MDS deformations of linear codes

Azniv Kasparian, Evgeniya Velikova

Azniv Kasparian, Evgeniya Velikova MDS deformations

2 The MDS deformations as \mathbb{F}_q -Zariski tangent bundles

Convention

• Throughout, an $[n, k, d]_q$ -code is an \mathbb{F}_q -linear subspace $C \subset \mathbb{F}_q^n$ of $\dim_{\mathbb{F}_q} C = k$, such that any $c \in C \setminus \{(0, \ldots 0)\}$ has at least d nonzero components.

• Singleton bound $k + d \le n + 1$ is attained by the $[n, k, n - k + 1]_q$ -codes, which are called MDS (Maximum Distance Separable).

Convention

• Throughout, an $[n, k, d]_q$ -code is an \mathbb{F}_q -linear subspace $C \subset \mathbb{F}_q^n$ of $\dim_{\mathbb{F}_q} C = k$, such that any $c \in C \setminus \{(0, \ldots 0)\}$ has at least d nonzero components.

• Singleton bound $k + d \le n + 1$ is attained by the $[n, k, n - k + 1]_q$ -codes, which are called MDS (Maximum Distance Separable).

Jacobian matrix of polynomials

• Let
$$\mathbb{F}_q$$
 be a finite field of $\operatorname{char}(\mathbb{F}_q) = p, 1 \le j \le n$,
 $\frac{\partial}{\partial x_j} : \mathbb{F}_q[x_1, \dots, x_n] \longrightarrow \mathbb{F}_q[x_1, \dots, x_n]$,
 $\frac{\partial}{\partial x_j} \left(\sum_{\alpha} c_{\alpha} x_1^{\alpha_1} \dots x_j^{\alpha_j} \dots x_n^{\alpha_n} \right) =$
 $\sum_{\alpha} c_{\alpha} x_1^{\alpha_1} \dots [\alpha_j (\operatorname{mod} p)] x_j^{\max(0, \alpha_j - 1)} \dots x_n^{\alpha_n}$.

• Consider the Jacobian matrix

$$\frac{\partial(f_1,\ldots,f_{n-k})}{\partial(x_1,\ldots,x_n)}(a) = \begin{pmatrix} \frac{\partial f_1}{\partial x_1}(a) & \ldots & \frac{\partial f_1}{\partial x_n}(a) \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial f_{n-k}}{\partial x_1}(a) & \ldots & \frac{\partial f_{n-k}}{\partial x_n}(a) \end{pmatrix}$$

of $f_1, \ldots, f_{n-k} \in \mathbb{F}_q[x_1, \ldots, x_n]$ at $a \in \mathbb{F}_q^n$

Jacobian matrix of polynomials

• Let
$$\mathbb{F}_q$$
 be a finite field of $\operatorname{char}(\mathbb{F}_q) = p, 1 \le j \le n$,
 $\frac{\partial}{\partial x_j} : \mathbb{F}_q[x_1, \dots, x_n] \longrightarrow \mathbb{F}_q[x_1, \dots, x_n]$,
 $\frac{\partial}{\partial x_j} \left(\sum_{\alpha} c_{\alpha} x_1^{\alpha_1} \dots x_j^{\alpha_j} \dots x_n^{\alpha_n} \right) =$
 $\sum_{\alpha} c_{\alpha} x_1^{\alpha_1} \dots [\alpha_j (\operatorname{mod} p)] x_j^{\max(0, \alpha_j - 1)} \dots x_n^{\alpha_n}$.

• Consider the Jacobian matrix

$$\frac{\partial(f_1,\ldots,f_{n-k})}{\partial(x_1,\ldots,x_n)}(a) = \begin{pmatrix} \frac{\partial f_1}{\partial x_1}(a) & \ldots & \frac{\partial f_1}{\partial x_n}(a) \\ \vdots & \vdots & \vdots \\ \frac{\partial f_{n-k}}{\partial x_1}(a) & \ldots & \frac{\partial f_{n-k}}{\partial x_n}(a) \end{pmatrix}$$

of $f_1, \ldots, f_{n-k} \in \mathbb{F}_q[x_1, \ldots, x_n]$ at $a \in \mathbb{F}_q^n$.

Jacobian family of linear codes

• The union $J(f_1, \ldots, f_{n-k}) = \bigcup_{a \in \mathbb{F}_q^n} J(f_1, \ldots, f_{n-k})_a$ of the codes with check matrices $\frac{\partial (f_1, \ldots, f_{n-k})}{\partial (x_1, \ldots, x_n)}(a)$ is referred to as the Jacobian family of linear codes, associated with $f_1, \ldots, f_{n-k} \in \mathbb{F}_q[x_1, \ldots, x_n].$

• Thus, $J(f_1, \ldots, f_{n-k})_a$ are \mathbb{F}_q -linear codes of length n and dimension $n - rk \frac{\partial(f_1, \ldots, f_{n-k})}{\partial(x_1, \ldots, x_n)}(a) \ge k$.

Jacobian family of linear codes

• The union $J(f_1, \ldots, f_{n-k}) = \bigcup_{a \in \mathbb{F}_q^n} J(f_1, \ldots, f_{n-k})_a$ of the codes with check matrices $\frac{\partial(f_1, \ldots, f_{n-k})}{\partial(x_1, \ldots, x_n)}(a)$ is referred to as the Jacobian family of linear codes, associated with $f_1, \ldots, f_{n-k} \in \mathbb{F}_q[x_1, \ldots, x_n].$

• Thus, $J(f_1, \ldots, f_{n-k})_a$ are \mathbb{F}_q -linear codes of length n and dimension $n - rk \frac{\partial(f_1, \ldots, f_{n-k})}{\partial(x_1, \ldots, x_n)}(a) \ge k$.

Existence of an MDS deformation

• For an arbitrary code $C_0 \subset \mathbb{F}_q^n$ and arbitrary $[n, k, n - k + 1]_q$ -codes $C_1, \ldots, C_r, r \leq q - 1$ there exists a Jacobian family $J(f_1, \ldots, f_{n-k}) \to \mathbb{F}_q^n$ with $J(f_1, \ldots, f_{n-k})_{a^{(i)}} = C_i$ for some $a^{(0)}, \ldots, a^{(r)} \in \mathbb{F}_q^n$.

• Let $\mathbb{F}_q = \{t_0 = 0, t_1, \dots, t_{q-1}\}$, $p = char(\mathbb{F}_q)$ and $\Phi_p : \mathbb{F}_q \to \mathbb{F}_q$, $\Phi_p(t) = t^p$ be the Frobenius automorphism.

▶ ★ 문 ▶ ★ 문 ▶ ...

Existence of an MDS deformation

• For an arbitrary code $C_0 \subset \mathbb{F}_q^n$ and arbitrary $[n, k, n - k + 1]_q$ -codes $C_1, \ldots, C_r, r \leq q - 1$ there exists a Jacobian family $J(f_1, \ldots, f_{n-k}) \to \mathbb{F}_q^n$ with $J(f_1, \ldots, f_{n-k})_{a^{(i)}} = C_i$ for some $a^{(0)}, \ldots, a^{(r)} \in \mathbb{F}_q^n$.

• Let $\mathbb{F}_q = \{t_0 = 0, t_1, \dots, t_{q-1}\}$, $p = char(\mathbb{F}_q)$ and $\Phi_p : \mathbb{F}_q \to \mathbb{F}_q, \Phi_p(t) = t^p$ be the Frobenius automorphism.

Lagrange interpolation step

$\bullet~{\rm If}~A^{(i)}=(A_1^{(i)}\ldots A_n^{(i)})~{\rm are~check}~{\rm matrices~of}~C_i~{\rm and}$

• $L_i(x) = \frac{(x-t_0)...(x-t_{i-1})(x-t_{i+1})...(x-t_r)}{(t_i-t_0)...(t_i-t_{i-1})(t_i-t_{i+1})...(t_i-t_r)}$ are the Lagrange basis polynomials for r + 1 points then

•
$$H_j(x_j) = \sum_{i=0}^r A_j^{(i)} L_i(x_j^p) \in Mat_{(n-k)\times 1}(\mathbb{F}_q[x_j])$$
 pass through $H_j(\Phi_p^{-1}(t_i)) = A_j^{(i)}$ for $\forall 0 \le i \le r \le q-1$.

Lagrange interpolation step

- If $A^{(i)} = (A_1^{(i)} \dots A_n^{(i)})$ are check matrices of C_i and
- $L_i(x) = \frac{(x-t_0)...(x-t_{i-1})(x-t_{i+1})...(x-t_r)}{(t_i-t_0)...(t_i-t_{i-1})(t_i-t_{i+1})...(t_i-t_r)}$ are the Lagrange basis polynomials for r + 1 points then
- $H_j(x_j) = \sum_{i=0}^r A_j^{(i)} L_i(x_j^p) \in Mat_{(n-k)\times 1}(\mathbb{F}_q[x_j])$ pass through $H_j(\Phi_p^{-1}(t_i)) = A_j^{(i)}$ for $\forall 0 \le i \le r \le q-1$.

