New extension theorems for codes over \mathbb{F}_q

Tatsuya Maruta

(Joint work with Taichiro Tanaka & Hitoshi Kanda)

Department of Mathematics and Information Sciences Osaka Prefecture University

Overview

Three extension theorems are generalized.

- Some examples are given.
- A geometric method is employed to prove the results.

Contents

- 1. Extendability of linear codes
- 2. Generalized extension theorems
- 3. Geometric approach

1. Extendability of linear codes

F_q: the field of q elements **F**ⁿ_q = {($a_1, a_2, ..., a_n$) | $a_1, ..., a_n \in \mathbb{F}_q$ }. An [n, k, d]_q code C means a k-dimensional subspace of **F**ⁿ_q with minimum distance d, $d = \min\{wt(a) \mid wt(a) \neq 0, a \in C\}.$

We only consider non-degenerate codes (i.e. $\exists i$; $c_i = 0$ for all $c = (c_1, ..., c_n) \in C$). The weight distribution (w.d.) of C is the list of numbers $A_i = |\{c \in C \mid wt(c) = i\}|.$

The weight distribution with

$$(A_0, A_d, ..., A_i, ...) = (1, \alpha, ..., w, ...)$$

is also expressed as

$$0^1 d^{\alpha} \cdots i^w \cdots$$
.

A linear code C over \mathbb{F}_q is *w*-weight (mod q) if $\exists W = \{i_1, \cdots, i_w\} \subset \mathbb{Z}_q = \{0, 1, \cdots, q-1\}$

$$\exists W = \{i_1, \cdots, i_w\} \subset \mathbb{Z}_q = \{0, 1, \cdots, q-1\}$$
s.t.

 $A_i > 0 \implies i \equiv i_j \pmod{q}$ for some $i_j \in W$

Ex. The Golay $[11, 6, 5]_3$ code with a generator matrix

has weight distribution $0^{1}5^{132}6^{132}8^{330}9^{110}11^{24}$, which is 2-weight (mod 3).

- C: $[n, k, d]_q$ code with generator matrix GC is extendable (to C') if
- [G, h] generates an $[n + 1, k, d + 1]_q$ code C'for some column vector $h, h^{\mathsf{T}} \in \mathbb{F}_q^k$. C' is an extension of C.

Thm 1. Every binary code with odd minimum distance is extendable.

2. Generalized extension theorems

Thm 2 (Hill-Lizak 1995). Let C be an $[n, k, d]_q$ code with gcd(d, q)=1s.t. $i \equiv 0$ or $d \pmod{q}$ for $\forall i$ with $A_i > 0$. Then C is extendable.

Thm 1. Every binary code with odd minimum distance is extendable.

3. Generalized extension theorems

Thm 2 (Hill-Lizak 1995).

Let C be an $[n, k, d]_q$ code with gcd(d, q)=1

s.t. $i \equiv 0$ or $d \pmod{q}$ for $\forall i$ with $A_i > 0$.

Then \mathcal{C} is extendable.

Cor.

 $\mathcal{C}: \mbox{ an } [n,k,d]_q \mbox{ code with } d \equiv -1 \mbox{ (mod } q). \label{eq:code} \\ \mbox{ Then } \mathcal{C} \mbox{ is extendable if }$

$$A_i > 0 \implies i \equiv 0 \text{ or } -1 \pmod{q}$$

3. Generalized extension theorems

Thm 2 (Hill-Lizak 1995).

- Let C be an $[n, k, d]_q$ code with gcd(d, q)=1
- s.t. $i \equiv 0$ or $d \pmod{q}$ for $\forall i$ with $A_i > 0$.

Then \mathcal{C} is extendable.

Note.

- C is 2-weight (mod q).
- Conditon "gcd(d,q) = 1" is assumed.

For 3-weight (mod q) codes, the following is known:

Thm 3 (Maruta 2004, Yoshida-M 2010). Let C be an $[n, k, d]_q$ code with $q \ge 5$, $d \equiv -2$ (mod q). Then C is extendable if

$$A_i > 0 \Rightarrow i \equiv 0, -1, -2 \pmod{q}.$$

Note.

• gcd(d,q) = 2 when q is even.

We give the first result for 4-weight (mod q) codes.

Thm 4.

