# On the binary CRC codes used in the HARQ scheme of the LTE standard 

Peter Kazakov

Institute of Mathematics and Informatics
Bulgarian Academy of Sciences
September, 2013 Albena, Bulgaria

- We investigate CRC codes generated by polynomials of degree $r=24$ and minimum distance 4.
- Order of polynomial $g(x)$ is number $n_{c}$, such that $g(x)$ divides $x^{n_{c}}+1$ and $n_{c}=\min \left\{m \mid x^{m} \equiv 1 \bmod g(x)\right\}$
- Probability of undetected error can be expressed in the following way

$$
P_{u d}(C, \varepsilon)=\sum_{i=1}^{n_{c}} A_{i} \varepsilon^{i}(1-\varepsilon)^{n-i}
$$

- Denote the number of minimum weight codewords by $A_{d, n_{c}-s}(g)$ for a shortened in $s$ positions $\left[n_{c}-s, k_{c}-s, d=4\right]$ CRC code.


## Introduction II

- Historically, standardized polynomials of degree $r$ were chosen with a parity control check polynomial of the type $(x+1)$ multiplied by a primitive polynomial of degree $r-1$.


## Introduction III

- Castagnoli, Brauer, Herrman, CRC 8, CRC 16
- Fujiwara, Kasami and all, 1985, CRC 16
- T. Baicheva, S. Dodunekov and P. Kazakov, On the cyclic redundancy-check codes with 8 bit redundancy, Computer Communications, v. 21, 1998
- T. Baicheva, S. Dodunekov and P. Kazakov, Undetected error probability performance of cyclic redundancy-check codes of 16-bit redundancy, IEE Proc. Comm., 2000
- P. Kazakov, Fast Calculation of the Number of Minimum-weight Words of CRC Codes, IEEE Trans. On Inf.Theory, volume 47, 2001.
- CRC-24 standards FlexRay(0x15D6DCB), OpenPGP(0x1864CFB)
- CRC 32-Castagnoli 93, arbitrary polynomials


## Introduction IV

- CRC32 - Koopman (exhaustive search, 30 Alpha stations for 3-4 months)

Criterias:

- max ( $\mathrm{d}=4$ ), min( weight $(\mathrm{g}(\mathrm{x})$ )
- Criterias good and proper, Dodunekov and Dodunekova
- max $(N)$, such that $d=6$ for $C R C$ codes up to length $N, d=4$ for the rest
- $\max (d), \min \left(A_{d}\right)$

Problem complexity (for given codelength $n$ ):

- We need to investigate all polynomials $2^{r}$, such that $\operatorname{ord}(g)>n$
- We need to use Gray code to generate dual distance distribution ( $2^{r}$ )
- We need to calculate weight of each line $\left(n_{c}\right)$
- We need to apply MacWillians transformation to obtain $d$ and $A_{d}$


## LTE standard and CRC codes I

- Next commercial standard after CDMA, WCDMA and TDSCDMA
- 4G, first commercial release available 2009
- Supports scalable carrier bandwidths, from 1.4 MHz to 20 MHz
- Target downlink 1Gbs static and 100Mbs car, uplink 50 Mbit/s
- Support both TDD and FDD, based on HSPDA, which includes:
- Hybrid automatic repeat-request (HARQ), minor errors can be corrected without retransmission
- Adaptive modulation (good radio conditions 16QAM and 64QAM ) and coding
- MIMO


## LTE standard and CRC codes II

CRC attachment -> Turbo coding -> Bit scrambling -> HARQ rate matching -> Interleaving and interlacing

- Rate matching with puncturing: fast way to calculate BER
- CRC encoding and decoding
- Turbo codes used: $1 / 3$
- Bit scrambling: suffficiently random sequence
- Transport Block (TB) -\gg100000 bits, encoded with $g_{a}$
- Each TB contains of code blocks (Cbs) with lenght 6120, encoded with $g_{b}$
- Early detection scheme: minimum number of iteration before decoder is stopped, retransmission on CRC error


