On the binary CRC codes used in the HARQ scheme of the LTE standard

Peter Kazakov

Institute of Mathematics and Informatics Bulgarian Academy of Sciences

> September, 2013 Albena, Bulgaria

- We investigate CRC codes generated by polynomials of degree r = 24 and minimum distance 4.
- Order of polynomial g(x) is number n_c, such that g(x) divides x^{n_c} + 1 and n_c = min{m|x^m ≡ 1 mod g(x)}
- Probability of undetected error can be expressed in the following way

$$P_{ud}(C,\varepsilon) = \sum_{i=1}^{n_c} A_i \varepsilon^i (1-\varepsilon)^{n-i}$$

• Denote the number of minimum weight codewords by $A_{d,n_c-s}(g)$ for a shortened in *s* positions $[n_c - s, k_c - s, d = 4]$ CRC code.

Introduction II

 Historically, standardized polynomials of degree r were chosen with a parity control check polynomial of the type (x + 1) multiplied by a primitive polynomial of degree r - 1.

Introduction III

- Castagnoli, Brauer, Herrman, CRC 8, CRC 16
- Fujiwara, Kasami and all, 1985, CRC 16
- T. Baicheva, S. Dodunekov and P. Kazakov, On the cyclic redundancy-check codes with 8 bit redundancy, Computer Communications, v. 21, 1998
- T. Baicheva, S. Dodunekov and P. Kazakov, Undetected error probability performance of cyclic redundancy-check codes of 16-bit redundancy, IEE Proc. Comm., 2000
- P. Kazakov, Fast Calculation of the Number of Minimum-weight Words of CRC Codes, IEEE Trans. On Inf.Theory, volume 47, 2001.
- CRC-24 standards FlexRay(0x15D6DCB), OpenPGP(0x1864CFB)
- CRC 32 Castagnoli 93, arbitrary polynomials

Introduction IV

 CRC32 - Koopman (exhaustive search, 30 Alpha stations for 3-4 months)

Introduction V

Criterias:

- max (d=4), min(weight(g(x))
- Criterias good and proper, Dodunekov and Dodunekova
- max (N), such that d=6 for CRC codes up to length N, d=4 for the rest
- $max(d), min(A_d)$

Problem complexity (for given codelength *n*):

- We need to investigate all polynomials 2^r, such that ord(g) > n
- We need to use Gray code to generate dual distance distribution (2^r)
- We need to calculate weight of each line (*n_c*)
- We need to apply MacWillians transformation to obtain *d* and *A_d*

LTE standard and CRC codes I

- Next commercial standard after CDMA, WCDMA and TDSCDMA
- 4G, first commercial release available 2009
- Supports scalable carrier bandwidths, from 1.4 MHz to 20 MHz
- Target downlink 1Gbs static and 100Mbs car, uplink 50 Mbit/s
- Support both TDD and FDD, based on HSPDA, which includes:
- Hybrid automatic repeat-request (HARQ), minor errors can be corrected without retransmission
- Adaptive modulation (good radio conditions 16QAM and 64QAM) and coding
- MIMO

LTE standard and CRC codes II

CRC attachment -> Turbo coding -> Bit scrambling -> HARQ rate matching -> Interleaving and interlacing

- Rate matching with puncturing: fast way to calculate BER
- CRC encoding and decoding
- Turbo codes used: 1/3
- Bit scrambling: suffficiently random sequence
- Transport Block (TB) -> >100000 bits, encoded with g_a
- Each TB contains of code blocks (Cbs) with lenght 6120, encoded with g_b
- Early detection scheme: minimum number of iteration before decoder is stopped, retransmission on CRC error

LTE standard and CRC codes III

- $g_{24A}(x) = x^{24} + x^{23} + x^{18} + x^{17} + x^{14} + x^{11} + x^{10} + x^7 + x^6 + x^5 + x^4 + x^3 + x + 1$ and;
- $g_{24B}(x) = x^{24} + x^{23} + x^6 + x^5 + x + 1$ for a CRC length L = 24 and
- $g_{16}(D) = x^{16} + x^{12} + x^5 + 1$ for a CRC length L = 16.
- $g_8(D) = x^8 + x^7 + x^4 + x^3 + x + 1$

Method of investigation I

Theorem 1

Let *C* be a binary $[n_c - r, k_c, 4]$ code generated by the polynomial (x + 1)g(x) of degree *r* and order $n_c = 2^{r-1} - 1$. The following equality holds:

$$egin{aligned} \mathcal{A}_{4,n_c-s}(g) &= rac{(n_c-3)((n_c-4s)(n_c-1)+6s(s-1))}{24} \cdot \ &\sum_{m=2}^{max(2,s-1)}\sum_{j=1}^{m-1}(s-m)(Q_{m,j}(g)-\sum_{l=1}^{j-1}Q_{m,j,l}(g)) \end{aligned}$$

Method of investigation II

$$egin{aligned} Q_{m,j}(g) &= egin{cases} 1, & g(x) \mid x^m + x^j + 1, \ 0, & ext{otherwise} \end{aligned} \ Q_{m,i,j}(g) &= egin{cases} 1, & g(x) \mid x^m + x^j + x^i + 1, \ 0, & ext{otherwise}. \end{aligned}$$

Definition 2

If two polynomials g(x) and f(x) can be factorized on an equal number k of irreducible polynomials $g_1(x), \ldots, g_k(x)$ and $f_1(x), \ldots, f_k(x)$ such that $deg(g_i(x)) = deg(f_i(x))$ for $i = 1, \ldots, k$ and $ord(g_i(x)) = ord(f_i(x))$ for $i = 1, \ldots, k$ we will say that they belong to one class.

- We group all polynomials in classes, we exclude reciprocal ones;
- For each class, we select one polynomial *h* and we calculate the minimum distance *d* of the corresponding CRC code. If *d* = 3, we skip this class;

Method of investigation IV

- For each class represented by a polynomial *h*, we calculate the number of minimum weight codewords A_{4,6120}(*h*) and select two groups of polynomial classes one with a polynomial representative of order bigger than 6120 and one of order bigger than 100,000.
- For the first *m* classes with a minimum value of $A_{d=4,6120}$ and the first three classes with a minimum value of $A_{d=4,100,000}$ and an order bigger than 100,000 (in order to compare with g_B) and big codelengths we perform calculations on all their members. In that way we find the best polynomial from the corresponding class that generates a minimum $A_{d=4,6120}$.

Results I

Order > 6120

Polynomial notation	order	A _{d,6120}
$0x1864CFB$ (standard, g_A)	2 ²³ – 1	56,416,496
0x114855B	38227	24,989,800
0x17A481F	12291	25,013,640
0x14AC147	19065	25,463,304

Order > 100,000

Polynomial notation	order	A _{d,6120}
0x1800063 (standard, <i>g</i> _B)	2 ²³ – 1	68,018,112
0x103A977	114681	25,201,272
0x116C3EF	522753	25,850,512
0x140F133	278845	29,275,776

It is worth investigating following class candidates:

•
$$(x^3 + x^2 + 1)(x^7 + x^6 + 1)$$
.IrrPol

•
$$(x^4 + x + 1)$$
.IrrPol

This study is an enablement for CRC-32 case. Still few steps have to be done:

- Get analytical formula for the two cases above.
- Map all calculations on a GPU
- Get early bailout criterias [Koopman]