MDS deformations of linear codes

Azniv Kasparian, Evgeniya Velikova

(1) Existence of MDS deformations
(2) The MDS deformations as \mathbb{F}_{q}-Zariski tangent bundles

Convention

- Throughout, an $[\mathrm{n}, \mathrm{k}, \mathrm{d}]_{\mathrm{q}^{-}}$-code is an $\mathbb{F}_{\mathrm{q}^{-}}$-linear subspace $\mathrm{C} \subset \mathbb{F}_{\mathrm{q}}^{\mathrm{n}}$ of $\operatorname{dim}_{\mathbb{F}_{\mathrm{q}}} \mathrm{C}=\mathrm{k}$, such that any $\mathrm{c} \in \mathrm{C} \backslash\{(0, \ldots 0)\}$ has at least d nonzero components.
- Singleton bound $\mathrm{k}+\mathrm{d} \leq \mathrm{n}+1$ is attained by the $[\mathrm{n}, \mathrm{k}, \mathrm{n}-\mathrm{k}+1]_{\mathrm{q}}$-codes, which are called MDS (Maximum Distance Separable).

Convention

- Throughout, an $[\mathrm{n}, \mathrm{k}, \mathrm{d}]_{\mathrm{q}^{-}}$-code is an \mathbb{F}_{q}-linear subspace $\mathrm{C} \subset \mathbb{F}_{\mathrm{q}}^{\mathrm{n}}$ of $\operatorname{dim}_{\mathbb{F}_{\mathrm{q}}} \mathrm{C}=\mathrm{k}$, such that any $\mathrm{c} \in \mathrm{C} \backslash\{(0, \ldots 0)\}$ has at least d nonzero components.
- Singleton bound $\mathrm{k}+\mathrm{d} \leq \mathrm{n}+1$ is attained by the $[\mathrm{n}, \mathrm{k}, \mathrm{n}-\mathrm{k}+1]_{\mathrm{q}}$-codes, which are called MDS (Maximum Distance Separable).

Jacobian matrix of polynomials

- Let \mathbb{F}_{q} be a finite field of $\operatorname{char}\left(\mathbb{F}_{q}\right)=p, 1 \leq j \leq n$, $\frac{\partial}{\partial \mathrm{x}_{\mathrm{j}}}: \mathbb{F}_{\mathrm{q}}\left[\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right] \longrightarrow \mathbb{F}_{\mathrm{q}}\left[\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right]$,
$\frac{\partial}{\partial \mathrm{x}_{\mathrm{j}}}\left(\sum_{\alpha} \mathrm{c}_{\alpha} \mathrm{x}_{1}^{\alpha_{1}} \ldots \mathrm{x}_{\mathrm{j}}^{\alpha_{\mathrm{j}}} \ldots \mathrm{x}_{\mathrm{n}}^{\alpha_{\mathrm{n}}}\right)=$
$\sum_{\alpha} \mathrm{c}_{\alpha} \mathrm{x}_{1}^{\alpha_{1}} \ldots\left[\alpha_{\mathrm{j}}(\bmod \mathrm{p})\right] \mathrm{x}_{\mathrm{j}}^{\max \left(0, \alpha_{\mathrm{j}}-1\right)} \ldots \mathrm{x}_{\mathrm{n}}^{\alpha_{\mathrm{n}}}$.
- Consider the Jacobian matrix

of $f_{1}, \ldots, f_{n-k} \in \mathbb{F}_{\mathrm{q}}\left[\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right]$ at $\mathrm{a} \in \mathbb{F}_{\mathrm{q}}^{\mathrm{n}}$.

Jacobian matrix of polynomials

- Let \mathbb{F}_{q} be a finite field of $\operatorname{char}\left(\mathbb{F}_{\mathrm{q}}\right)=\mathrm{p}, 1 \leq \mathrm{j} \leq \mathrm{n}$, $\frac{\partial}{\partial \mathrm{x}_{\mathrm{j}}}: \mathbb{F}_{\mathrm{q}}\left[\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right] \longrightarrow \mathbb{F}_{\mathrm{q}}\left[\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right]$,
$\frac{\partial}{\partial \mathrm{x}_{\mathrm{j}}}\left(\sum_{\alpha} \mathrm{c}_{\alpha} \mathrm{x}_{1}^{\alpha_{1}} \ldots \mathrm{x}_{\mathrm{j}}^{\alpha_{\mathrm{j}}} \ldots \mathrm{x}_{\mathrm{n}}^{\alpha_{\mathrm{n}}}\right)=$
$\sum_{\alpha} \mathrm{c}_{\alpha} \mathrm{x}_{1}^{\alpha_{1}} \ldots\left[\alpha_{\mathrm{j}}(\bmod \mathrm{p})\right] \mathrm{x}_{\mathrm{j}}^{\max \left(0, \alpha_{\mathrm{j}}-1\right)} \ldots \mathrm{x}_{\mathrm{n}}^{\alpha_{\mathrm{n}}}$.
- Consider the Jacobian matrix

