New extension theorems for codes over \mathbb{F}_{q}

Tatsuya Maruta
(Joint work with Taichiro Tanaka \& Hitoshi Kanda)

Department of Mathematics
and Information Sciences
Osaka Prefecture University

Overview

क力 Three extension theorems are generalized.
os Some examples are given.
\& A geometric method is employed to prove the results.

Contents

1. Extendability of linear codes
2. Generalized extension theorems
3. Geometric approach

1. Extendability of linear codes

\mathbb{F}_{q} : the field of q elements
$\mathbb{F}_{q}^{n}=\left\{\left(a_{1}, a_{2}, \ldots, a_{n}\right) \mid a_{1}, \ldots, a_{n} \in \mathbb{F}_{q}\right\}$.
An $[n, k, d]_{q}$ code \mathcal{C} means a k-dimensional subspace of \mathbb{F}_{q}^{n} with minimum distance d,

$$
d=\min \{w t(a) \mid w t(a) \neq 0, a \in \mathcal{C}\}
$$

We only consider non-degenerate codes
(i.e. $\not{ }^{\neq} ; c_{i}=0$ for all $c=\left(c_{1}, \ldots, c_{n}\right) \in \mathcal{C}$).

The weight distribution (w.d.) of \mathcal{C} is the list of numbers $A_{i}=|\{c \in \mathcal{C} \mid w t(c)=i\}|$.

The weight distribution with

$$
\left(A_{0}, A_{d}, \ldots, A_{i}, \ldots\right)=(1, \alpha, \ldots, w, \ldots)
$$

is also expressed as

$$
0^{1} d^{\alpha} \ldots i^{w} \ldots
$$

A linear code \mathcal{C} over \mathbb{F}_{q} is w-weight $(\bmod q)$
if
${ }^{\exists} W=\left\{i_{1}, \cdots, i_{w}\right\} \subset \mathbb{Z}_{q}=\{0,1, \cdots, q-1\}$
s.t.
$A_{i}>0 \Rightarrow i \equiv i_{j}(\bmod q)$ for some $i_{j} \in W$

Ex. The Golay $[11,6,5]_{3}$ code with a generator matrix

$$
G_{1}=\left[\begin{array}{lllllllllll}
1 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 2 & 2 & 1 \\
0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 1 & 2 & 2 \\
0 & 0 & 0 & 1 & 0 & 0 & 2 & 1 & 0 & 1 & 2 \\
0 & 0 & 0 & 0 & 1 & 0 & 2 & 2 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 1 & 1 & 2 & 2 & 1 & 0
\end{array}\right]
$$

has weight distribution $0^{1} 5^{132} 6^{132} 8^{330} 9^{110} 11^{24}$, which is 2 -weight $(\bmod 3)$.
$\mathcal{C}:[n, k, d]_{q}$ code with generator matrix G \mathcal{C} is extendable (to \mathcal{C}^{\prime}) if
$[G, h]$ generates an $[n+1, k, d+1]_{q}$ code \mathcal{C}^{\prime} for some column vector $h, h^{\top} \in \mathbb{F}_{q}^{k}$.
\mathcal{C}^{\prime} is an extension of \mathcal{C}.
Thm 1. Every binary code with odd minimum distance is extendable.

2. Generalized extension theorems

Thm 2 (Hill-Lizak 1995).
Let \mathcal{C} be an $[n, k, d]_{q}$ code with $\operatorname{gcd}(d, q)=1$
s.t. $i \equiv 0$ or $d(\bmod q)$ for ${ }_{i}$ with $A_{i}>0$.

Then \mathcal{C} is extendable.

Thm 1. Every binary code with odd minimum distance is extendable.

3. Generalized extension theorems

Thm 2 (Hill-Lizak 1995).
Let \mathcal{C} be an $[n, k, d]_{q}$ code with $\operatorname{gcd}(d, q)=1$
s.t. $i \equiv 0$ or $d(\bmod q)$ for ${ }_{i}$ with $A_{i}>0$.

