BLOCKING SETS IN FINITE PROJECTIVE SPACES AND THE EXTENSION PROBLEM FOR LINEAR CODES

Assia Rousseva Sofia University

(joint work with Ivan Landjev)

1. Linear Codes

- \diamond Linear $[n,k]_q$ code: $C<\mathbb{F}_q^n$, $\dim C=k$
- $\diamond [n, k, d]_q$ -code: $d = \min\{d(u, v) \mid u, v \in C, u \neq v\}$.
 - n the length of C;
 - k the dimension of C;
 - d the minimum distance of C.
- \diamond A_i number of codewords of (Hamming) weight i
- $\diamond (A_i)_{i>0}$ the spectrum of C

- \diamond The code obtained by deleting the same coordinate from all codewords of C is called a punctured code for C.
- \diamond A linear $[n,k,d]_q$ -code C is called extendable if there exists an $[n+1,k,d+1]_q$ code C' which gives C as a punctured code. In such case C' is called an extension of C.

Theorem. (Folklore) Every binary linear code of odd minimal weight is extendable.

⁻ Seventh International Workshop on Optimal Codes and Related Topics, Albena, Bulgaria, 06.09.-12.09.2013 -

Example.

$$G = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 \end{pmatrix} \implies G' = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 1 & 1 & 1 \\ 0 & 1 & 0 & 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 \end{pmatrix}$$

the $[7,4,3]_2$ Hamming code \implies the $[8,4,4]_2$ extended Hamming code

Theorem. (R. Hill, P. Lizak, 1995) Let C be a linear $[n,k,d]_q$ -code with $\gcd(q,d)=1$ in which $A_i=0$ for all $i\not\equiv 0,d\pmod q$. Then C is extendable.

⁻ Seventh International Workshop on Optimal Codes and Related Topics, Albena, Bulgaria, 06.09.-12.09.2013 -

2. Multisets of points

 \diamond A multiset in PG(k-1,q) is a mapping

$$\mathcal{K}: \left\{ \begin{array}{ccc} \mathcal{P} & \to & \mathbb{N}_0, \\ P & \to & \mathcal{K}(P). \end{array} \right.$$

- $\diamond \mathcal{K}(P)$ multiplicity of the point P.
- $\diamond \mathcal{Q} \subset \mathcal{P} \colon \mathcal{K}(\mathcal{Q}) = \sum_{P \in \mathcal{Q}} \mathcal{K}(P) \text{multiplicity of the set } \mathcal{Q}.$
- $\diamond \mathcal{K}(\mathcal{P})$ the cardinality of \mathcal{K} .
- \diamond Points, lines, ..., hyperplanes of multiplicity \emph{i} are called \emph{i} -points, \emph{i} -lines, ..., \emph{i} -hyperplanes.
- \diamond a_i the number of hyperplanes H with $\mathcal{K}(H)=i$
- $\diamond (a_i)_{i \geq 0}$ the spectrum of $\mathcal K$

Definition. (n, w)-arc in PG(k-1, q): a multiset K with

- 1) $\mathcal{K}(\mathcal{P}) = n$;
- 2) for every hyperplane $H: \mathcal{K}(H) \leq w$;
- 3) there exists a hyperplane H_0 : $\mathcal{K}(H_0) = w$.

Definition. (n, w)-blocking set in PG(k-1, q)

(or (n, w)-minihyper): a multiset $\mathcal K$ with

- 1) $\mathcal{K}(\mathcal{P}) = n$;
- 2) for every hyperplane $H: \mathcal{K}(H) \geq w$;
- 3) there exists a hyperplane H_0 : $\mathcal{K}(H_0) = w$.

Definition. An (n, w)-arc \mathcal{K} in $\mathrm{PG}(k-1, q)$ is called extendable (or incomplete), if there exists an (n+1, w)-arc \mathcal{K}' in $\mathrm{PG}(k-1, q)$ with $\mathcal{K}'(P) \geq \mathcal{K}(P)$ for every point $P \in \mathcal{P}$.

⁻ Seventh International Workshop on Optimal Codes and Related Topics, Albena, Bulgaria, 06.09.-12.09.2013 -

3. Linear codes as multisets of points

A linear code of full length over \mathbb{F}_q :

A linear code $C \in \mathbb{F}_q^n$ is said to be of full length if $\forall i \in \{1, \ldots, n\}$, $\exists c = (c_1, c_2, \ldots, c_n) \in C$ with $c_i \neq 0$.

Theorem. For every arc \mathcal{K} of cardinality n in $\operatorname{PG}(k-1,q)$ there exist a linear code of full length $C < \mathbb{F}_q^n$ and a generating sequence of vectors $S = (\boldsymbol{c}_1, \cdots, \boldsymbol{c}_k)$ from C which induces \mathcal{K} . Two arcs \mathcal{K}_1 and \mathcal{K}_2 in $\operatorname{PG}(k-1,q)$ associated with the linear codes of full length C_1 and C_2 over \mathbb{F}_q , respectively, are equivalent if and only if C_1 and C_2 are semilinearly isomorphic.