Let C be an $[n, k, d]_q$ code with $q = 2^h$, $h \ge 3$, d odd. Then C is extendable if

 $A_i > 0 \Rightarrow i \equiv 0, d, q/2, d+q/2 \pmod{q}$.

Note.

• gcd(d,q) = 1 since d is odd.

We give the first result for 4-weight (mod q) codes.

Thm 4.

Let C be an $[n, k, d]_q$ code with $q = 2^h$, $h \ge 3$, d odd. Then C is extendable if

$$A_i > 0 \Rightarrow i \equiv 0 \text{ or } d \pmod{q/2}.$$

Note.

• gcd(d,q) = 1 since d is odd.

Example 1.

Let C_1 be a $[100, 3, 87]_8$ code. It can be proved that all possible weights of C_1 are 0, 87, 88, 91, 92, 95, 96, that is,

$$A_i > 0 \implies i \equiv -1, 0, 3, 4 \pmod{8}$$

i.e.,

$$A_i > 0 \Rightarrow i \equiv 0 \text{ or } 3 \pmod{4}.$$

Hence C_1 is extendable by Thm 4.

 $[101, 3, 88]_8$ (a) 0¹88⁴⁷⁶96³⁵ $(wt \equiv 0 \pmod{8})$ (b) $0^{1}88^{441}92^{70}$ $(wt \equiv 0, 4 \pmod{8})$ $[100, 3, 87]_8$: extendable (a-1) 0¹87⁴¹³88⁶³95³⁵ $(wt \equiv -1, 0)$ (a-2) 0¹87⁴²⁰88⁵⁶95²⁸96⁷ $(wt \equiv -1, 0)$ (b-1) 0¹87³⁹²88⁴⁹91⁵⁶92¹⁴ $(wt \equiv -1, 0, 3, 4)$ (b-2) $0^{1}87^{378}88^{63}91^{70}$ $(wt \equiv -1, 0, 3)$

Example 1.

Example 1.

[100, 3, 87]₈: extendable (a-1) $0^{1}87^{413}88^{63}95^{35}$ (a-2) $0^{1}87^{420}88^{56}95^{28}96^{7}$ (b-1) $0^{1}87^{392}88^{49}91^{56}92^{14}$ (b-2) $0^{1}87^{378}88^{63}91^{70}$

Application 1.

Using the above result, we can prove the nonexistence of $[796, 4, 696]_8$ codes.

Thm 4.

Let C be an $[n, k, d]_q$ code with $q = 2^h$, $h \ge 3$, d odd. Then C is extendable if

$$A_i > 0 \implies i \equiv 0 \text{ or } d \pmod{q/2}.$$

Application 2.

Using Thm 4, we can also prove the nonexistence of $[795, 4, 695]_8$ codes.

(Prove $A_j = 0$ for j = 722, 725, 726, 733, 734.)

Thm 2 (Hill-Lizak 1995). Let C be an $[n, k, d]_q$ code with gcd(d, q)=1s.t. $i \equiv 0$ or $d \pmod{q}$ for $\forall i$ with $A_i > 0$. Then C is extendable.

Note.

- C is 2-weight (mod q).
- Conditon "gcd(d,q) = 1" is assumed.

Thm 2 (Hill-Lizak 1995). Let C be an $[n, k, d]_q$ code with gcd(d, q)=1s.t. $i \equiv 0$ or $d \pmod{q}$ for $\forall i$ with $A_i > 0$. Then C is extendable.

Note.

- C is 2-weight (mod q).
- Conditon "gcd(d,q) = 1" is assumed.

Question: How about when gcd(d,q) = 2?

Thm 5. Let C be an $[n, k, d]_q$ code with $q = 2^h$, $h \ge 3$, gcd(d,q) = 2. Then C is extendable if $A_i > 0 \implies i \equiv 0$ or $d \pmod{q}$.

Note.

- C is 2-weight (mod q).
- Conditon "gcd(d,q) = 2" is assumed.

Example 2.

Let C_2 be a $[73, 4, 62]_8$ code with w.d. $0^162^{1764}64^{1883}70^{252}72^{196}$, satisfying

$$A_i > 0 \Rightarrow i \equiv 0 \text{ or } 6 \pmod{8}.$$

Hence C_2 is extendable by Thm 5. C_2 is from

http://www.algorithm.uni-bayreuth.de/en/research

/Coding_Theory/Linear_Codes_BKW/index.html.