Then \mathcal{C} is extendable.
Cor.
\mathcal{C} : an $[n, k, d]_{q}$ code with $d \equiv-1(\bmod q)$.
Then \mathcal{C} is extendable if

$$
A_{i}>0 \Rightarrow i \equiv 0 \text { or }-1(\bmod q)
$$

3. Generalized extension theorems

Thm 2 (Hill-Lizak 1995).
Let \mathcal{C} be an $[n, k, d]_{q}$ code with $\operatorname{gcd}(d, q)=1$
s.t. $i \equiv 0$ or $d(\bmod q)$ for ${ }_{i}$ with $A_{i}>0$.

Then \mathcal{C} is extendable.
Note.

- \mathcal{C} is 2 -weight $(\bmod q)$.
- Conditon " $\operatorname{gcd}(d, q)=1$ " is assumed.

For 3-weight $(\bmod q)$ codes, the following is known:

Thm 3 (Maruta 2004, Yoshida-M 2010).
Let \mathcal{C} be an $[n, k, d]_{q}$ code with $q \geq 5, d \equiv-2$
$(\bmod q)$. Then \mathcal{C} is extendable if

$$
A_{i}>0 \Rightarrow i \equiv 0,-1,-2(\bmod q)
$$

Note.

- $\operatorname{gcd}(d, q)=2$ when q is even.

We give the first result for 4 -weight ($\bmod q$) codes.

Thm 4.

Let \mathcal{C} be an $[n, k, d]_{q}$ code with $q=2^{h}, h \geq 3$, d odd. Then \mathcal{C} is extendable if

$$
A_{i}>0 \Rightarrow i \equiv 0, d, q / 2, d+q / 2(\bmod q)
$$

Note.

- $\operatorname{gcd}(d, q)=1$ since d is odd.

We give the first result for 4 -weight ($\bmod q$) codes.

Thm 4.

Let \mathcal{C} be an $[n, k, d]_{q}$ code with $q=2^{h}, h \geq 3$, d odd. Then \mathcal{C} is extendable if

$$
A_{i}>0 \Rightarrow i \equiv 0 \text { or } d(\bmod q / 2)
$$

Note.

- $\operatorname{gcd}(d, q)=1$ since d is odd.

Example 1.

Let \mathcal{C}_{1} be a $[100,3,87]_{8}$ code. It can be proved that all possible weights of \mathcal{C}_{1} are $0,87,88,91,92,95,96$, that is,

$$
A_{i}>0 \Rightarrow i \equiv-1,0,3,4(\bmod 8)
$$

i.e.,

$$
A_{i}>0 \Rightarrow i \equiv 0 \text { or } 3(\bmod 4)
$$

Hence \mathcal{C}_{1} is extendable by Thm 4.

Example 1.

[101, 3, 88] 8
(a) $0^{1} 88^{476} 96^{35}$
(wt $\equiv 0(\bmod 8))$
(b) $0^{1} 88^{441} 92^{70} \quad(w t \equiv$
$[100,3,87]_{8}:$ extendable
(a-1) $0^{1} 87^{413} 88^{63} 95^{35}$
(wt $\equiv-1,0)$
(a-2) $0^{1} 87^{420} 88^{56} 95^{28} 96^{7}$
(wt $\equiv-1,0)$
(b-1) $0^{1} 87^{392} 88^{49} 91^{56} 92^{14}$
(wt $\equiv-1,0,3,4$)
(b-2) $0^{1} 87^{378} 88^{63} 91^{70}$
(wt $\equiv-1,0,3)$

Example 1.

[100, 3,87$]_{8}$: extendable

$$
\begin{aligned}
& (a-1) 0^{1} 87^{413} 88^{63} 95^{35} \\
& (a-2) 0^{1} 87^{420} 88^{56} 95^{28} 96^{7} \\
& \text { (b-1) } 0^{1} 87^{392} 88^{49} 91^{56} 92^{14} \\
& \text { (b-2) } 0^{1} 87^{378} 88^{63} 91^{70}
\end{aligned}
$$

Application 1.