⁻ Seventh International Workshop on Optimal Codes and Related Topics, Albena, Bulgaria, 06.09.-12.09.2013 -

$$[n,k,d]_q$$
-code C \Leftrightarrow $(n,w=n-d)$ -arc $\mathcal K$ in $\operatorname{PG}(k-1,q)$ $0
eq u \in C$, $\operatorname{wt}(u) = u$ \Leftrightarrow a hyperplane H with $\mathcal K(H) = n-u$, $(A_i)_{i \geq 0}$ \Leftrightarrow $(a_i)_{i \geq 0}$ extendable $[n,k,d]_q$ -code C \Leftrightarrow extendable $(n,n-d)$ -arc $\mathcal K$

Theorem. (R. Hill, P. Lizak, 1995) Let \mathcal{K} be an (n, w)-arc in $\operatorname{PG}(k-1, q)$ with $\gcd(n-w,q)=1$. Let further $\mathcal{K}(H)\equiv n$ or $w\pmod q$ for all hyperplanes H. Then \mathcal{K} is extendable to an (n+1,w)-arc in $\operatorname{PG}(k-1,q)$.

4. Earlier Extension Results

Theorem.(Simonis,2000) An $[n,k,d]_q$ -code with $\gcd(d,q)=1$ is extendable if

$$\sum_{i \not\equiv d \pmod{q}} A_i = q^{k-1}.$$

Theorem.(Maruta,2001) An $[n,k,d]_q$ -code with $\gcd(d,q)=1$ is extendable if

$$\sum_{i \not\equiv d \pmod{q}} A_i < q^{k-1} + q^{k-3} \sqrt{q} (q-1).$$

Theorem.(Maruta,2004) Let C be an $[n,k,d]_q$ code such that $A_i=0$ for all $i\not\equiv 0,-1,-2\pmod q$ for odd $q\geq 5$. Then C is extendable.

Theorem. (Maruta, geometric version) Let \mathcal{K} be an (n,w)-arc in $\operatorname{PG}(k-1,q)$, $q \geq 5$, odd. Let further $\mathcal{K}(H) \equiv n, n+1$ or $n+2 \pmod q$ for all hyperplanes H. Then \mathcal{K} is extendable to an (n+1,w)-arc in $\operatorname{PG}(k-1,q)$.

⁻ Seventh International Workshop on Optimal Codes and Related Topics, Albena, Bulgaria, 06.09.-12.09.2013 -

5. A New Extension Theorem

- $\diamond \mathcal{K}$ (n,w)-arc in $\Sigma = \mathrm{PG}(k-1,q)$
- \diamond for every hyperplane H, we have $\mathcal{K}(H) \equiv n, n+1, \ldots, n+t \pmod q$ where 0 < t < q is an integer constant.
- \diamond Define an arc $\widetilde{\mathcal{K}}$ in the dual space $\widetilde{\Sigma}$

$$\widetilde{\mathcal{K}}: \left\{ \begin{array}{ccc} \mathcal{H} & \to & \mathbb{N}_0, \\ H & \to & \widetilde{\mathcal{K}}(H) := n + t - \mathcal{K}(H) \pmod{q}. \end{array} \right.$$

where \mathcal{H} is the set of all hyperplanes of Σ .

Theorem. Let \mathcal{K} be an (n,w)-arc in $\Sigma=\operatorname{PG}(k-1,q)$ and let $\widetilde{\Sigma}$ contain a hyperplane H^* with $\widetilde{\mathcal{K}}(x^*)\geq a>0$, a an integer, for all points x^* incident with H^* . Then the arc \mathcal{K} is a-extendable, there exists an extension \mathcal{K}' of \mathcal{K} with parameters (n+a,w).

Theorem. Let S^* be a subspace of $\widetilde{\Sigma}$ then $\widetilde{\mathcal{K}}(S^*) \equiv t \pmod{q}$.

- \diamond By the above theorem, the arc $\widetilde{\mathcal{K}}$ has the following properties:
 - the multiplicity of each point is at most t;
- the multiplicity of each subspace of dimension r, $1 \leq r \leq k-1$, is at least tv_r .
- \diamond Notation: $v_r = rac{q^r-1}{q-1}$.

 \diamond Griesmer bound: Let $\mathcal C$ be an $[n,k,d]_q$ -code. Then

$$n_q(k,d) \ge g_q(k,d) = \sum_{i=0}^{k-1} \lceil \frac{d}{q^i} \rceil$$

♦ Griesmer arcs: arcs associated with codes meeting the Griesmer bound

Theorem. Consider a Griesmer (n, w)-arc \mathcal{K} in $\operatorname{PG}(k-1, q)$ with $\mathcal{K}(H) \equiv n, n+1, \ldots, n+t \pmod q$ for all hyperplanes H. Denote by (a_i) the spectrum of the arc $\mathcal{K}|_H$, where H is a fixed hyperplane of multiplicity w, with respect to \mathcal{K} . Let A be the largest integer such that a $(tv_{k-1} + A, tv_{k-2})$ -minihyper contains necessarily a hyperplane in its support. If

$$qa_{w-\lceil d/q\rceil-1} + 2qa_{w-\lceil d/q\rceil-2} + \ldots + (t-1)q \sum_{u \le w-\lceil d/q\rceil-t+1} a_u \le A,$$

then \mathcal{K} is extendable.

Problem. What is the maximal integer A such that a $(tv_{k-1} + A, tv_{k-2})$ -minihyper with the divisibility properties outlined above contains a hyperplane?