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Introduction

The first developments in search theory were made by Bernard
Koopman and his colleagues during World War II. The purpose was to
provide efficient ways to search for enemy submarines. The work done
from 1942 to 1945 was published later (1946) in a book [5].

In 1964 Berlekamp [2] showed that the problem of adaptive searching
for one element with at most e wrong answers is equivalent to
construction of an e–error correcting code with feedback.

During the Workshop "Search Methodologies II" (2012) Rudolf
Ahlswede suggested to consider some combinatorial models of
two-sided search for a moving object. This inspired us to introduce the
following two-sided search model.
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Classical group testing

[N] := {1, . . . ,N} the set of elements
D ⊂ [N] the set of defective elements

The classical group testing problem:
find the unknown subset D of all defective elements in [N].

For a subset S ⊂ [N] a test tS is the function tS : 2[N] → {0,1} with

tS(D) =

{
0 , if |S ∩ D| = 0
1 , otherwise.

(1)

In classical group testing a strategy is called successful, if we can
uniquely determine D.

Strategies are called adaptive if the results of the first k − 1 tests
determine the k th test.
Strategies in which we choose all tests independently are called
nonadaptive.

We consider only adaptive strategies and worst case analysis.
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A new combinatorial search problem

We define our search space N = {1,2, . . . ,N} as the vertices of a
graph G = (N , E). A searching object, also called a target, occupies
one of those vertices unknown to the searcher.

Let d1 ∈ N be the initial unknown position of the target and let
(T1, T2, . . . , Tn) be a sequence of test sets Ti ⊂ N (tests for short)
performed one after another at a time. Let also (d1, . . . ,dn+1) be the
corresponding unknown walk performed by the target.

For each test Ti we define the test function

fTi (di) =

{
0 , if di 6∈ Ti
1 , if di ∈ Ti .
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A new combinatorial search problem

We denote by Di the set of possible positions of the target after the i th
test, thus D0 = N and for i = 1, . . . ,n we have

Di =

{
Γ(Ti) , if fTi (di) = 1
Γ(Di−1\Ti) , if fTi (di) = 0,

where Γ(A) := {j ∈ N : ∃i ∈ A with (i , j) ∈ E} is the neighborhood of a
subset A ⊂ N .

Given a graph G = (N , E), a strategy of length n is called
(G, s)–successful if |Di | ≤ s for some i ≤ n.

Let s∗(G) be the minimal number s∗ such that there exists a
(G, s∗)–successful strategy.
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cycles

We consider only two classes of graphs: cycles and paths on N
vertices. We introduce two new notation.

Given integers n, s ≥ 1, we denote by Nc(n, s) resp. Nl(n, s) the
maximal number N, such that there exists a (CN , s)–successful resp.
(CL, s)–successful strategy.

We start with a simple observation for cycles.

Proposition
For N ≥ 5 we have s∗(CN) = 5.

Theorem

For n ≥ 0 we have
Nc(n,5) = 2n + 4.
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paths

Next we consider a path as an underlying graph.

Proposition
For N ≥ 4 we have s∗(CL) = 4.

Theorem
For integers n ≥ 0 and s ≥ 4 we have

Nl(n, s) = (s − 4)2n + 2n + 4.
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A restricted case of the problem, when the number of
moves of the target is limited

In this section we consider the case when the target can move at most
t times.

We describe now a coding problem which is equivalent to our
two-sided search model. Let N = {1,2, . . . ,N} be a set of messages,
which we identify with the vertices of an undirected graph G = (N , E).
A source chooses a message d1 ∈ N which the transmitter should
transmit by sending at most n(G) binary symbols (bits) step by step
(adaptively) over a noiseless binary channel. However, after every
transmission of one bit, the source may change the message into a
neighboring message. The sequence of vertices d1, . . . ,dj describes
an alteration, after j transmissions with the actual message dj . Let
(c1, . . . , cj−1) ∈ {0,1}j−1 be the submitted sequence of the sender.
Then the j th bit cj depends on the actual message dj and the j − 1
submitted bits, so that cj = cj(c1, . . . , cj−1,dj).
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A restricted case of the problem, when the number of
moves of the target is limited

The goal is to describe an efficient scheme of transmission such that
for every walk d1, . . . ,dn+1 the receiver is able to find a set S ⊂ N , of a
given size s, which includes a message dj+1, after j ≤ n transmissions.
It can be seen that this setting of the problem is equivalent to our
search problem. On the other hand we note that from the coding point
of view it seems more natural to consider the following problem: the
goal is to find a set of size s containing the message dn+1.
We emphasize that for cycles and paths the answers for both problems
are the same.
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A restricted case, cycles

Theorem
For integers s ≥ 5, 1 ≤ t < n we have

Nc(n, s, t) ≥ (s − 4)2n + 4 + 4(2n−t − 1).

We consider now the cases t = 1,2.

Theorem

(i) For n ≥ 1 and s ≥ 3 we have Nc(n, s,1) = (s − 2)2n.
(ii) For n ≥ 4 we have Nc(n,3,2) = 2n−2.
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A restricted case, paths

Next we consider the restricted case for paths.

Theorem
For integers s ≥ 5, 1 ≤ t < n we have

Nl(n, s, t) ≥ (s − 4)2n + 2t + 2n−t+2.

Theorem
For s ≥ 3 we have

Nl(n, s,1) = (s − 2)2n + 2.
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We have considered a two-sided combinatorial search problem for two
classes of underlying graphs, cycles and paths, with the most simple
topologies.

In fact, the problem essentially depends on the topology of the
underlying graph.

It is natural to consider the problem for other popular topologies like
grids, trees, n-cubes etc.
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Thank you for your attention!
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