Using the above result, we can prove the nonexistence of $[796,4,696]_{8}$ codes.

Thm 4.

Let \mathcal{C} be an $[n, k, d]_{q}$ code with $q=2^{h}, h \geq 3$, d odd. Then \mathcal{C} is extendable if

$$
A_{i}>0 \Rightarrow i \equiv 0 \text { or } d(\bmod q / 2)
$$

Application 2.

Using Thm 4, we can also prove the nonexistence of $[795,4,695]_{8}$ codes.
(Prove $A_{j}=0$ for $j=722,725,726,733,734$.)

Thm 2 (Hill-Lizak 1995).
Let \mathcal{C} be an $[n, k, d]_{q}$ code with $\operatorname{gcd}(d, q)=1$
s.t. $i \equiv 0$ or $d(\bmod q)$ for ${ }_{i}$ with $A_{i}>0$.

Then \mathcal{C} is extendable.
Note.

- \mathcal{C} is 2 -weight $(\bmod q)$.
- Conditon " $\operatorname{gcd}(d, q)=1$ " is assumed.

Thm 2 (Hill-Lizak 1995).
Let \mathcal{C} be an $[n, k, d]_{q}$ code with $\operatorname{gcd}(d, q)=1$
s.t. $i \equiv 0$ or $d(\bmod q)$ for ${ }_{i}$ with $A_{i}>0$.

Then \mathcal{C} is extendable.

Note.

- \mathcal{C} is 2 -weight $(\bmod q)$.
- Conditon " $\operatorname{gcd}(d, q)=1$ " is assumed.

Question: How about when $\operatorname{gcd}(d, q)=2$?

Thm 5.

Let \mathcal{C} be an $[n, k, d]_{q}$ code with $q=2^{h}, h \geq 3$, $\operatorname{gcd}(d, q)=2$. Then \mathcal{C} is extendable if

$$
A_{i}>0 \Rightarrow i \equiv 0 \text { or } d(\bmod q)
$$

Note.

- \mathcal{C} is 2 -weight $(\bmod q)$.
- Conditon " $\operatorname{gcd}(d, q)=2$ " is assumed.

Example 2.

Let \mathcal{C}_{2} be a $[73,4,62]_{8}$ code with w.d.
$0^{1} 62^{1764} 64^{1883} 70^{252} 72^{196}$, satisfying

$$
A_{i}>0 \Rightarrow i \equiv 0 \text { or } 6(\bmod 8)
$$

Hence \mathcal{C}_{2} is extendable by Thm 5.
\mathcal{C}_{2} is from
http://www.algorithm.uni-bayreuth.de/en/research /Coding_Theory/Linear_Codes BKW/index.html.

Thm 5.

Let \mathcal{C} be an $[n, k, d]_{q}$ code with $q=2^{h}, h \geq 3$, $\operatorname{gcd}(d, q)=2$. Then \mathcal{C} is extendable if

$$
A_{i}>0 \Rightarrow i \equiv 0 \text { or } d(\bmod q)
$$

Note.

- \mathcal{C} is 2 -weight $(\bmod q)$.
- Conditon " $\operatorname{gcd}(d, q)=2$ " is assumed.
- Conditon " $h \geq 3$ " is sharp.

Example 3 (Counterexample for $q=4$).
\mathcal{C}_{3} : $[14,3,10]_{4}$ code with generator matrix

$$
\left[\begin{array}{llllllllllllll}
0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 0 & 0 & 1 & 1 & \omega & \omega & \omega & \omega & \bar{\omega} & \bar{\omega} & \bar{\omega} & \bar{\omega} \\
\omega & \bar{\omega} & \omega & \bar{\omega} & \omega & \bar{\omega} & 0 & 1 & \omega & \bar{\omega} & 0 & 1 & \omega & \bar{\omega}
\end{array}\right]
$$

where $\mathbb{F}_{4}=\{0,1, \omega, \bar{\omega}\}$. The w.d. of \mathcal{C} is:

$$
0^{1} 10^{42} 12^{21} \quad(w t \equiv 0,2(\bmod 4))
$$

It can be checked that \mathcal{C} is not extendable.