$$
\begin{aligned}
& \quad \frac{\partial\left(\mathrm{f}_{1}, \ldots, \mathrm{f}_{\mathrm{n}-\mathrm{k}}\right)}{\partial\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right)}(\mathrm{a})=\left(\begin{array}{ccc}
\frac{\partial \mathrm{f}_{1}}{\partial \mathrm{x}_{1}}(\mathrm{a}) & \ldots & \frac{\partial \mathrm{f}_{1}}{\partial \mathrm{x}_{\mathrm{n}}}(\mathrm{a}) \\
\cdots & \cdots & \cdots \\
\frac{\partial \mathrm{f}_{\mathrm{n}-\mathrm{k}}}{\partial \mathrm{x}_{1}}(\mathrm{a}) & \ldots & \frac{\partial \mathrm{f}_{\mathrm{n}-\mathrm{k}}}{\partial \mathrm{x}_{\mathrm{n}}}(\mathrm{a})
\end{array}\right) \\
& \text { of } \mathrm{f}_{1}, \ldots, \mathrm{f}_{\mathrm{n}-\mathrm{k}} \in \mathbb{F}_{\mathrm{q}}\left[\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right] \text { at } \mathrm{a} \in \mathbb{F}_{\mathrm{q}}^{\mathrm{n}} .
\end{aligned}
$$

Jacobian family of linear codes

- The union $J\left(f_{1}, \ldots, f_{n-k}\right)=\cup_{a \in \mathbb{F}_{\mathrm{q}}^{\mathrm{n}}} J\left(\mathrm{f}_{1}, \ldots, \mathrm{f}_{\mathrm{n}-\mathrm{k}}\right)_{\mathrm{a}}$ of the codes with check matrices $\frac{\partial\left(\mathrm{f}_{1}, \ldots, \mathrm{f}_{\mathrm{n}-\mathrm{k}}\right)}{\partial\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right)}(\mathrm{a})$ is referred to as the Jacobian family of linear codes, associated with $\mathrm{f}_{1}, \ldots, \mathrm{f}_{\mathrm{n}-\mathrm{k}} \in \mathbb{F}_{\mathrm{q}}\left[\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right]$.

Jacobian family of linear codes

- The union $J\left(f_{1}, \ldots, f_{n-k}\right)=\cup_{a \in \mathbb{F}_{\mathrm{q}}} J\left(f_{1}, \ldots, f_{n-k}\right)_{a}$ of the codes with check matrices $\frac{\partial\left(\mathrm{f}_{1}, \ldots, \mathrm{f}_{\mathrm{n}-\mathrm{k}}\right)}{\partial\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right)}(\mathrm{a})$ is referred to as the Jacobian family of linear codes, associated with $\mathrm{f}_{1}, \ldots, \mathrm{f}_{\mathrm{n}-\mathrm{k}} \in \mathbb{F}_{\mathrm{q}}\left[\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right]$.
- Thus, $J\left(f_{1}, \ldots, f_{n-k}\right)_{a}$ are \mathbb{F}_{q}-linear codes of length n and dimension $\mathrm{n}-\mathrm{rk} \frac{\partial\left(\mathrm{f}_{1}, \ldots, \mathrm{f}_{\mathrm{n}-\mathrm{k}}\right)}{\partial\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right)}(\mathrm{a}) \geq \mathrm{k}$.