Lagrange interpolation step

- If $A^{(i)} = (A_1^{(i)} \dots A_n^{(i)})$ are check matrices of C_i and
- $L_i(x) = \frac{(x-t_0)...(x-t_{i-1})(x-t_{i+1})...(x-t_r)}{(t_i-t_0)...(t_i-t_{i-1})(t_i-t_{i+1})...(t_i-t_r)}$ are the Lagrange basis polynomials for r + 1 points then

•
$$H_j(x_j) = \sum_{i=0}^r A_j^{(i)} L_i(x_j^p) \in Mat_{(n-k)\times 1}(\mathbb{F}_q[x_j])$$
 pass through $H_j(\Phi_p^{-1}(t_i)) = A_j^{(i)}$ for $\forall 0 \le i \le r \le q-1$.

"Integration" step

Due to
$$\frac{\partial(x_j L_i(x_j^P))}{\partial x_j} = L_i(x_j^p)$$
, the polynomials
 $f_s(x_1, \dots, x_n) = \sum_{j=1}^n \sum_{i=0}^r A_{sj}^{(i)} x_j L_i(x_j^p), \quad 1 \le s \le n-k$

have Jacobian matrix $\frac{\partial(f_1,\ldots,f_{n-k})}{\partial(x_1,\ldots,x_n)} = (H_1(x_1)\ldots H_n(x_n)).$

→ < ∃ >

Preparation for arc-interpretation

• Consider the space $\mathbb{F}_q[x_1, \ldots, x_n]^{n-k} \ni (f_1, \ldots, f_{n-k})$ of the morphisms $(f_1, \ldots, f_{n-k}) : \mathbb{F}_q^n \to \mathbb{F}_q^{n-k}$ and the space $\mathbb{F}_q[x_1, \ldots, x_n]^{n-k} / \mathbb{F}_q^* \ni [f_1 : \ldots : f_{n-k}]$ of the rational maps $[f_1 : \ldots : f_{n-k}] : \mathbb{F}_q^n \longrightarrow \mathbb{P}^{n-k-1}(\mathbb{F}_q).$

• The derivations $\frac{\partial}{\partial x_j}$, $1 \leq j \leq n$ commute with the \mathbb{F}_q^* -action $\mathbb{F}_q^* \times \mathbb{F}_q[x_1, \dots, x_n]^{n-k} \longrightarrow \mathbb{F}_q[x_1, \dots, x_n]^{n-k}$, $(\lambda, (f_1, \dots, f_{n-k})) \mapsto (\lambda f_1, \dots, \lambda f_{n-k})$ and descend to $\frac{\partial}{\partial x_i} : \mathbb{F}_q[x_1, \dots, x_n]^{n-k} / \mathbb{F}_q^* \longrightarrow \mathbb{F}_q[x_1, \dots, x_n]^{n-k} / \mathbb{F}_q^*$.

· · · · · · · · ·

Preparation for arc-interpretation

• Consider the space $\mathbb{F}_q[x_1, \ldots, x_n]^{n-k} \ni (f_1, \ldots, f_{n-k})$ of the morphisms $(f_1, \ldots, f_{n-k}) : \mathbb{F}_q^n \to \mathbb{F}_q^{n-k}$ and the space $\mathbb{F}_q[x_1, \ldots, x_n]^{n-k} / \mathbb{F}_q^* \ni [f_1 : \ldots : f_{n-k}]$ of the rational maps $[f_1 : \ldots : f_{n-k}] : \mathbb{F}_q^n \longrightarrow \mathbb{P}^{n-k-1}(\mathbb{F}_q).$

• The derivations $\frac{\partial}{\partial x_j}$, $1 \leq j \leq n$ commute with the \mathbb{F}_q^* -action $\mathbb{F}_q^* \times \mathbb{F}_q[x_1, \dots, x_n]^{n-k} \longrightarrow \mathbb{F}_q[x_1, \dots, x_n]^{n-k}$, $(\lambda, (f_1, \dots, f_{n-k})) \mapsto (\lambda f_1, \dots, \lambda f_{n-k})$ and descend to $\frac{\partial}{\partial x_i} : \mathbb{F}_q[x_1, \dots, x_n]^{n-k} / \mathbb{F}_q^* \longrightarrow \mathbb{F}_q[x_1, \dots, x_n]^{n-k} / \mathbb{F}_q^*$.

Preparation for arc-interpretation

• Consider the space $\mathbb{F}_q[x_1, \ldots, x_n]^{n-k} \ni (f_1, \ldots, f_{n-k})$ of the morphisms $(f_1, \ldots, f_{n-k}) : \mathbb{F}_q^n \to \mathbb{F}_q^{n-k}$ and the space $\mathbb{F}_q[x_1, \ldots, x_n]^{n-k} / \mathbb{F}_q^* \ni [f_1 : \ldots : f_{n-k}]$ of the rational maps $[f_1 : \ldots : f_{n-k}] : \mathbb{F}_q^n \longrightarrow \mathbb{P}^{n-k-1}(\mathbb{F}_q).$

• The derivations $\frac{\partial}{\partial x_j}$, $1 \leq j \leq n$ commute with the \mathbb{F}_q^* -action $\mathbb{F}_q^* \times \mathbb{F}_q[x_1, \dots, x_n]^{n-k} \longrightarrow \mathbb{F}_q[x_1, \dots, x_n]^{n-k}$, $(\lambda, (f_1, \dots, f_{n-k})) \mapsto (\lambda f_1, \dots, \lambda f_{n-k})$ and descend to $\frac{\partial}{\partial x_i} : \mathbb{F}_q[x_1, \dots, x_n]^{n-k} / \mathbb{F}_q^* \longrightarrow \mathbb{F}_q[x_1, \dots, x_n]^{n-k} / \mathbb{F}_q^*$.

Preparation for arc-interpretation

• Consider the space $\mathbb{F}_q[x_1, \ldots, x_n]^{n-k} \ni (f_1, \ldots, f_{n-k})$ of the morphisms $(f_1, \ldots, f_{n-k}) : \mathbb{F}_q^n \to \mathbb{F}_q^{n-k}$ and the space $\mathbb{F}_q[x_1, \ldots, x_n]^{n-k} / \mathbb{F}_q^* \ni [f_1 : \ldots : f_{n-k}]$ of the rational maps $[f_1 : \ldots : f_{n-k}] : \mathbb{F}_q^n \longrightarrow \mathbb{P}^{n-k-1}(\mathbb{F}_q).$

• The derivations $\frac{\partial}{\partial x_j}$, $1 \leq j \leq n$ commute with the \mathbb{F}_q^* -action $\mathbb{F}_q^* \times \mathbb{F}_q[x_1, \dots, x_n]^{n-k} \longrightarrow \mathbb{F}_q[x_1, \dots, x_n]^{n-k}$, $(\lambda, (f_1, \dots, f_{n-k})) \mapsto (\lambda f_1, \dots, \lambda f_{n-k})$ and descend to $\frac{\partial}{\partial x_i} : \mathbb{F}_q[x_1, \dots, x_n]^{n-k} / \mathbb{F}_q^* \longrightarrow \mathbb{F}_q[x_1, \dots, x_n]^{n-k} / \mathbb{F}_q^*$.