Thm 6 (Simonis 2000).
Let \mathcal{C} be an $[n, k, d]_{q} \operatorname{code}$ with $\operatorname{gcd}(d, q)=1$, $q=p^{h}, p$ prime. Then \mathcal{C} is extendable if
$\Sigma_{i \neq d}(\bmod p) A_{i}=q^{k-1}$.

Thm 6 (Simonis 2000).
Let \mathcal{C} be an $[n, k, d]_{q}$ code with $\operatorname{gcd}(d, q)=1$, $q=p^{h}, p$ prime. Then \mathcal{C} is extendable if
$\Sigma_{i \neq d}(\bmod p) A_{i}=q^{k-1}$.
Note.

- Conditon " $\operatorname{gcd}(d, q)=1$ " is assumed.

Question: How about when $\operatorname{gcd}(d, q)=2$?

We give a generalization of Thm 6:

Thm 7.

Let h, m, t be integers with $0 \leq m<t \leq h$.
For $q=p^{h}$ with prime p, every $[n, k, d]_{q}$ code with $\operatorname{gcd}(d, q)=p^{m}$ is extendable if

$$
\begin{equation*}
\sum_{i \neq d} A_{\left(\bmod p^{t}\right)} A_{i}=q^{k-1} \tag{*}
\end{equation*}
$$

Note.

- Thm 6 is the case $(m, t)=(0,1)$.
- Conditon (*) can be weakened as follows.

Thm 7'.

Let h, m, t be integers with $0 \leq m<t \leq h$.
For $q=p^{h}$ with prime p, every $[n, k, d]_{q}$ code with $\operatorname{gcd}(d, q)=p^{m}$ is extendable if

$$
\sum_{i \neq d} \sum_{\left(\bmod p^{t}\right)} A_{i}<q^{k-1}+r(q) q^{k-3}(q-1),
$$

where $q+r(q)+1$ is the smallest size of a non-trivial blocking set in $\operatorname{PG}(2, q)$.
$(r(3)=r(4)=2, r(5)=3, r(7)=4$.

Example 4.

Let \mathcal{C}_{3} be the $[30,3,22]_{4}$ code with w.d.
$0^{1} 22^{45} 24^{15} 30^{3}$. Then \mathcal{C}_{3} is extendable by Thm 7 ($m=1, t=2, p=2$), for

$$
\Sigma_{i \neq d}\left(\bmod 2^{2}\right) A_{i}=1+15=2^{3-1}
$$

\mathcal{C}_{3} is from
I. Bouyukliev, M. Grassl, Z. Varbanov, New bounds for $n_{4}(k, d)$ and classification of some optimal codes over GF(4), Discrete Math., 281, 43-66, 2004.

For an $[n, k, d]_{q}$ code \mathcal{C} with $\operatorname{gcd}(d, q)<q$, the diversity of \mathcal{C} is defined as $\left(\Phi_{0}, \Phi_{1}\right)$ with

$$
\Phi_{0}=\frac{1}{q-1} \sum_{q \mid i, i>0} A_{i}, \quad \Phi_{1}=\frac{1}{q-1} \sum_{i \neq 0, d} \sum_{(\bmod q)} A_{i} .
$$

Note.
Under the condition $\operatorname{gcd}(d, q)=1$,
\mathcal{C} is extendable if $\Phi_{1}=0$
by Thm 2.