Existence of an MDS deformation

- For an arbitrary code $\mathrm{C}_{0} \subset \mathbb{F}_{\mathrm{q}}^{\mathrm{n}}$ and arbitrary $[\mathrm{n}, \mathrm{k}, \mathrm{n}-\mathrm{k}+1]_{\mathrm{q}}$-codes $\mathrm{C}_{1}, \ldots, \mathrm{C}_{\mathrm{r}}, \mathrm{r} \leq \mathrm{q}-1$ there exists a Jacobian family $J\left(f_{1}, \ldots, f_{n-k}\right) \rightarrow \mathbb{F}_{\mathrm{q}}^{\mathrm{n}}$ with $J\left(f_{1}, \ldots, f_{n-k}\right)_{a^{(i)}}=C_{i}$ for some $a^{(0)}, \ldots, a^{(r)} \in \mathbb{F}_{q}^{n}$.

Existence of an MDS deformation

- For an arbitrary code $\mathrm{C}_{0} \subset \mathbb{F}_{\mathrm{q}}^{\mathrm{n}}$ and arbitrary $[\mathrm{n}, \mathrm{k}, \mathrm{n}-\mathrm{k}+1]_{\mathrm{q}}$-codes $\mathrm{C}_{1}, \ldots, \mathrm{C}_{\mathrm{r}}, \mathrm{r} \leq \mathrm{q}-1$ there exists a Jacobian family $J\left(f_{1}, \ldots, f_{n-k}\right) \rightarrow \mathbb{F}_{\mathrm{q}}^{\mathrm{n}}$ with $J\left(f_{1}, \ldots, f_{n-k}\right)_{a^{(i)}}=C_{i}$ for some $a^{(0)}, \ldots, a^{(r)} \in \mathbb{F}_{q}^{n}$.
- Let $\mathbb{F}_{\mathrm{q}}=\left\{\mathrm{t}_{0}=0, \mathrm{t}_{1}, \ldots, \mathrm{t}_{\mathrm{q}-1}\right\}, \mathrm{p}=\operatorname{char}\left(\mathbb{F}_{\mathrm{q}}\right)$ and $\Phi_{\mathrm{p}}: \mathbb{F}_{\mathrm{q}} \rightarrow \mathbb{F}_{\mathrm{q}}, \Phi_{\mathrm{p}}(\mathrm{t})=\mathrm{t}^{\mathrm{p}}$ be the Frobenius automorphism.

Lagrange interpolation step

- If $\mathrm{A}^{(\mathrm{i})}=\left(\mathrm{A}_{1}^{(\mathrm{i})} \ldots \mathrm{A}_{\mathrm{n}}^{(\mathrm{i})}\right)$ are check matrices of C_{i} and

- $H_{j}\left(x_{j}\right)=\sum_{i=0}^{r} A_{j}^{(i)} L_{i}\left(x_{j}^{p}\right) \in \operatorname{Mat}_{(n-k) \times 1}\left(\mathbb{F}_{\mathrm{q}}\left[\mathrm{x}_{\mathrm{j}}\right]\right)$ pass through $H_{j}\left(\Phi_{p}^{-1}\left(\mathrm{t}_{\mathrm{i}}\right)\right)=\mathrm{A}_{\mathrm{j}}^{(\mathrm{i})}$ for $\forall 0 \leq \mathrm{i} \leq \mathrm{r} \leq \mathrm{q}-1$.

Lagrange interpolation step

- If $\mathrm{A}^{(\mathrm{i})}=\left(\mathrm{A}_{1}^{(\mathrm{i})} \ldots \mathrm{A}_{\mathrm{n}}^{(\mathrm{i})}\right)$ are check matrices of C_{i} and
- $L_{i}(x)=\frac{\left(x-t_{0}\right) \ldots\left(x-t_{i-1}\right)\left(x-t_{i+1}\right) \ldots\left(x-t_{r}\right)}{\left(t_{i}-t_{0}\right) \ldots\left(t_{i}-t_{i-1}\right)\left(t_{i}-t_{i+1}\right) \ldots\left(t_{i}-t_{r}\right)}$ are the Lagrange basis polynomials for $r+1$ points then
- $\mathrm{H}_{\mathrm{j}}\left(\mathrm{x}_{\mathrm{j}}\right)=\sum_{\mathrm{i}=0}^{\mathrm{r}} \mathrm{A}_{\mathrm{j}}^{(\mathrm{i})} \mathrm{L}_{\mathrm{i}}\left(\mathrm{x}_{\mathrm{j}}^{\mathrm{p}}\right) \in \operatorname{Mat}_{(\mathrm{n}-\mathrm{k}) \times 1}\left(\mathbb{F}_{\mathrm{q}}\left[\mathrm{x}_{\mathrm{j}}\right]\right)$ pass through $\mathrm{H}_{\mathrm{j}}\left(\Phi_{\mathrm{n}}^{-1}\left(\mathrm{t}_{\mathrm{i}}\right)\right)=\mathrm{A}_{\mathrm{j}}^{(\mathrm{i})}$ for $\forall 0 \leq \mathrm{i} \leq \mathrm{r} \leq \mathrm{q}-1$.