The counterpart for arcs

- Suppose that the points of the arcs $\begin{aligned} \mathcal{A}_i &= \{P_1^{(i)}, \dots, P_n^{(i)}\} \subset \mathbb{P}^{n-k-1}(\mathbb{F}_q), \ 1 \leq i \leq q-1 \ \text{lift to} \\ \widetilde{P_i^{(i)}} \in \mathbb{F}_q^{n-k} \ \text{with} \ \widetilde{P_1^{(i)}} + \dots + \widetilde{P_n^{(i)}} \neq (0, \dots, 0). \end{aligned}$
- Then there is a rational map
 $$\begin{split} & [f_1:\ldots:f_{n-k}]:\mathbb{F}_q^n \xrightarrow{} \mathbb{P}^{n-k-1}(\mathbb{F}_q), \, \text{such that all} \\ & \frac{\partial}{\partial x_j}[f_1:\ldots:f_{n-k}]:\mathbb{F}_q^n \xrightarrow{} \mathbb{P}^{n-k-1}(\mathbb{F}_q) \, \text{pass through} \\ & \frac{\partial}{\partial x_i}[f_1:\ldots:f_{n-k}](\Phi_p^{-1}(t_i),\ldots,\Phi_p^{-1}(t_i)) = P_j^{(i)}. \end{split}$$

The counterpart for arcs

- Suppose that the points of the arcs $\begin{array}{l} \mathcal{A}_i = \{P_1^{(i)}, \dots, P_n^{(i)}\} \subset \mathbb{P}^{n-k-1}(\mathbb{F}_q), \ 1 \leq i \leq q-1 \ \text{lift to} \\ \\ \widetilde{P_j^{(i)}} \in \mathbb{F}_q^{n-k} \ \text{with} \ \widetilde{P_1^{(i)}} + \dots + \widetilde{P_n^{(i)}} \neq (0, \dots, 0). \end{array}$
- Then there is a rational map $\begin{bmatrix} f_1 : \ldots : f_{n-k} \end{bmatrix} : \mathbb{F}_q^n \xrightarrow{} \mathbb{P}^{n-k-1}(\mathbb{F}_q), \text{ such that all} \\
 \frac{\partial}{\partial x_j} [f_1 : \ldots : f_{n-k}] : \mathbb{F}_q^n \xrightarrow{} \mathbb{P}^{n-k-1}(\mathbb{F}_q) \text{ pass through} \\
 \frac{\partial}{\partial x_j} [f_1 : \ldots : f_{n-k}](\Phi_p^{-1}(t_i), \ldots, \Phi_p^{-1}(t_i)) = P_j^{(i)}.$

The rational normal curve

If
$$\mathbb{F}_q = \{t_0 = 0, t_1, \dots, t_{q-1}\}$$
 then the rational normal curve
 $\mathcal{A}_{\sigma} = \left\{ \left[1: t_i: \dots: t_i^{q-k}\right] \ \Big| \ 0 \leq i \leq q-1 \right\} \cup \{\infty = [0: \dots: 0: 1]\}$
is a $(q+1)$ -arc in $\mathbb{P}^{q-k}(\mathbb{F}_q)$.

A family with q! MDS-fibers

- If $S_d = x_1^d + \ldots + x_q^d$, $p = char(\mathbb{F}_q)$ and $a = (a', a_{q+1}) \in \mathbb{F}_q^{q+1}$ is a point with different $a_1, \ldots, a_q \in \mathbb{F}_q$ then the fiber J_a of $J = J(S_1, S_{p+1}, \ldots, S_{(q-k-1)p+1}, S_{(q-k)p+1} + x_{q+1})$ is associated with \mathcal{A} and, therefore, is an $[q+1, k, q-k+2]_q$ -code.
- If $a' = (a_1, \ldots, a_q) \in \mathbb{F}_q^q$ has $q + 1 k \le t \le q 1$ different coordinates then $J_{(a',a_n)}$ is an $[q + 1, k, 2]_q$ -code.
- When $a' \in \mathbb{F}_q^q$ has $1 \le t \le q k$ different components, $J_{(a',a_n)}$ is a $[q+1, q+1-t, 2]_q$ -code with q+1-t > k.

▲聞▶ ▲理▶ ▲理▶ -

A family with q! MDS-fibers

- If $S_d = x_1^d + \ldots + x_q^d$, $p = char(\mathbb{F}_q)$ and $a = (a', a_{q+1}) \in \mathbb{F}_q^{q+1}$ is a point with different $a_1, \ldots, a_q \in \mathbb{F}_q$ then the fiber J_a of $J = J(S_1, S_{p+1}, \ldots, S_{(q-k-1)p+1}, S_{(q-k)p+1} + x_{q+1})$ is associated with \mathcal{A} and, therefore, is an $[q+1, k, q-k+2]_q$ -code.
- If $a' = (a_1, \ldots, a_q) \in \mathbb{F}_q^q$ has $q + 1 k \le t \le q 1$ different coordinates then $J_{(a',a_n)}$ is an $[q + 1, k, 2]_q$ -code.
- When $a' \in \mathbb{F}_q^q$ has $1 \le t \le q k$ different components, $J_{(a',a_n)}$ is a $[q+1, q+1-t, 2]_q$ -code with q+1-t > k.

★御▶ ★理▶ ★理▶ -

A family with q! MDS-fibers

- If $S_d = x_1^d + \ldots + x_q^d$, $p = char(\mathbb{F}_q)$ and $a = (a', a_{q+1}) \in \mathbb{F}_q^{q+1}$ is a point with different $a_1, \ldots, a_q \in \mathbb{F}_q$ then the fiber J_a of $J = J(S_1, S_{p+1}, \ldots, S_{(q-k-1)p+1}, S_{(q-k)p+1} + x_{q+1})$ is associated with \mathcal{A} and, therefore, is an $[q+1, k, q-k+2]_q$ -code.
- If $a' = (a_1, \ldots, a_q) \in \mathbb{F}_q^q$ has $q + 1 k \le t \le q 1$ different coordinates then $J_{(a',a_n)}$ is an $[q + 1, k, 2]_q$ -code.
- When $a' \in \mathbb{F}_q^q$ has $1 \le t \le q k$ different components, $J_{(a',a_n)}$ is a $[q+1, q+1-t, 2]_q$ -code with q+1-t > k.

▲聞♪ ▲ 国♪ ▲ 国♪ …

2 The MDS deformations as \mathbb{F}_q -Zariski tangent bundles

Affine variety, defined over \mathbb{F}_q

• Let $\overline{\mathbb{F}_q} = \cup_{s=1}^{\infty} \mathbb{F}_{q^s}$ be the algebraic closure of \mathbb{F}_q .

- For any $g_1, \ldots, g_m \in \mathbb{F}_q[x_1, \ldots, x_n]$ the set $X = V(g_1, \ldots, g_m) = \{a \in \overline{\mathbb{F}}_q^n \mid g_i(a_1, \ldots, a_n) = 0, \forall 1 \le i \le m\}$ is an affine variety, defined over \mathbb{F}_q and
- $X(\mathbb{F}_q) := X \cap \mathbb{F}_q^n$ is the set of the \mathbb{F}_q -rational points of X.

Affine variety, defined over \mathbb{F}_q

- Let $\overline{\mathbb{F}_q} = \cup_{s=1}^{\infty} \mathbb{F}_{q^s}$ be the algebraic closure of \mathbb{F}_q .
- For any $g_1, \ldots, g_m \in \mathbb{F}_q[x_1, \ldots, x_n]$ the set $X = V(g_1, \ldots, g_m) = \{a \in \overline{\mathbb{F}}_q^n \mid g_i(a_1, \ldots, a_n) = 0, \forall 1 \le i \le m\}$ is an affine variety, defined over \mathbb{F}_q and

• $X(\mathbb{F}_q) := X \cap \mathbb{F}_q^n$ is the set of the \mathbb{F}_q -rational points of X.

Affine variety, defined over \mathbb{F}_q

- Let $\overline{\mathbb{F}_q} = \cup_{s=1}^{\infty} \mathbb{F}_{q^s}$ be the algebraic closure of \mathbb{F}_q .
- For any $g_1, \ldots, g_m \in \mathbb{F}_q[x_1, \ldots, x_n]$ the set $X = V(g_1, \ldots, g_m) = \{a \in \overline{\mathbb{F}}_q^n \mid g_i(a_1, \ldots, a_n) = 0, \forall 1 \le i \le m\}$ is an affine variety, defined over \mathbb{F}_q and
- $X(\mathbb{F}_q) := X \cap \mathbb{F}_q^n$ is the set of the \mathbb{F}_q -rational points of X.

Zariski topology

• The collection C of $V(g_1, \ldots, g_m) \subseteq \overline{\mathbb{F}_q}^n$ for all $g_1, \ldots, g_m \in \overline{\mathbb{F}_q}[x_1, \ldots, x_n]$ is a family of closed subsets since

• $\emptyset, \overline{\mathbb{F}_q}^n \in \mathcal{C},$

- if $\forall X_i \in \mathcal{C}$ then $X_1 \cup \ldots \cup X_m \in \mathcal{C}$ and
- if $\forall X_{\alpha} \in \mathcal{C}$ then $\cap_{\alpha \in A} X_{\alpha} \in \mathcal{C}$.
- The Zariski topology on $\overline{\mathbb{F}_q}^n$ has closed sets \mathcal{C} .

Zariski topology

• The collection C of $V(g_1, \ldots, g_m) \subseteq \overline{\mathbb{F}_q}^n$ for all $g_1, \ldots, g_m \in \overline{\mathbb{F}_q}[x_1, \ldots, x_n]$ is a family of closed subsets since

• $\emptyset, \overline{\mathbb{F}_q}^n \in \mathcal{C},$

- if $\forall X_i \in \mathcal{C}$ then $X_1 \cup \ldots \cup X_m \in \mathcal{C}$ and
- if $\forall X_{\alpha} \in \mathcal{C}$ then $\cap_{\alpha \in A} X_{\alpha} \in \mathcal{C}$.
- The Zariski topology on $\overline{\mathbb{F}_q}^n$ has closed sets \mathcal{C} .