## LTE standard and CRC codes III

- $g_{24 A}(x)=x^{24}+x^{23}+x^{18}+x^{17}+x^{14}+x^{11}+x^{10}+x^{7}+$ $x^{6}+x^{5}+x^{4}+x^{3}+x+1$ and;
- $g_{24 B}(x)=x^{24}+x^{23}+x^{6}+x^{5}+x+1$ for a CRC length $\mathrm{L}=$ 24 and
- $g_{16}(D)=x^{16}+x^{12}+x^{5}+1$ for a CRC length $\mathrm{L}=16$.
- $g_{8}(D)=x^{8}+x^{7}+x^{4}+x^{3}+x+1$


## Method of investigation I

## Theorem 1

Let $C$ be a binary $\left[n_{c}-r, k_{c}, 4\right]$ code generated by the polynomial $(x+1) g(x)$ of degree $r$ and order $n_{c}=2^{r-1}-1$. The following equality holds:

$$
\begin{gathered}
A_{4, n_{c}-s}(g)=\frac{\left(n_{c}-3\right)\left(\left(n_{c}-4 s\right)\left(n_{c}-1\right)+6 s(s-1)\right)}{24}- \\
\sum_{m=2}^{\max (2, s-1)} \sum_{j=1}^{m-1}(s-m)\left(Q_{m, j}(g)-\sum_{l=1}^{j-1} Q_{m, j, l}(g)\right)
\end{gathered}
$$

## Method of investigation II

$$
\begin{gathered}
Q_{m, j}(g)= \begin{cases}1, & g(x) \mid x^{m}+x^{j}+1, \\
0, & \text { otherwise }\end{cases} \\
Q_{m, i, j}(g)= \begin{cases}1, & g(x) \mid x^{m}+x^{j}+x^{i}+1, \\
0, & \text { otherwise. }\end{cases}
\end{gathered}
$$

## Method of investigation III

## Definition 2

If two polynomials $g(x)$ and $f(x)$ can be factorized on an equal number $k$ of irreducible polynomials $g_{1}(x), \ldots, g_{k}(x)$ and $f_{1}(x), \ldots, f_{k}(x)$ such that $\operatorname{deg}\left(g_{i}(x)\right)=\operatorname{deg}\left(f_{i}(x)\right)$ for $i=1, \ldots, k$ and $\operatorname{ord}\left(g_{i}(x)\right)=\operatorname{ord}\left(f_{i}(x)\right)$ for $i=1, \ldots, k$ we will say that they belong to one class.

- We group all polynomials in classes, we exclude reciprocal ones;
- For each class, we select one polynomial $h$ and we calculate the minimum distance $d$ of the corresponding CRC code. If $d=3$, we skip this class;


## Method of investigation IV

- For each class represented by a polynomial $h$, we calculate the number of minimum weight codewords $A_{4,6120}(h)$ and select two groups of polynomial classes one with a polynomial representative of order bigger than 6120 and one of order bigger than 100, 000.
- For the first $m$ classes with a minimum value of $A_{d=4,6120}$ and the first three classes with a minimum value of $A_{d=4,100,000}$ and an order bigger than 100, 000 (in order to compare with $g_{B}$ ) and big codelengths we perform calculations on all their members. In that way we find the best polynomial from the corresponding class that generates a minimum $A_{d=4,6120}$.


## Results

Order > 6120

| Polynomial notation | order | $A_{d, 6120}$ |
| :--- | ---: | ---: |
| 0x1864CFB (standard, $\left.g_{A}\right)$ | $2^{23}-1$ | $56,416,496$ |
| 0x114855B | 38227 | $24,989,800$ |
| 0x17A481F | 12291 | $25,013,640$ |
| 0x14AC147 | 19065 | $25,463,304$ |

Order > 100,000

| Polynomial notation | order | $A_{d, 6120}$ |
| :--- | ---: | ---: |
| 0x1800063 (standard, $g_{B}$ ) | $2^{23}-1$ | $68,018,112$ |
| 0x103A977 | 114681 | $25,201,272$ |
| 0x116C3EF | 522753 | $25,850,512$ |
| 0x140F133 | 278845 | $29,275,776$ |

It is worth investigating following class candidates:

- $\left(x^{3}+x^{2}+1\right)\left(x^{7}+x^{6}+1\right)$. IrPOl
- $\left(x^{4}+x+1\right)$. IrrPol

This study is an enablement for CRC-32 case. Still few steps have to be done:

- Get analytical formula for the two cases above.
- Map all calculations on a GPU
- Get early bailout criterias [Koopman]