Lagrange interpolation step

- If $\mathrm{A}^{(\mathrm{i})}=\left(\mathrm{A}_{1}^{(\mathrm{i})} \ldots \mathrm{A}_{\mathrm{n}}^{(\mathrm{i})}\right)$ are check matrices of C_{i} and
- $L_{i}(x)=\frac{\left(x-t_{0}\right) \ldots\left(x-t_{i-1}\right)\left(x-t_{i+1}\right) \ldots\left(x-t_{r}\right)}{\left(t_{i}-t_{0}\right) \ldots\left(t_{i}-t_{i-1}\right)\left(t_{i}-t_{i+1}\right) \ldots\left(t_{i}-t_{r}\right)}$ are the Lagrange basis polynomials for $r+1$ points then
- $H_{j}\left(x_{j}\right)=\sum_{\mathrm{i}=0}^{\mathrm{r}} \mathrm{A}_{\mathrm{j}}^{(\mathrm{i})} \mathrm{L}_{\mathrm{i}}\left(\mathrm{x}_{\mathrm{j}}^{\mathrm{p}}\right) \in \operatorname{Mat}_{(\mathrm{n}-\mathrm{k}) \times 1}\left(\mathbb{F}_{\mathrm{q}}\left[\mathrm{x}_{\mathrm{j}}\right]\right)$ pass through

$$
\mathrm{H}_{\mathrm{j}}\left(\Phi_{\mathrm{p}}^{-1}\left(\mathrm{t}_{\mathrm{i}}\right)\right)=\mathrm{A}_{\mathrm{j}}^{(\mathrm{i})} \text { for } \forall 0 \leq \mathrm{i} \leq \mathrm{r} \leq \mathrm{q}-1
$$

"Integration" step

Due to $\frac{\partial\left(\mathrm{x}_{\mathrm{j}} \mathrm{L}_{\mathrm{i}}\left(\mathrm{x}_{\mathrm{j}}^{\mathrm{p}}\right)\right)}{\partial \mathrm{x}_{\mathrm{j}}}=\mathrm{L}_{\mathrm{i}}\left(\mathrm{x}_{\mathrm{j}}^{\mathrm{p}}\right)$, the polynomials

$$
\mathrm{f}_{\mathrm{s}}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right)=\sum_{\mathrm{j}=1}^{\mathrm{n}} \sum_{\mathrm{i}=0}^{\mathrm{r}} \mathrm{~A}_{\mathrm{sj}}^{(\mathrm{i})} \mathrm{x}_{\mathrm{j}} \mathrm{~L}_{\mathrm{i}}\left(\mathrm{x}_{\mathrm{j}}^{\mathrm{p}}\right), \quad 1 \leq \mathrm{s} \leq \mathrm{n}-\mathrm{k}
$$

have Jacobian matrix $\frac{\partial\left(\mathrm{f}_{1}, \ldots, \mathrm{f}_{\mathrm{n}-\mathrm{k}}\right)}{\partial\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right)}=\left(\mathrm{H}_{1}\left(\mathrm{x}_{1}\right) \ldots \mathrm{H}_{\mathrm{n}}\left(\mathrm{x}_{\mathrm{n}}\right)\right)$.