Zariski topology

• The collection C of $V(g_1, \ldots, g_m) \subseteq \overline{\mathbb{F}_q}^n$ for all $g_1, \ldots, g_m \in \overline{\mathbb{F}_q}[x_1, \ldots, x_n]$ is a family of closed subsets since

• $\emptyset, \overline{\mathbb{F}_q}^n \in \mathcal{C},$

- if $\forall X_i \in \mathcal{C}$ then $X_1 \cup \ldots \cup X_m \in \mathcal{C}$ and
- if $\forall X_{\alpha} \in \mathcal{C}$ then $\cap_{\alpha \in A} X_{\alpha} \in \mathcal{C}$.
- The Zariski topology on $\overline{\mathbb{F}_q}^n$ has closed sets \mathcal{C} .

Zariski topology

• The collection C of $V(g_1, \ldots, g_m) \subseteq \overline{\mathbb{F}_q}^n$ for all $g_1, \ldots, g_m \in \overline{\mathbb{F}_q}[x_1, \ldots, x_n]$ is a family of closed subsets since

• $\emptyset, \overline{\mathbb{F}_q}^n \in \mathcal{C},$

- if $\forall X_i \in \mathcal{C}$ then $X_1 \cup \ldots \cup X_m \in \mathcal{C}$ and
- if $\forall X_{\alpha} \in \mathcal{C}$ then $\cap_{\alpha \in A} X_{\alpha} \in \mathcal{C}$.

• The Zariski topology on $\overline{\mathbb{F}_q}^n$ has closed sets \mathcal{C} .

Zariski topology

• The collection C of $V(g_1, \ldots, g_m) \subseteq \overline{\mathbb{F}_q}^n$ for all $g_1, \ldots, g_m \in \overline{\mathbb{F}_q}[x_1, \ldots, x_n]$ is a family of closed subsets since

•
$$\emptyset, \overline{\mathbb{F}_q}^n \in \mathcal{C},$$

- if $\forall X_i \in \mathcal{C}$ then $X_1 \cup \ldots \cup X_m \in \mathcal{C}$ and
- if $\forall X_{\alpha} \in \mathcal{C}$ then $\cap_{\alpha \in A} X_{\alpha} \in \mathcal{C}$.
- The Zariski topology on $\overline{\mathbb{F}_q}^n$ has closed sets \mathcal{C} .

Geometric characterization of the dimension

- A morphism $\varphi = (\varphi_1, \dots, \varphi_s) : X \to \overline{\mathbb{F}_q}^s$, given by polynomials $\varphi_1, \dots, \varphi_s \in \overline{\mathbb{F}_q}[x_1, \dots, x_n]$ is dominant if its image $\varphi(X)$ is Zariski dense in $\overline{\mathbb{F}_q}^s$.
- A morphism $\varphi = (\varphi_1, \ldots, \varphi_s) : X \to \overline{\mathbb{F}_q}^s$ is finite if there is a non-empty, Zariski open, Zariski dense subset $U \subseteq \overline{\mathbb{F}_q}^s$, such that the fibers of $\varphi : \varphi^{-1}(U) \to U$ are finite sets.
- The dimension of an affine variety $X \subset \overline{\mathbb{F}_q}^n$ is the natural number k, for which there exists a finite dominant morphism $\varphi : X \to \overline{\mathbb{F}_q}^k$.

Geometric characterization of the dimension

- A morphism $\varphi = (\varphi_1, \dots, \varphi_s) : X \to \overline{\mathbb{F}_q}^s$, given by polynomials $\varphi_1, \dots, \varphi_s \in \overline{\mathbb{F}_q}[x_1, \dots, x_n]$ is dominant if its image $\varphi(X)$ is Zariski dense in $\overline{\mathbb{F}_q}^s$.
- A morphism φ = (φ₁,...,φ_s) : X → F̄_q^s is finite if there is a non-empty, Zariski open, Zariski dense subset U ⊆ F̄_q^s, such that the fibers of φ : φ⁻¹(U) → U are finite sets.
- The dimension of an affine variety $X \subset \overline{\mathbb{F}_q}^n$ is the natural number k, for which there exists a finite dominant morphism $\varphi : X \to \overline{\mathbb{F}_q}^k$.

Geometric characterization of the dimension

- A morphism $\varphi = (\varphi_1, \dots, \varphi_s) : X \to \overline{\mathbb{F}_q}^s$, given by polynomials $\varphi_1, \dots, \varphi_s \in \overline{\mathbb{F}_q}[x_1, \dots, x_n]$ is dominant if its image $\varphi(X)$ is Zariski dense in $\overline{\mathbb{F}_q}^s$.
- A morphism $\varphi = (\varphi_1, \ldots, \varphi_s) : X \to \overline{\mathbb{F}_q}^s$ is finite if there is a non-empty, Zariski open, Zariski dense subset $U \subseteq \overline{\mathbb{F}_q}^s$, such that the fibers of $\varphi : \varphi^{-1}(U) \to U$ are finite sets.
- The dimension of an affine variety $X \subset \overline{\mathbb{F}_q}^n$ is the natural number k, for which there exists a finite dominant morphism $\varphi : X \to \overline{\mathbb{F}_q}^k$.

The Zariski and the \mathbb{F}_q -Zariski tangent bundles

- Let $I = \langle g_1, \dots, g_m \rangle \triangleleft \mathbb{F}_q[x_1, \dots, x_n], X = V(I) \subseteq \overline{\mathbb{F}_q}^n$, $I(X) = \{h \in \mathbb{F}_q[x_1, \dots, x_n] \mid h(a) = 0, \forall a \in X\} =$ $\langle h_1, \dots, h_s \rangle \triangleleft \mathbb{F}_q[x_1, \dots, x_n]$ be the ideal of X over \mathbb{F}_q , $\overline{I}(X) = \{h \in \overline{\mathbb{F}_q}[x_1, \dots, x_n] \mid h(a) = 0, \forall a \in X\} =$ $\langle h_1, \dots, h_s, \dots, h_r \rangle \triangleleft \overline{\mathbb{F}_q}[x_1, \dots, x_n]$ be the ideal of X over $\overline{\mathbb{F}_q}$.
- The \mathbb{F}_q -Zariski tangent bundle to X is $T^{\mathbb{F}_q}X:=J(h_1,\ldots,h_s)|_{X(\mathbb{F}_q)}.$
- The Zariski tangent bundle to X is $TX:=\overline{J}(h_1,\ldots,h_s,\ldots,h_r)|_X.$

The Zariski and the \mathbb{F}_q -Zariski tangent bundles

• Let
$$I = \langle g_1, \dots, g_m \rangle \triangleleft \mathbb{F}_q[x_1, \dots, x_n], X = V(I) \subseteq \overline{\mathbb{F}_q}^n$$
,
 $I(X) = \{h \in \mathbb{F}_q[x_1, \dots, x_n] \mid h(a) = 0, \forall a \in X\} =$
 $\langle h_1, \dots, h_s \rangle \triangleleft \mathbb{F}_q[x_1, \dots, x_n]$ be the ideal of X over \mathbb{F}_q ,
 $\overline{I}(X) = \{h \in \overline{\mathbb{F}_q}[x_1, \dots, x_n] \mid h(a) = 0, \forall a \in X\} =$
 $\langle h_1, \dots, h_s, \dots h_r \rangle \triangleleft \overline{\mathbb{F}_q}[x_1, \dots, x_n]$ be the ideal of X over $\overline{\mathbb{F}_q}$.

• The
$$\mathbb{F}_q$$
-Zariski tangent bundle to X is
 $T^{\mathbb{F}_q}X := J(h_1, \dots, h_s)|_{X(\mathbb{F}_q)}$.

• The Zariski tangent bundle to X is $TX:=\overline{J}(h_1,\ldots,h_s,\ldots,h_r)|_X.$

The Zariski and the \mathbb{F}_q -Zariski tangent bundles

• Let
$$I = \langle g_1, \dots, g_m \rangle \triangleleft \mathbb{F}_q[x_1, \dots, x_n], X = V(I) \subseteq \overline{\mathbb{F}_q}^n$$
,
 $I(X) = \{h \in \mathbb{F}_q[x_1, \dots, x_n] \mid h(a) = 0, \forall a \in X\} =$
 $\langle h_1, \dots, h_s \rangle \triangleleft \mathbb{F}_q[x_1, \dots, x_n]$ be the ideal of X over \mathbb{F}_q ,
 $\overline{I}(X) = \{h \in \overline{\mathbb{F}_q}[x_1, \dots, x_n] \mid h(a) = 0, \forall a \in X\} =$
 $\langle h_1, \dots, h_s, \dots h_r \rangle \triangleleft \overline{\mathbb{F}_q}[x_1, \dots, x_n]$ be the ideal of X over $\overline{\mathbb{F}_q}$.

