(13) | SL2(29) | > SL»(37) | > SLx(53)
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Minimum distance of V3(p) computed with MaGMmA:

of Codes

p 5 13 29 37
2p+1) | 12 28 60 76
d(Vs(p)) | 6 9 18 18
Aut(V3(p)) | 2. M1z | SLa(13) | SL»(29) | > SLo(37)

53
108
24

> SLy(53)

with MAGMA:

For g = 5,7, and 11 and small lengths we computed d(Vq4(p))

(p.q) |(13,5) | (29,5) | (5.7) | (13,7) | (5,11)
2p+1)| 28 | 60 | 12 | 28 | 12
d(Ve(p)) | 10 16 | 6 9 7

(13,11)
28
11
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Conclusions

The matrices of rank p+1 in End(A’) yield g + 1 different self-
dual codes invariant under A’(SLy(p)). In general these fall into
different equivalence classes.

For instance for g = 7, where 2 is a square mod 7, the codes
spanned by the rows of Vi(p) and V5(p) are inequivalent for
p =5 and p = 13 but have the same minimum distance.
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Conclusions

Some related research topics are:

@ What can be established about the weight distribution of
Vq(p) codes?

@ Are there extremal unimodular lattices related to extremal
codes in the new series?

©® Do these codes yield another extremal codes?
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Thanks for your attention
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