Preparation for arc-interpretation

- Consider the space $\mathbb{F}_{\mathrm{q}}\left[\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right]^{\mathrm{n}-\mathrm{k}} \ni\left(\mathrm{f}_{1}, \ldots, \mathrm{f}_{\mathrm{n}-\mathrm{k}}\right)$ of the morphisms $\left(\mathrm{f}_{1}, \ldots, \mathrm{f}_{\mathrm{n}-\mathrm{k}}\right): \mathbb{F}_{\mathrm{q}}^{\mathrm{n}} \rightarrow \mathbb{F}_{\mathrm{q}}^{\mathrm{n}-\mathrm{k}}$ and the space $\mathbb{F}_{\mathrm{q}}\left[\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right]^{\mathrm{n}-\mathrm{k}} / \mathbb{F}_{\mathrm{q}}^{*} \ni\left[\mathrm{f}_{1}: \ldots: \mathrm{f}_{\mathrm{n}-\mathrm{k}}\right]$ of the rational maps $\left[\mathrm{f}_{1}: \ldots: \mathrm{f}_{\mathrm{n}-\mathrm{k}}\right]: \mathbb{F}_{\mathrm{q}}^{\mathrm{n}} \cdots \rightarrow \mathbb{P}^{\mathrm{n}-\mathrm{k}-1}\left(\mathbb{F}_{\mathrm{q}}\right)$.
- The derivations $\frac{\partial}{\partial \mathrm{x}_{\mathrm{j}}}, 1 \leq \mathrm{j} \leq \mathrm{n}$ commute with the $\mathbb{F}_{\mathrm{q}^{*}}^{*}$-action $\mathbb{F}_{\mathrm{q}}^{*} \times \mathbb{F}_{\mathrm{q}}\left[\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right]^{\mathrm{n}-\mathrm{k}} \longrightarrow \mathbb{F}_{\mathrm{q}}\left[\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right]^{\mathrm{n}-\mathrm{k}}$, $\left(\lambda,\left(f_{1}, \ldots, f_{\mathrm{n}-\mathrm{k}}\right)\right) \mapsto\left(\lambda \mathrm{f}_{1}, \ldots, \lambda \mathrm{f}_{\mathrm{n}-\mathrm{k}}\right)$ and descend to

Preparation for arc-interpretation

- Consider the space $\mathbb{F}_{\mathrm{q}}\left[\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right]^{\mathrm{n}-\mathrm{k}} \ni\left(\mathrm{f}_{1}, \ldots, \mathrm{f}_{\mathrm{n}-\mathrm{k}}\right)$ of the morphisms $\left(\mathrm{f}_{1}, \ldots, \mathrm{f}_{\mathrm{n}-\mathrm{k}}\right): \mathbb{F}_{\mathrm{q}}^{\mathrm{n}} \rightarrow \mathbb{F}_{\mathrm{q}}^{\mathrm{n}-\mathrm{k}}$ and the space $\mathbb{F}_{\mathrm{q}}\left[\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right]^{\mathrm{n}-\mathrm{k}} / \mathbb{F}_{\mathrm{q}}^{*} \ni\left[\mathrm{f}_{1}: \ldots: \mathrm{f}_{\mathrm{n}-\mathrm{k}}\right]$ of the rational maps $\left[\mathrm{f}_{1}: \ldots: \mathrm{f}_{\mathrm{n}-\mathrm{k}}\right]: \mathbb{F}_{\mathrm{q}}^{\mathrm{n}} \cdots \rightarrow \mathbb{P}^{\mathrm{n}-\mathrm{k}-1}\left(\mathbb{F}_{\mathrm{q}}\right)$.

Preparation for arc-interpretation

- Consider the space $\mathbb{F}_{\mathrm{q}}\left[\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right]^{\mathrm{n}-\mathrm{k}} \ni\left(\mathrm{f}_{1}, \ldots, \mathrm{f}_{\mathrm{n}-\mathrm{k}}\right)$ of the morphisms $\left(\mathrm{f}_{1}, \ldots, \mathrm{f}_{\mathrm{n}-\mathrm{k}}\right): \mathbb{F}_{\mathrm{q}}^{\mathrm{n}} \rightarrow \mathbb{F}_{\mathrm{q}}^{\mathrm{n}-\mathrm{k}}$ and the space $\mathbb{F}_{\mathrm{q}}\left[\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right]^{\mathrm{n}-\mathrm{k}} / \mathbb{F}_{\mathrm{q}}^{*} \ni\left[\mathrm{f}_{1}: \ldots: \mathrm{f}_{\mathrm{n}-\mathrm{k}}\right]$ of the rational maps $\left[\mathrm{f}_{1}: \ldots: \mathrm{f}_{\mathrm{n}-\mathrm{k}}\right]: \mathbb{F}_{\mathrm{q}}^{\mathrm{n}} \cdots \rightarrow \mathbb{P}^{\mathrm{n}-\mathrm{k}-1}\left(\mathbb{F}_{\mathrm{q}}\right)$.
- The derivations $\frac{\partial}{\partial \mathrm{x}_{\mathrm{j}}}, 1 \leq \mathrm{j} \leq \mathrm{n}$ commute with the $\mathbb{F}_{\mathrm{q}}^{*}$-action $\mathbb{F}_{\mathrm{q}}^{*} \times \mathbb{F}_{\mathrm{q}}\left[\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right]^{\mathrm{n}-\mathrm{k}} \longrightarrow \mathbb{F}_{\mathrm{q}}\left[\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right]^{\mathrm{n}-\mathrm{k}}$, $\left(\lambda,\left(f_{1}, \ldots, f_{n-k}\right)\right) \mapsto\left(\lambda f_{1}, \ldots, \lambda f_{n-k}\right)$