• The
$$\mathbb{F}_q$$
-Zariski tangent bundle to X is

$$T^{\mathbb{F}_q}X := J(h_1, \dots, h_s)|_{X(\mathbb{F}_q)}.$$

• The Zariski tangent bundle to X is
$$TX := \overline{J}(h_1, \dots, h_s, \dots, h_r)|_X.$$

Relating Zariski and \mathbb{F}_q -Zariski tangent spaces

- $I = \langle g_1, \dots, g_m \rangle \subseteq I(X)$ and $I \otimes_{\mathbb{F}_q} \overline{\mathbb{F}_q} \subseteq I(X) \otimes_{\mathbb{F}_q} \overline{\mathbb{F}_q} \subseteq \overline{I}(X)$ imply $T_a^{\mathbb{F}_q} X \subseteq J(g_1, \dots, g_m)_a$ and $T_a X \subseteq T_a^{\mathbb{F}_q} X \otimes_{\mathbb{F}_q} \overline{\mathbb{F}_q} \subseteq J(g_1, \dots, g_m)_a \otimes_{\mathbb{F}_q} \overline{\mathbb{F}_q}$ for $\forall a \in X(\mathbb{F}_q)$
- Problem: Find a sufficient condition on g_1, \ldots, g_m , such that

$$\begin{split} T_a X &= T_a^{\mathbb{F}_q} X \otimes_{\mathbb{F}_q} \overline{\mathbb{F}_q} = J(g_1, \dots, g_m)_a \otimes_{\mathbb{F}_q} \overline{\mathbb{F}_q} \quad \text{and} \\ T_a^{\mathbb{F}_q} X &= J(g_1, \dots, g_m)_a \quad \text{for} \quad \forall a \in S \subseteq X^{\text{smooth}}(\mathbb{F}_q) \end{split}$$

Relating Zariski and \mathbb{F}_q -Zariski tangent spaces

•
$$I = \langle g_1, \dots, g_m \rangle \subseteq I(X) \text{ and } I \otimes_{\mathbb{F}_q} \overline{\mathbb{F}_q} \subseteq I(X) \otimes_{\mathbb{F}_q} \overline{\mathbb{F}_q} \subseteq \overline{I}(X)$$

imply
 $T_a^{\mathbb{F}_q} X \subseteq J(g_1, \dots, g_m)_a$ and
 $T_a X \subseteq T_a^{\mathbb{F}_q} X \otimes_{\mathbb{F}_q} \overline{\mathbb{F}_q} \subseteq J(g_1, \dots, g_m)_a \otimes_{\mathbb{F}_q} \overline{\mathbb{F}_q}$ for $\forall a \in X(\mathbb{F}_q)$.

 \bullet Problem: Find a sufficient condition on $g_1,\ldots,g_m,$ such that

$$\begin{split} T_{a}X &= T_{a}^{\mathbb{F}_{q}}X \otimes_{\mathbb{F}_{q}}\overline{\mathbb{F}_{q}} = J(g_{1},\ldots,g_{m})_{a} \otimes_{\mathbb{F}_{q}}\overline{\mathbb{F}_{q}} \quad \text{and} \\ T_{a}^{\mathbb{F}_{q}}X &= J(g_{1},\ldots,g_{m})_{a} \quad \text{for} \quad \forall a \in S \subseteq X^{\text{smooth}}(\mathbb{F}_{q}) \end{split}$$

A (1) > A (1) > A (1)

Relating Zariski and \mathbb{F}_q -Zariski tangent spaces

•
$$I = \langle g_1, \dots, g_m \rangle \subseteq I(X) \text{ and } I \otimes_{\mathbb{F}_q} \overline{\mathbb{F}_q} \subseteq I(X) \otimes_{\mathbb{F}_q} \overline{\mathbb{F}_q} \subseteq \overline{I}(X)$$

imply
 $T_a^{\mathbb{F}_q} X \subseteq J(g_1, \dots, g_m)_a \text{ and}$
 $T_a X \subseteq T_a^{\mathbb{F}_q} X \otimes_{\mathbb{F}_q} \overline{\mathbb{F}_q} \subseteq J(g_1, \dots, g_m)_a \otimes_{\mathbb{F}_q} \overline{\mathbb{F}_q} \text{ for } \forall a \in X(\mathbb{F}_q).$

• Problem: Find a sufficient condition on g_1, \ldots, g_m , such that

$$\begin{split} T_{a}X &= T_{a}^{\mathbb{F}_{q}}X \otimes_{\mathbb{F}_{q}}\overline{\mathbb{F}_{q}} = J(g_{1},\ldots,g_{m})_{a} \otimes_{\mathbb{F}_{q}}\overline{\mathbb{F}_{q}} \quad \text{and} \\ T_{a}^{\mathbb{F}_{q}}X &= J(g_{1},\ldots,g_{m})_{a} \quad \text{for} \quad \forall a \in S \subseteq X^{\text{smooth}}(\mathbb{F}_{q}). \end{split}$$

▲ □ ▶ ▲ □ ▶ ▲

Smooth and singular points

$\bullet \ If \ \dim_{\overline{\mathbb{F}_q}} T_a X = \dim X$ then $a \in X$ is a smooth point.

• The smooth locus X^{smooth} of X is non-empty, Zariski open, Zariski dense subset of X.

• The singular locus $X^{sing} := X \setminus X^{smooth}$ is a proper affine subvariety or, equivalently, a proper closed subset of X.

Smooth and singular points

- $\bullet \ If \ \dim_{\overline{\mathbb{F}_q}} T_a X = \dim X$ then $a \in X$ is a smooth point.
- The smooth locus X^{smooth} of X is non-empty, Zariski open, Zariski dense subset of X.
- The singular locus $X^{sing} := X \setminus X^{smooth}$ is a proper affine subvariety or, equivalently, a proper closed subset of X.

Smooth and singular points

- $\bullet \ If \ \dim_{\overline{\mathbb{F}_q}} T_a X = \dim X$ then $a \in X$ is a smooth point.
- The smooth locus X^{smooth} of X is non-empty, Zariski open, Zariski dense subset of X.
- The singular locus $X^{sing} := X \setminus X^{smooth}$ is a proper affine subvariety or, equivalently, a proper closed subset of X.

Realization of $J(f_1, \ldots, f_{n-k})$ as $T^{\mathbb{F}_q}X$

- Let $J(f_1, \ldots, f_{n-k}) \to \mathbb{F}_q^n$ be a Jacobian family with $\dim_{\mathbb{F}_q} J(f_1, \ldots, f_{n-k})_a = k$ for $\forall a \in S_o \subseteq \mathbb{F}_q^n$, $D = \max(\deg(f_1), \ldots, \deg(f_{n-k})), p = \operatorname{char}(\mathbb{F}_q)$.
- Then the polynomials $g_s(x_1, \ldots, x_n) = f_s(x_1, \ldots, x_n) + x_s^{pD}$, $1 \le s \le n - k$ provide an affine variety $X = V(g_1, \ldots, g_{n-k}) \subset \overline{\mathbb{F}_q}^n$ of dim X = k, such that
- $J(f_1, \ldots, f_{n-k})_a = J(g_1, \ldots, g_{n-k})_a = T_a^{\mathbb{F}_q} X$ for $\forall a \in S_o \cap X$,

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ □

Realization of $J(f_1, \ldots, f_{n-k})$ as $T^{\mathbb{F}_q}X$

- Let $J(f_1, \ldots, f_{n-k}) \to \mathbb{F}_q^n$ be a Jacobian family with $\dim_{\mathbb{F}_q} J(f_1, \ldots, f_{n-k})_a = k$ for $\forall a \in S_o \subseteq \mathbb{F}_q^n$, $D = \max(\deg(f_1), \ldots, \deg(f_{n-k})), p = \operatorname{char}(\mathbb{F}_q)$.
- Then the polynomials $g_s(x_1, \ldots, x_n) = f_s(x_1, \ldots, x_n) + x_s^{pD}$, $1 \le s \le n - k$ provide an affine variety $X = V(g_1, \ldots, g_{n-k}) \subset \overline{\mathbb{F}_q}^n$ of dim X = k, such that
- $J(f_1, \ldots, f_{n-k})_a = J(g_1, \ldots, g_{n-k})_a = T_a^{\mathbb{F}_q} X$ for $\forall a \in S_o \cap X$,