For an $[n, k, d]_{q}$ code \mathcal{C} with $\operatorname{gcd}(d, q)<q$, the diversity of \mathcal{C} is defined as $\left(\Phi_{0}, \Phi_{1}\right)$ with

$$
\Phi_{0}=\frac{1}{q-1} \sum_{q \mid i, i>0} A_{i}, \quad \Phi_{1}=\frac{1}{q-1} \sum_{i \neq 0, d} \sum_{(\bmod q)} A_{i} .
$$

Note.
Under the condition $\operatorname{gcd}(d, q)=1$,
\mathcal{C} is extendable if $\Phi_{1}<q^{k-2}$
[M-Yoshida 2012].

Thm 8 (Maruta, 2005).
\mathcal{C} : $[n, k, d]_{3}$ code with diversity $\left(\Phi_{0}, \Phi_{1}\right)$, $\operatorname{gcd}(3, d)=1, k \geq 3$.
Then \mathcal{C} is extendable if

$$
\begin{aligned}
\left(\Phi_{0}, \Phi_{1}\right) & \in\left\{\left(\theta_{k-2}, 0\right),\left(\theta_{k-3}, 2 \cdot 3^{k-2}\right)\right. \\
& \left.\left(\theta_{k-2}, 2 \cdot 3^{k-2}\right),\left(\theta_{k-2}+3^{k-2}, 3^{k-2}\right)\right\}
\end{aligned}
$$

where $\theta_{j}=\left(3^{j+1}-1\right) / 2$.

Thm 8 (Maruta, 2005).
\mathcal{C} : $[n, k, d]_{3}$ code with diversity $\left(\Phi_{0}, \Phi_{1}\right)$, $\operatorname{gcd}(3, d)=1, k \geq 3$.
Then \mathcal{C} is extendable if

$$
\begin{aligned}
& \left(\Phi_{0}, \Phi_{1}\right) \in\left\{\left(\theta_{k-2}, 0\right),\left(\theta_{k-3}, 2 \cdot 3^{k-2}\right)\right. \\
& \left.\left(\theta_{k-2}, 2 \cdot 3^{k-2}\right),\left(\theta_{k-2}+3^{k-2}, 3^{k-2}\right)\right\}
\end{aligned}
$$

where $\theta_{j}=\left(3^{j+1}-1\right) / 2$.

Thm 8 (Maruta, 2005).
\mathcal{C} : $[n, k, d]_{3}$ code with diversity $\left(\Phi_{0}, \Phi_{1}\right)$, $\operatorname{gcd}(3, d)=1, k \geq 3$.
Then \mathcal{C} is extendable if

$$
\begin{aligned}
\left(\Phi_{0}, \Phi_{1}\right) & \in\left\{\left(\theta_{k-2}, 0\right),\left(\theta_{k-3}, 2 \cdot 3^{k-2}\right)\right. \\
& \left.\left(\theta_{k-2}, 2 \cdot 3^{k-2}\right),\left(\theta_{k-2}+3^{k-2}, 3^{k-2}\right)\right\}
\end{aligned}
$$

where $\theta_{j}=\left(3^{j+1}-1\right) / 2$.

Thm 9.

$\mathcal{C}:[n, k, d]_{q}$ code with diversity $\left(\Phi_{0}, \Phi_{1}\right)$, $\operatorname{gcd}(d, q)=1, k \geq 3$.
Then \mathcal{C} is extendable if

$$
\left(\Phi_{0}, \Phi_{1}\right)=\left(\theta_{k-1}-2 q^{k-2}, q^{k-2}\right)
$$

where $\theta_{j}=\left(q^{j+1}-1\right) /(q-1)$.
Note.
$\theta_{k-1}-2 q^{k-2}=\theta_{k-2}+3^{k-2}$ for $q=3$.

Example 5.