Thm 5.

Let C be an $[n, k, d]_q$ code with $q = 2^h$, $h \ge 3$, gcd(d, q) = 2. Then C is extendable if $A_i > 0 \implies i \equiv 0$ or $d \pmod{q}$.

Note.

- C is 2-weight (mod q).
- Conditon "gcd(d,q) = 2" is assumed.
- Conditon " $h \ge 3$ " is sharp.

Example 3 (Counterexample for q = 4). C₃: [14, 3, 10]₄ code with generator matrix

where $\mathbb{F}_4 = \{0, 1, \omega, \overline{\omega}\}$. The w.d. of C is: $0^1 10^{42} 12^{21}$ (wt $\equiv 0, 2 \pmod{4}$).

It can be checked that \mathcal{C} is not extendable.

Thm 6 (Simonis 2000). Let C be an $[n, k, d]_q$ code with gcd(d, q) = 1, $q = p^h$, p prime. Then C is extendable if $\sum_{i \not\equiv d \pmod{p}} A_i = q^{k-1}$. Thm 6 (Simonis 2000). Let C be an $[n, k, d]_q$ code with gcd(d, q) = 1, $q = p^h$, p prime. Then C is extendable if $\sum_{i \not\equiv d \pmod{p}} A_i = q^{k-1}$.

Note.

• Conditon "gcd(d,q) = 1" is assumed.

Question: How about when gcd(d,q) = 2?

We give a generalization of Thm 6: **Thm 7**.

Let h, m, t be integers with $0 \le m < t \le h$. For $q = p^h$ with prime p, every $[n, k, d]_q$ code with $gcd(d, q) = p^m$ is extendable if

$$\sum_{i \not\equiv d \pmod{p^t}} A_i = q^{k-1}. \tag{(*)}$$

Note.

- Thm 6 is the case (m, t) = (0, 1).
- Conditon (*) can be weakened as follows.

Thm 7'.

Let h, m, t be integers with $0 \le m < t \le h$. For $q = p^h$ with prime p, every $[n, k, d]_q$ code with $gcd(d, q) = p^m$ is extendable if

$$\sum_{i \neq d \pmod{p^t}} A_i < q^{k-1} + r(q)q^{k-3}(q-1),$$

where q + r(q) + 1 is the smallest size of a non-trivial blocking set in PG(2,q).

(r(3) = r(4) = 2, r(5) = 3, r(7) = 4.)

Example 4.

Let C_3 be the $[30, 3, 22]_4$ code with w.d. $0^{1}22^{45}24^{15}30^{3}$. Then C_3 is extendable by Thm 7 (m = 1, t = 2, p = 2), for $\Sigma_{i \not\equiv d \pmod{2^2}} A_i = 1 + 15 = 2^{3-1}$.

 \mathcal{C}_3 is from

I. Bouyukliev, M. Grassl, Z. Varbanov, New bounds for $n_4(k,d)$ and classification of some optimal codes over GF(4), *Discrete Math.*, **281**, 43–66, 2004. For an $[n, k, d]_q$ code C with gcd(d, q) < q, the diversity of C is defined as (Φ_0, Φ_1) with

$$\Phi_0 = \frac{1}{q-1} \sum_{q|i,i>0} A_i, \quad \Phi_1 = \frac{1}{q-1} \sum_{i \neq 0,d \pmod{q}} A_i.$$

Note.

Under the condition gcd(d,q) = 1, C is extendable if $\Phi_1 = 0$

by Thm 2.

For an $[n, k, d]_q$ code C with gcd(d, q) < q, the diversity of C is defined as (Φ_0, Φ_1) with

$$\Phi_0 = \frac{1}{q-1} \sum_{q \mid i,i > 0} A_i, \quad \Phi_1 = \frac{1}{q-1} \sum_{i \neq 0,d \pmod{q}} A_i.$$

Note.