伺い イヨト イヨト

Realization of $J(f_1, \ldots, f_{n-k})$ as $T^{\mathbb{F}_q}X$

- Let $J(f_1, \ldots, f_{n-k}) \to \mathbb{F}_q^n$ be a Jacobian family with $\dim_{\mathbb{F}_q} J(f_1, \ldots, f_{n-k})_a = k$ for $\forall a \in S_o \subseteq \mathbb{F}_q^n$, $D = \max(\deg(f_1), \ldots, \deg(f_{n-k})), p = \operatorname{char}(\mathbb{F}_q)$.
- Then the polynomials $g_s(x_1, \ldots, x_n) = f_s(x_1, \ldots, x_n) + x_s^{pD}$, $1 \le s \le n - k$ provide an affine variety $X = V(g_1, \ldots, g_{n-k}) \subset \overline{\mathbb{F}_q}^n$ of dim X = k, such that

•
$$J(f_1, \ldots, f_{n-k})_a = J(g_1, \ldots, g_{n-k})_a = T_a^{\mathbb{F}_q} X$$
 for $\forall a \in S_o \cap X$,

Realization of $J(f_1, \ldots, f_{n-k})$ as $T^{\mathbb{F}_q}X$

- Let $J(f_1, \ldots, f_{n-k}) \to \mathbb{F}_q^n$ be a Jacobian family with $\dim_{\mathbb{F}_q} J(f_1, \ldots, f_{n-k})_a = k$ for $\forall a \in S_o \subseteq \mathbb{F}_q^n$, $D = \max(\deg(f_1), \ldots, \deg(f_{n-k})), p = \operatorname{char}(\mathbb{F}_q)$.
- Then the polynomials $g_s(x_1, \ldots, x_n) = f_s(x_1, \ldots, x_n) + x_s^{pD}$, $1 \le s \le n - k$ provide an affine variety $X = V(g_1, \ldots, g_{n-k}) \subset \overline{\mathbb{F}_q}^n$ of dim X = k, such that

•
$$J(f_1, \ldots, f_{n-k})_a = J(g_1, \ldots, g_{n-k})_a = T_a^{\mathbb{F}_q} X$$
 for $\forall a \in S_o \cap X$,

MDS-realization of $J(f_1, \ldots, f_{n-k})$ as $T^{\mathbb{F}_q}X$

- If $J(f_1, \ldots, f_{n-k})_{a^{(\lambda)}}$ are $[n, k, n-k+1]_q$ -codes for $1 \le \lambda \le q$,
- $\{a^{(1)}, \ldots, a^{(q)}\} \nsubseteq V(f_s) \text{ for } \forall 1 \le s \le n-k \text{ and }$
- there exist $1 \leq j_1 < \ldots < j_{n-k} \leq n$ with different $a_{j_r}^{(1)}, \ldots, a_{j_r}^{(q)} \in \mathbb{F}_q^*$ for all $1 \leq r \leq n-k$,
- then one can find polynomials $g_s(x_1, \dots, x_n) = f_s(x_1, \dots, x_n) + \sum_{\delta=D}^{D+q-1} c_{s,\delta} x_{j_s}^{p\delta} \in \mathbb{F}_q[x_1, \dots, x_n], 1 \le s \le n-k$
- such that $X = V(g_1, \ldots, g_{n-k}) \subset \overline{\mathbb{F}_q}^n$ is an affine variety of $\dim X = k$, defined over \mathbb{F}_q with $a^{(1)}, \ldots, a^{(q)} \in S_o \cap X$,
- $J(f_1, \ldots, f_{n-k})_a = J(g_1, \ldots, g_{n-k})_a = T_a^{\mathbb{F}_q} X$ for $\forall a \in S_o \cap X$.

伺い イヨト イヨト

MDS-realization of $J(f_1, \ldots, f_{n-k})$ as $T^{\mathbb{F}_q}X$

- If $J(f_1, \ldots, f_{n-k})_{a(\lambda)}$ are $[n, k, n-k+1]_q$ -codes for $1 \le \lambda \le q$,
- $\{a^{(1)}, \ldots, a^{(q)}\} \nsubseteq V(f_s)$ for $\forall 1 \le s \le n-k$ and
- there exist $1 \leq j_1 < \ldots < j_{n-k} \leq n$ with different $a_{j_r}^{(1)}, \ldots, a_{j_r}^{(q)} \in \mathbb{F}_q^*$ for all $1 \leq r \leq n-k$,
- then one can find polynomials $g_s(x_1, \dots, x_n) = f_s(x_1, \dots, x_n) + \sum_{\delta=D}^{D+q-1} c_{s,\delta} x_{j_s}^{p\delta} \in \mathbb{F}_q[x_1, \dots, x_n], 1 \le s \le n-1$
- such that $X = V(g_1, \ldots, g_{n-k}) \subset \overline{\mathbb{F}_q}^n$ is an affine variety of $\dim X = k$, defined over \mathbb{F}_q with $a^{(1)}, \ldots, a^{(q)} \in S_o \cap X$,
- $J(f_1, \ldots, f_{n-k})_a = J(g_1, \ldots, g_{n-k})_a = T_a^{\mathbb{F}_q} X$ for $\forall a \in S_o \cap X$.

・ 同 ト ・ ヨ ト ・ ヨ ト …

MDS-realization of $J(f_1, \ldots, f_{n-k})$ as $T^{\mathbb{F}_q}X$

- If $J(f_1, \ldots, f_{n-k})_{a^{(\lambda)}}$ are $[n, k, n-k+1]_q$ -codes for $1 \le \lambda \le q$,
- $\{a^{(1)}, \ldots, a^{(q)}\} \nsubseteq V(f_s)$ for $\forall 1 \le s \le n-k$ and
- there exist $1 \leq j_1 < \ldots < j_{n-k} \leq n$ with different $a_{j_r}^{(1)}, \ldots, a_{j_r}^{(q)} \in \mathbb{F}_q^*$ for all $1 \leq r \leq n-k$,
- then one can find polynomials $g_s(x_1, \ldots, x_n) = f_s(x_1, \ldots, x_n) + \sum_{\delta=D}^{D+q-1} c_{s,\delta} x_{j_s}^{p\delta} \in \mathbb{F}_q[x_1, \ldots, x_n], 1 \le s \le n-k,$
- such that $X = V(g_1, \ldots, g_{n-k}) \subset \overline{\mathbb{F}_q}^{-n}$ is an affine variety of $\dim X = k$, defined over \mathbb{F}_q with $a^{(1)}, \ldots, a^{(q)} \in S_o \cap X$,
- $J(f_1, \ldots, f_{n-k})_a = J(g_1, \ldots, g_{n-k})_a = T_a^{\mathbb{F}_q} X$ for $\forall a \in S_o \cap X$.

伺下 イヨト イヨト

MDS-realization of $J(f_1, \ldots, f_{n-k})$ as $T^{\mathbb{F}_q}X$

- If $J(f_1, \ldots, f_{n-k})_{a^{(\lambda)}}$ are $[n, k, n-k+1]_q$ -codes for $1 \le \lambda \le q$,
- $\{a^{(1)},\ldots,a^{(q)}\} \nsubseteq V(f_s)$ for $\forall 1 \le s \le n-k$ and
- there exist $1 \leq j_1 < \ldots < j_{n-k} \leq n$ with different $a_{j_r}^{(1)}, \ldots, a_{j_r}^{(q)} \in \mathbb{F}_q^*$ for all $1 \leq r \leq n-k$,
- then one can find polynomials $g_s(x_1, \ldots, x_n) = f_s(x_1, \ldots, x_n) + \sum_{\delta=D}^{D+q-1} c_{s,\delta} x_{j_s}^{p\delta} \in \mathbb{F}_q[x_1, \ldots, x_n], \ 1 \le s \le n-k,$
- such that $X = V(g_1, \ldots, g_{n-k}) \subset \overline{\mathbb{F}_q}^n$ is an affine variety of $\dim X = k$, defined over \mathbb{F}_q with $a^{(1)}, \ldots, a^{(q)} \in S_o \cap X$,
- $J(f_1, \ldots, f_{n-k})_a = J(g_1, \ldots, g_{n-k})_a = T_a^{\mathbb{F}_q} X$ for $\forall a \in S_o \cap X$.