\mathcal{C}_{3} : $[15,3,11]_{4}$ code with generator matrix

$$
\left[\begin{array}{lllllllllllllll}
1 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 1 & 0 & 1 & 1 & 1 & 0 & 0 \\
0 & 1 & 0 & 1 & 1 & \bar{\omega} & \bar{\omega} & 1 & \omega & 1 & \bar{\omega} & \omega & 1 & 1 & 1 \\
0 & 0 & 1 & 1 & 0 & 0 & 0 & \omega & 1 & 0 & 1 & 0 & 0 & \bar{\omega} & 1
\end{array}\right],
$$

where $\mathbb{F}_{4}=\{0,1, \omega, \bar{\omega}\}$. The w.d. of \mathcal{C}_{3} is $0^{1} 7^{3} 8^{3} 9^{3} 11^{9} 12^{36} 13^{9}$ with diversity $(13,4)$.
So, \mathcal{C}_{3} is extendable by Thm 9.

Thm 9.

$\mathcal{C}:[n, k, d]_{q}$ code with diversity $\left(\Phi_{0}, \Phi_{1}\right)$, $\operatorname{gcd}(d, q)=1, k \geq 3$.
Then \mathcal{C} is extendable if

$$
\left(\Phi_{0}, \Phi_{1}\right)=\left(\theta_{k-1}-2 q^{k-2}, q^{k-2}\right)
$$

where $\theta_{j}=\left(q^{j+1}-1\right) /(q-1)$.
Question.
How about when $\operatorname{gcd}(d, q)>1$?

Thm 9.

$\mathcal{C}:[n, k, d]_{q}$ code with diversity $\left(\Phi_{0}, \Phi_{1}\right)$, $\operatorname{gcd}(d, q)=1, k \geq 3$.
Then \mathcal{C} is extendable if

$$
\left(\Phi_{0}, \Phi_{1}\right)=\left(\theta_{k-1}-2 q^{k-2}, q^{k-2}\right)
$$

where $\theta_{j}=\left(q^{j+1}-1\right) /(q-1)$.

Answer.

OK for $k=3, q=2^{h}, h \geq 3$ if $\operatorname{gcd}(d, q)=2$.

4. Geometric approach

$\mathcal{C}:[n, k, d]_{q}$ code, $k \geq 3, \operatorname{gcd}(d, q)<q$ $G=\left[g_{1}^{\top}, \cdots, g_{k}^{\top}\right]^{\top}$: a generator matrix of \mathcal{C} $\Sigma:=\mathrm{PG}(k-1, q)$: the projective space of dimension $k-1$ over \mathbb{F}_{q}
For $P=\mathbf{P}\left(p_{1}, \ldots, p_{k}\right) \in \Sigma$, the weight of P w.r.t. G, denoted by $w_{G}(P)$, is defined as

$$
w_{G}(P)=w t\left(p_{1} g_{1}+\cdots+p_{k} g_{k}\right)
$$

A hyperplane H of Σ is defined by a non-zero vector $h=\left(h_{0}, \ldots, h_{k-1}\right) \in \mathbb{F}_{q}^{k}$ as $H=\left\{P=\mathbf{P}\left(p_{0}, \ldots, p_{k-1}\right) \in \Sigma \mid\right.$

$$
\left.h_{0} p_{0}+\cdots+h_{k-1} p_{k-1}=0\right\} .
$$

h is called a defining vector of H.

Let $F_{d}=\left\{P \in \Sigma \mid w_{G}(P)=d\right\}$.

Lemma 10. \mathcal{C} is extendable \Leftrightarrow there exists a hyperplane H of Σ s.t. $F_{d} \cap H=\emptyset$.
Moreover, $[G, h]$ generates an extension of \mathcal{C}, where $h^{\top} \in \mathbb{F}_{q}^{k}$ is a defining vector of H.