Under the condition gcd(d,q) = 1, C is extendable if $\Phi_1 < q^{k-2}$ [M-Yoshida 2012]. Thm 8 (Maruta, 2005). C: $[n, k, d]_3$ code with diversity (Φ_0, Φ_1) , $gcd(3, d) = 1, k \ge 3$. Then C is extendable if

$$egin{aligned} (\Phi_0, \Phi_1) \in \{(heta_{k-2}, 0), \ (heta_{k-3}, 2 \cdot 3^{k-2}), \ (heta_{k-2}, 2 \cdot 3^{k-2}), \ (heta_{k-2} + 3^{k-2}, 3^{k-2})\} \end{aligned}$$

where $\theta_j = (3^{j+1} - 1)/2$.

Thm 8 (Maruta, 2005). C: $[n, k, d]_3$ code with diversity (Φ_0, Φ_1) , $gcd(3, d) = 1, k \ge 3$. Then C is extendable if $(\Phi_0, \Phi_1) = 0, (0, -2, 2k-2)$

$$(\Phi_0, \Phi_1) \in \{(heta_{k-2}, 0), (heta_{k-3}, 2 \cdot 3^{\kappa-2}), \\ (heta_{k-2}, 2 \cdot 3^{k-2}), (heta_{k-2} + 3^{k-2}, 3^{k-2})\}$$

where $\theta_j = (3^{j+1} - 1)/2$.

Thm 8 (Maruta, 2005). $C: [n, k, d]_3$ code with diversity (Φ_0, Φ_1) , $gcd(3, d) = 1, k \ge 3$. Then C is extendable if

$$(\Phi_0, \Phi_1) \in \{(\theta_{k-2}, 0), (\theta_{k-3}, 2 \cdot 3^{k-2}), \\ (\theta_{k-2}, 2 \cdot 3^{k-2}), (\theta_{k-2} + 3^{k-2}, 3^{k-2})\}$$

where $\theta_j = (3^{j+1} - 1)/2$.

Thm 9.

C: $[n, k, d]_q$ code with diversity (Φ_0, Φ_1) , gcd(d, q) = 1, $k \ge 3$.

Then $\ensuremath{\mathcal{C}}$ is extendable if

$$(\Phi_0, \Phi_1) = (\theta_{k-1} - 2q^{k-2}, q^{k-2})$$

where $\theta_j = (q^{j+1} - 1)/(q - 1)$.
Note.

$$\theta_{k-1} - 2q^{k-2} = \theta_{k-2} + 3^{k-2}$$
 for $q = 3$.

Example 5.

 C_3 : [15, 3, 11]₄ code with generator matrix

where $\mathbb{F}_4 = \{0, 1, \omega, \overline{\omega}\}$. The w.d. of \mathcal{C}_3 is $0^1 7^3 8^3 9^3 11^9 12^{36} 13^9$ with diversity (13, 4). So, \mathcal{C}_3 is extendable by Thm 9.

Thm 9.

C: $[n, k, d]_q$ code with diversity (Φ_0, Φ_1) , gcd(d, q) = 1, $k \ge 3$.

Then \mathcal{C} is extendable if

$$(\Phi_0, \Phi_1) = (\theta_{k-1} - 2q^{k-2}, q^{k-2})$$

where $\theta_j = (q^{j+1} - 1)/(q - 1)$.
Question.

How about when gcd(d,q) > 1?

Thm 9.

C: $[n, k, d]_q$ code with diversity (Φ_0, Φ_1) , gcd(d, q) = 1, $k \ge 3$.

Then \mathcal{C} is extendable if

$$(\Phi_0, \Phi_1) = (\theta_{k-1} - 2q^{k-2}, q^{k-2})$$

where $\theta_j = (q^{j+1} - 1)/(q - 1)$.
Answer.

OK for k = 3, $q = 2^{h}$, $h \ge 3$ if gcd(d,q) = 2.

4. Geometric approach

 \mathcal{C} : $[n, k, d]_q$ code, $k \geq 3$, gcd(d, q) < q $G = [g_1^{\mathsf{T}}, \cdots, g_k^{\mathsf{T}}]^{\mathsf{T}}$: a generator matrix of \mathcal{C} $\Sigma := PG(k-1,q)$: the projective space of dimension k-1 over \mathbb{F}_q For $P = P(p_1, \ldots, p_k) \in \Sigma$, the weight of P w.r.t. G, denoted by $w_G(P)$, is defined as $w_G(P) = wt(p_1g_1 + \dots + p_kg_k).$

A hyperplane
$$H$$
 of Σ is defined by a non-zero
vector $h = (h_0, \dots, h_{k-1}) \in \mathbb{F}_q^k$ as
 $H = \{P = P(p_0, \dots, p_{k-1}) \in \Sigma \mid h_0 p_0 + \dots + h_{k-1} p_{k-1} = 0\}.$

h is called a defining vector of H.