▲□ ▶ ▲ □ ▶ ▲ □ ▶ …

MDS-realization of $J(f_1, \ldots, f_{n-k})$ as $T^{\mathbb{F}_q}X$

- If $J(f_1, \ldots, f_{n-k})_{a^{(\lambda)}}$ are $[n, k, n-k+1]_q$ -codes for $1 \le \lambda \le q$,
- $\{a^{(1)}, \dots, a^{(q)}\} \nsubseteq V(f_s)$ for $\forall 1 \le s \le n-k$ and
- there exist $1 \leq j_1 < \ldots < j_{n-k} \leq n$ with different $a_{j_r}^{(1)}, \ldots, a_{j_r}^{(q)} \in \mathbb{F}_q^*$ for all $1 \leq r \leq n-k$,
- then one can find polynomials $g_s(x_1, \ldots, x_n) = f_s(x_1, \ldots, x_n) + \sum_{\delta=D}^{D+q-1} c_{s,\delta} x_{j_s}^{p\delta} \in \mathbb{F}_q[x_1, \ldots, x_n], \ 1 \le s \le n-k,$
- such that $X = V(g_1, \ldots, g_{n-k}) \subset \overline{\mathbb{F}_q}^n$ is an affine variety of $\dim X = k$, defined over \mathbb{F}_q with $a^{(1)}, \ldots, a^{(q)} \in S_o \cap X$,

• $J(f_1, \ldots, f_{n-k})_a = J(g_1, \ldots, g_{n-k})_a = T_a^{\mathbb{F}_q} X$ for $\forall a \in S_o \cap X$.

米部ト 米国ト 米国ト 三国

MDS-realization of $J(f_1, \ldots, f_{n-k})$ as $T^{\mathbb{F}_q}X$

- If $J(f_1, \ldots, f_{n-k})_{a^{(\lambda)}}$ are $[n, k, n-k+1]_q$ -codes for $1 \le \lambda \le q$,
- $\{a^{(1)},\ldots,a^{(q)}\} \nsubseteq V(f_s)$ for $\forall 1 \le s \le n-k$ and
- there exist $1 \leq j_1 < \ldots < j_{n-k} \leq n$ with different $a_{j_r}^{(1)}, \ldots, a_{j_r}^{(q)} \in \mathbb{F}_q^*$ for all $1 \leq r \leq n-k$,
- then one can find polynomials $g_s(x_1, \ldots, x_n) = f_s(x_1, \ldots, x_n) + \sum_{\delta=D}^{D+q-1} c_{s,\delta} x_{j_s}^{p\delta} \in \mathbb{F}_q[x_1, \ldots, x_n], \ 1 \le s \le n-k,$
- such that $X = V(g_1, \ldots, g_{n-k}) \subset \overline{\mathbb{F}_q}^n$ is an affine variety of $\dim X = k$, defined over \mathbb{F}_q with $a^{(1)}, \ldots, a^{(q)} \in S_o \cap X$,

•
$$J(f_1, \ldots, f_{n-k})_a = J(g_1, \ldots, g_{n-k})_a = T_a^{\mathbb{F}_q} X$$
 for $\forall a \in S_o \cap X$.

Global geometric characterization of the maximum distance separability of an \mathbb{F}_q -Zariski tangent space

- Let $X = V(g_1, \ldots, g_{n-k}) \subset \overline{\mathbb{F}_q}^n$, $g_s \in \mathbb{F}_q[x_1, \ldots, x_n]$ be an affine variety of dim X = k. For $\forall i = (i_1, \ldots, i_k)$ consider the projection $\Pi_i : X \to \overline{\mathbb{F}_q}^k$, $\Pi_i(x_1, \ldots, x_n) = (x_{i_1}, \ldots, x_{i_k})$.
- If $T_a^{\mathbb{F}_q}X = J(g_1, \dots, g_{n-k})_a$, $a \in X^{smooth}(\mathbb{F}_q)$ is an $[n, k, n-k+1]_q$ -code then the projections Π_i are dominant for all $i = (i_1, \dots, i_k)$, $1 \leq i_1 < \ldots < i_k \leq n$.
- If Π_i are dominant for all $i = (i_1, \ldots, i_k)$ then there exists $N \in \mathbb{N}$, depending on X and on the embedding of X in $\overline{\mathbb{F}_q}^n$, such that for any $m \in \mathbb{N}$ with $q^m > N$ the spaces $T_a^{\mathbb{F}_q^m} X = J(g_1, \ldots, g_{n-k})_a$, $a \in X^{smooth}(\mathbb{F}_{q^m})$ are $[n, k, n-k+1]_{q^m}$ -codes.

・ 同 ト ・ ヨ ト ・ ヨ ト

Global geometric characterization of the maximum distance separability of an \mathbb{F}_q -Zariski tangent space

- Let $X = V(g_1, \ldots, g_{n-k}) \subset \overline{\mathbb{F}_q}^n$, $g_s \in \mathbb{F}_q[x_1, \ldots, x_n]$ be an affine variety of dim X = k. For $\forall i = (i_1, \ldots, i_k)$ consider the projection $\Pi_i : X \to \overline{\mathbb{F}_q}^k$, $\Pi_i(x_1, \ldots, x_n) = (x_{i_1}, \ldots, x_{i_k})$.
- If $T_a^{\mathbb{F}_q}X = J(g_1, \dots, g_{n-k})_a$, $a \in X^{smooth}(\mathbb{F}_q)$ is an $[n, k, n-k+1]_q$ -code then the projections Π_i are dominant for all $i = (i_1, \dots, i_k)$, $1 \leq i_1 < \dots < i_k \leq n$.
- If Π_i are dominant for all $i = (i_1, \ldots, i_k)$ then there exists $N \in \mathbb{N}$, depending on X and on the embedding of X in $\overline{\mathbb{F}_q}^n$, such that for any $m \in \mathbb{N}$ with $q^m > N$ the spaces $T_a^{\mathbb{F}_q^m} X = J(g_1, \ldots, g_{n-k})_a$, $a \in X^{smooth}(\mathbb{F}_{q^m})$ are $[n, k, n-k+1]_{q^m}$ -codes.

Global geometric characterization of the maximum distance separability of an \mathbb{F}_q -Zariski tangent space

- Let $X = V(g_1, \ldots, g_{n-k}) \subset \overline{\mathbb{F}_q}^n$, $g_s \in \mathbb{F}_q[x_1, \ldots, x_n]$ be an affine variety of dim X = k. For $\forall i = (i_1, \ldots, i_k)$ consider the projection $\Pi_i : X \to \overline{\mathbb{F}_q}^k$, $\Pi_i(x_1, \ldots, x_n) = (x_{i_1}, \ldots, x_{i_k})$.
- If $T_a^{\mathbb{F}_q}X = J(g_1, \dots, g_{n-k})_a$, $a \in X^{smooth}(\mathbb{F}_q)$ is an $[n, k, n-k+1]_q$ -code then the projections Π_i are dominant for all $i = (i_1, \dots, i_k)$, $1 \leq i_1 < \ldots < i_k \leq n$.
- If Π_i are dominant for all $i = (i_1, \ldots, i_k)$ then there exists $N \in \mathbb{N}$, depending on X and on the embedding of X in $\overline{\mathbb{F}_q}^n$, such that for any $m \in \mathbb{N}$ with $q^m > N$ the spaces $T_a^{\mathbb{F}_q^m} X = J(g_1, \ldots, g_{n-k})_a, a \in X^{smooth}(\mathbb{F}_{q^m})$ are $[n, k, n k + 1]_{q^m}$ -codes.

Global geometric characterization of the maximum distance separability of an \mathbb{F}_q -Zariski tangent space

- Let $X = V(g_1, \ldots, g_{n-k}) \subset \overline{\mathbb{F}_q}^n$, $g_s \in \mathbb{F}_q[x_1, \ldots, x_n]$ be an affine variety of dim X = k. For $\forall i = (i_1, \ldots, i_k)$ consider the projection $\Pi_i : X \to \overline{\mathbb{F}_q}^k$, $\Pi_i(x_1, \ldots, x_n) = (x_{i_1}, \ldots, x_{i_k})$.
- If $T_a^{\mathbb{F}_q}X = J(g_1, \dots, g_{n-k})_a$, $a \in X^{smooth}(\mathbb{F}_q)$ is an $[n, k, n-k+1]_q$ -code then the projections Π_i are dominant for all $i = (i_1, \dots, i_k)$, $1 \leq i_1 < \ldots < i_k \leq n$.
- If Π_i are dominant for all $i = (i_1, \ldots, i_k)$ then there exists $N \in \mathbb{N}$, depending on X and on the embedding of X in $\overline{\mathbb{F}_q}^n$, such that for any $m \in \mathbb{N}$ with $q^m > N$ the spaces $T_a^{\mathbb{F}_q^m} X = J(g_1, \ldots, g_{n-k})_a$, $a \in X^{smooth}(\mathbb{F}_{q^m})$ are $[n, k, n-k+1]_{q^m}$ -codes.