Lemma 10. \mathcal{C} is extendable \Leftrightarrow there exists a hyperplane H of Σ s.t. $F_{d} \cap H=\emptyset$.
Moreover, $[G, h]$ generates an extension of \mathcal{C}, where $h^{\top} \in \mathbb{F}_{q}^{k}$ is a defining vector of H.

$$
\begin{aligned}
& F_{0}=\left\{P \in \Sigma \mid w_{G}(P) \equiv 0(\bmod q)\right\} \\
& F_{1}=\left\{P \in \Sigma \mid w_{G}(P) \not \equiv 0, d(\bmod q)\right\} \\
& F_{2}=\left\{P \in \Sigma \mid w_{G}(P) \equiv d(\bmod q)\right\} \supset F_{d}
\end{aligned}
$$

Note. - $\left(\Phi_{0}, \Phi_{1}\right)=\left(\left|F_{0}\right|,\left|F_{1}\right|\right)$.

- $F_{0} \cup F_{1}$ forms a blocking set w.r.t. lines.

Lemma 11 ($\mathrm{M}, 2008$).
For a line $L=\left\{P_{0}, P_{1}, \cdots, P_{q}\right\}$ in Σ,

$$
\sum_{i=0}^{q} w_{G}\left(P_{i}\right) \equiv 0 \quad(\bmod q)
$$

Lemma 12 (Yoshida-M, 2010).
Let K be a set in $\Sigma=\operatorname{PG}(k-1, q), k \geq 3$, $q=2^{h}, h \geq 3$, s.t. for any line ℓ,

$$
|\ell \cap K| \in\{1, q / 2+1, q+1\} .
$$

Then, K contains a hyperplane of Σ.

Thm 5.

Let \mathcal{C} be an $[n, k, d]_{q}$ code with $q=2^{h}, h \geq 3$, $\operatorname{gcd}(d, q)=2$. Then \mathcal{C} is extendable if

$$
A_{i}>0 \Rightarrow i \equiv 0 \text { or } d(\bmod q)
$$

Note.

- \mathcal{C} is 2 -weight $(\bmod q)$.
- Conditon " $\operatorname{gcd}(d, q)=2$ " is assumed.

Proof of Thm 5 (sketch). For $q=2^{h}, h \geq 3$

$\mathcal{C}:[n, k, d]_{q}$ code with $\operatorname{gcd}(d, q)=2$ s.t.

$$
\begin{equation*}
A_{i}>0 \Rightarrow i \equiv 0 \text { or } d(\bmod q) \tag{1}
\end{equation*}
$$

L : a line in $\Sigma=\mathrm{PG}(k-1, q)=F_{0} \cup F_{2}$.
Assume $\left|L \cap F_{2}\right|=t$. Lemma 11 and (1) imply

$$
t d \equiv 0(\bmod q), \text { so, } t \equiv 0(\bmod q / 2)
$$

for $\operatorname{gcd}(d, q)=2$. Hence $t=0, q / 2$ or q.
Thus, $\left|F_{0} \cap L\right|=1, q / 2+1$ or $q+1$, and F_{0} contains a hyperplane of Σ by Lemma 12. Hence \mathcal{C} is extendable by Lemma 10 .

References

[1] R. Hill, and P. Lizak, Extensions of linear codes, Proc. IEEE Int. Sympo. Inform. Theory, pp. 345. Whistler, Canada, 1995.
[2] T. Maruta, A new extension theorem for linear codes, Finite Fields Appl., 10, 674-685, 2004.
[3] T. Maruta, Extendability of ternary linear codes, Des. Codes Cryptogr., 35, 175-190, 2005.
[4] T. Maruta, Extendability of linear codes over \mathbb{F}_{q},

Proc. 11th Intern. Workshop ACCT, Pamporovo, Bulgaria, 203-209, 2008.
[5] T. Maruta, Y. Yoshida, A generalized extension theorem for linear codes, Designs, Codes and Cryptography 62 (2012), pp. 121-130.
[6] J. Simonis, Adding a parity check bit, IEEE Trans. Inform. Theory, 46, 1544-1545, 2000.
[7] Y. Yoshida and T. Maruta, An extension theorem for $[n, k, d]_{q}$ codes with $\operatorname{gcd}(d, q)=2$, Australas. J. Combin., 48, 117-131, 2010.

Thank you for your attention!