Let $F_d = \{P \in \Sigma \mid w_G(P) = d\}.$

Lemma 10. C is extendable \Leftrightarrow there exists a hyperplane H of Σ s.t. $F_d \cap H = \emptyset$. Moreover, [G, h] generates an extension of C, where $h^{\top} \in \mathbb{F}_q^k$ is a defining vector of H. **Lemma 10.** C is extendable \Leftrightarrow there exists a hyperplane H of Σ s.t. $F_d \cap H = \emptyset$. Moreover, [G, h] generates an extension of C, where $h^{\mathsf{T}} \in \mathbb{F}_q^k$ is a defining vector of H.

$$F_0 = \{P \in \Sigma \mid w_G(P) \equiv 0 \pmod{q}\}$$

$$F_1 = \{P \in \Sigma \mid w_G(P) \not\equiv 0, d \pmod{q}\}$$

$$F_2 = \{P \in \Sigma \mid w_G(P) \equiv d \pmod{q}\} \supset F_d$$

Note. • $(\Phi_0, \Phi_1) = (|F_0|, |F_1|).$

• $F_0 \cup F_1$ forms a blocking set w.r.t. lines.

Lemma 11 (M, 2008).

 \sim

For a line $L = \{P_0, P_1, \cdots, P_q\}$ in Σ ,

$$\sum_{i=0}^{q} w_G(P_i) \equiv 0 \pmod{q}.$$

Lemma 12 (Yoshida-M, 2010).

Let K be a set in $\Sigma = PG(k - 1, q)$, $k \ge 3$, $q = 2^h$, $h \ge 3$, s.t. for any line ℓ ,

$$|\ell \cap K| \in \{1, q/2 + 1, q + 1\}.$$

Then, K contains a hyperplane of Σ .

Thm 5.

Let C be an $[n, k, d]_q$ code with $q = 2^h$, $h \ge 3$, gcd(d, q) = 2. Then C is extendable if $A_i > 0 \implies i \equiv 0$ or $d \pmod{q}$.

Note.

- C is 2-weight (mod q).
- Conditon "gcd(d,q) = 2" is assumed.

Proof of Thm 5 (sketch). For $q = 2^h$, h > 3C: $[n, k, d]_q$ code with gcd(d, q) = 2 s.t. $A_i > 0 \implies i \equiv 0 \text{ or } d \pmod{q}$. (1)L: a line in $\Sigma = PG(k-1,q) = F_0 \cup F_2$. Assume $|L \cap F_2| = t$. Lemma 11 and (1) imply $td \equiv 0 \pmod{q}$, so, $t \equiv 0 \pmod{q/2}$, for gcd(d,q) = 2. Hence t = 0, q/2 or q. Thus, $|F_0 \cap L| = 1, q/2 + 1$ or q + 1, and F_0 contains a hyperplane of Σ by Lemma 12. Hence C is extendable by Lemma 10.

References

 [1] R. Hill, and P. Lizak, Extensions of linear codes, *Proc. IEEE Int. Sympo. Inform. Theory*, pp. 345.
 Whistler, Canada, 1995.

[2] T. Maruta, A new extension theorem for linear codes, *Finite Fields Appl.*, 10, 674–685, 2004.

[3] T. Maruta, Extendability of ternary linear codes,*Des. Codes Cryptogr.*, **35**, 175–190, 2005.

[4] T. Maruta, Extendability of linear codes over \mathbb{F}_q ,

Proc. 11th Intern. Workshop ACCT, Pamporovo, Bulgaria, 203–209, 2008.

[5] T. Maruta, Y. Yoshida, A generalized extension theorem for linear codes, Designs, Codes and Cryptography 62 (2012), pp. 121-130.

[6] J. Simonis, Adding a parity check bit, *IEEE Trans. Inform. Theory*, **46**, 1544–1545, 2000.

[7] Y. Yoshida and T. Maruta, An extension theorem for $[n, k, d]_q$ codes with gcd(d, q) = 2, *Australas. J. Combin.*, **48**, 117–131, 2010.

Thank you for your attention!