★課 ▶ ★ 注 ▶ ★ 注 ▶ →

The ideal of the leading terms

- Let us endow the monomials of x_1, \ldots, x_n by the lexicographic order $x_1^{\lambda_1} \ldots x_n^{\lambda_n} \succ x_1^{\mu_1} \ldots x_n^{\mu_n}$ if and only if there is $1 \le j \le n$ with $\lambda_1 = \mu_1, \ldots, \lambda_{j-1} = \mu_{j-1}, \lambda_j > \mu_j$.
- If $I \triangleleft \mathbb{F}_q[x_1, \dots, x_n]$ then $LT(I) = \langle LT(f) | f \in I \rangle \triangleleft \mathbb{F}_q[x_1, \dots, x_n]$ is called the ideal of the leading terms of I.

The ideal of the leading terms

- Let us endow the monomials of x_1, \ldots, x_n by the lexicographic order $x_1^{\lambda_1} \ldots x_n^{\lambda_n} \succ x_1^{\mu_1} \ldots x_n^{\mu_n}$ if and only if there is $1 \le j \le n$ with $\lambda_1 = \mu_1, \ldots, \lambda_{j-1} = \mu_{j-1}, \lambda_j > \mu_j$.
- If $I \triangleleft \mathbb{F}_q[x_1, \dots, x_n]$ then $LT(I) = \langle LT(f) | f \in I \rangle \triangleleft \mathbb{F}_q[x_1, \dots, x_n]$ is called the ideal of the leading terms of I.

Groebner basis

- If $LT(I) = \langle LT(\gamma_1), \dots, LT(\gamma_s) \rangle \triangleleft \mathbb{F}_q[x_1, \dots, x_n]$ for some polynomials $\gamma_1, \dots, \gamma_s \in I$ then $I = \langle \gamma_1, \dots, \gamma_s \rangle$ and $G = \{\gamma_1, \dots, \gamma_s\}$ is a Groebner basis of I with respect to the considered monomial order.
- $\Pi_{(n-k+1,\ldots,n)} : V(I) \to \overline{\mathbb{F}_q}^k$, $\Pi(x_1,\ldots,x_n) = (x_{n-k+1},\ldots,x_n)$ is dominant if and only if $G \cap \mathbb{F}_q[x_{n-k+1},\ldots,x_n] = \emptyset$ for any Groebner basis G of I with respect to the lexicographic order.

Groebner basis

- If $LT(I) = \langle LT(\gamma_1), \dots, LT(\gamma_s) \rangle \triangleleft \mathbb{F}_q[x_1, \dots, x_n]$ for some polynomials $\gamma_1, \dots, \gamma_s \in I$ then $I = \langle \gamma_1, \dots, \gamma_s \rangle$ and $G = \{\gamma_1, \dots, \gamma_s\}$ is a Groebner basis of I with respect to the considered monomial order.
- $\Pi_{(n-k+1,\dots,n)} : V(I) \to \overline{\mathbb{F}_q}^k$, $\Pi(x_1,\dots,x_n) = (x_{n-k+1},\dots,x_n)$ is dominant if and only if $G \cap \mathbb{F}_q[x_{n-k+1},\dots,x_n] = \emptyset$ for any Groebner basis G of I with respect to the lexicographic order.

The designed minimum distance of a tangent space

• Let $X = V(g_1, \ldots, g_{n-k}) \subset \overline{\mathbb{F}_q}^n$, $g_s \in \mathbb{F}_q[x_1, \ldots, x_n]$ be an affine variety of dim X = k. For $\forall \mu = (\mu_1, \ldots, \mu_{n-d})$ consider $\Pi_{\mu} : X \to \overline{\mathbb{F}_q}^{n-d}$, $\Pi_{\mu}(x_1, \ldots, x_n) = (x_{\mu_1}, \ldots, x_{\mu_{n-d}})$.

• If
$$T_a^{\mathbb{F}_q}X = J(g_1, \dots, g_{n-k})_a$$
, $a \in X^{smooth}(\mathbb{F}_q)$ is an $[n, k, d_o]_q$ -code with $d_o > d$ then dim $\Pi_{\mu}(X) = k$ for $\forall \mu$.

• If dim $\Pi_{\mu}(X) = k$ for $\forall \mu$ then there exists $N \in \mathbb{N}$, such that for any $m \in \mathbb{N}$ with $q^m > N$ the spaces $T_a^{\mathbb{F}q^m} X = J(g_1, \dots, g_{n-k})_a$, $a \in X^{smooth}(\mathbb{F}q^m)$ are $[n, k, d_o]_{q^m}$ -codes with $d_o > d$.

The designed minimum distance of a tangent space

• Let $X = V(g_1, \ldots, g_{n-k}) \subset \overline{\mathbb{F}_q}^n$, $g_s \in \mathbb{F}_q[x_1, \ldots, x_n]$ be an affine variety of dim X = k. For $\forall \mu = (\mu_1, \ldots, \mu_{n-d})$ consider $\Pi_{\mu} : X \to \overline{\mathbb{F}_q}^{n-d}$, $\Pi_{\mu}(x_1, \ldots, x_n) = (x_{\mu_1}, \ldots, x_{\mu_{n-d}})$.

• If
$$T_a^{\mathbb{F}_q}X = J(g_1, \dots, g_{n-k})_a$$
, $a \in X^{smooth}(\mathbb{F}_q)$ is an $[n, k, d_o]_q$ -code with $d_o > d$ then dim $\Pi_{\mu}(X) = k$ for $\forall \mu$.

• If dim $\Pi_{\mu}(X) = k$ for $\forall \mu$ then there exists $N \in \mathbb{N}$, such that for any $m \in \mathbb{N}$ with $q^m > N$ the spaces $T_a^{\mathbb{F}_{q^m}} X = J(g_1, \dots, g_{n-k})_a, a \in X^{smooth}(\mathbb{F}_{q^m})$ are $[n, k, d_o]_{q^m}$ -codes with $d_o > d$.

The designed minimum distance of a tangent space

• Let $X = V(g_1, \ldots, g_{n-k}) \subset \overline{\mathbb{F}_q}^n$, $g_s \in \mathbb{F}_q[x_1, \ldots, x_n]$ be an affine variety of dim X = k. For $\forall \mu = (\mu_1, \ldots, \mu_{n-d})$ consider $\Pi_{\mu} : X \to \overline{\mathbb{F}_q}^{n-d}$, $\Pi_{\mu}(x_1, \ldots, x_n) = (x_{\mu_1}, \ldots, x_{\mu_{n-d}})$.

• If
$$T_a^{\mathbb{F}_q}X = J(g_1, \ldots, g_{n-k})_a$$
, $a \in X^{smooth}(\mathbb{F}_q)$ is an $[n, k, d_o]_q$ -code with $d_o > d$ then $\dim \Pi_{\mu}(X) = k$ for $\forall \mu$.

• If dim $\Pi_{\mu}(X) = k$ for $\forall \mu$ then there exists $N \in \mathbb{N}$, such that for any $m \in \mathbb{N}$ with $q^m > N$ the spaces $T_a^{\mathbb{F}q^m} X = J(g_1, \dots, g_{n-k})_a, a \in X^{smooth}(\mathbb{F}q^m)$ are $[n, k, d_o]_{q^m}$ -codes with $d_o > d$.

The designed minimum distance of a tangent space

• Let $X = V(g_1, \ldots, g_{n-k}) \subset \overline{\mathbb{F}_q}^n$, $g_s \in \mathbb{F}_q[x_1, \ldots, x_n]$ be an affine variety of dim X = k. For $\forall \mu = (\mu_1, \ldots, \mu_{n-d})$ consider $\Pi_{\mu} : X \to \overline{\mathbb{F}_q}^{n-d}$, $\Pi_{\mu}(x_1, \ldots, x_n) = (x_{\mu_1}, \ldots, x_{\mu_{n-d}})$.

• If
$$T_a^{\mathbb{F}_q}X = J(g_1, \dots, g_{n-k})_a$$
, $a \in X^{smooth}(\mathbb{F}_q)$ is an $[n, k, d_o]_q$ -code with $d_o > d$ then dim $\Pi_{\mu}(X) = k$ for $\forall \mu$.

• If dim $\Pi_{\mu}(X) = k$ for $\forall \mu$ then there exists $N \in \mathbb{N}$, such that for any $m \in \mathbb{N}$ with $q^m > N$ the spaces $T_a^{\mathbb{F}_{q^m}} X = J(g_1, \dots, g_{n-k})_a$, $a \in X^{smooth}(\mathbb{F}_{q^m})$ are $[n, k, d_o]_{q^m}$ -codes with $d_o > d$.

Thank you very much for your attention!