Preparation for arc-interpretation

- Consider the space $\mathbb{F}_{\mathrm{q}}\left[\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right]^{\mathrm{n}-\mathrm{k}} \ni\left(\mathrm{f}_{1}, \ldots, \mathrm{f}_{\mathrm{n}-\mathrm{k}}\right)$ of the morphisms $\left(\mathrm{f}_{1}, \ldots, \mathrm{f}_{\mathrm{n}-\mathrm{k}}\right): \mathbb{F}_{\mathrm{q}}^{\mathrm{n}} \rightarrow \mathbb{F}_{\mathrm{q}}^{\mathrm{n}-\mathrm{k}}$ and the space $\mathbb{F}_{\mathrm{q}}\left[\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right]^{\mathrm{n}-\mathrm{k}} / \mathbb{F}_{\mathrm{q}}^{*} \ni\left[\mathrm{f}_{1}: \ldots: \mathrm{f}_{\mathrm{n}-\mathrm{k}}\right]$ of the rational maps $\left[\mathrm{f}_{1}: \ldots: \mathrm{f}_{\mathrm{n}-\mathrm{k}}\right]: \mathbb{F}_{\mathrm{q}}^{\mathrm{n}} \cdots \rightarrow \mathbb{P}^{\mathrm{n}-\mathrm{k}-1}\left(\mathbb{F}_{\mathrm{q}}\right)$.
- The derivations $\frac{\partial}{\partial \mathrm{x}_{\mathrm{j}}}, 1 \leq \mathrm{j} \leq \mathrm{n}$ commute with the $\mathbb{F}_{\mathrm{q}}{ }^{*}$-action $\mathbb{F}_{\mathrm{q}}^{*} \times \mathbb{F}_{\mathrm{q}}\left[\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right]^{\mathrm{n}-\mathrm{k}} \longrightarrow \mathbb{F}_{\mathrm{q}}\left[\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right]^{\mathrm{n}-\mathrm{k}}$, $\left(\lambda,\left(f_{1}, \ldots, f_{n-k}\right)\right) \mapsto\left(\lambda f_{1}, \ldots, \lambda f_{n-k}\right)$ and descend to $\frac{\partial}{\partial \mathrm{x}_{\mathrm{j}}}: \mathbb{F}_{\mathrm{q}}\left[\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right]^{\mathrm{n}-\mathrm{k}} / \mathbb{F}_{\mathrm{q}}^{*} \longrightarrow \mathbb{F}_{\mathrm{q}}\left[\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right]^{\mathrm{n}-\mathrm{k}} / \mathbb{F}_{\mathrm{q}}^{*}$.

The counterpart for arcs

- Suppose that the points of the arcs

$$
\begin{aligned}
& \frac{\mathcal{A}_{\mathrm{i}}}{}=\left\{\mathrm{P}_{1}^{(\mathrm{i})}, \ldots, \mathrm{P}_{\mathrm{n}}^{(\mathrm{i})}\right\} \subset \mathbb{P}^{\mathrm{n}-\mathrm{k}-1}\left(\mathbb{F}_{\mathrm{q}}\right), 1 \leq \mathrm{i} \leq \mathrm{q}-1 \text { lift to } \\
& \mathrm{P}_{\mathrm{j}}^{(\mathrm{i})} \in \mathbb{F}_{\mathrm{q}}^{\mathrm{n}-\mathrm{k}} \text { with } \widetilde{\mathrm{P}_{1}^{(\mathrm{i})}}+\ldots+\overline{\mathrm{P}_{\mathrm{n}}^{(\mathrm{i})}} \neq(0, \ldots, 0) .
\end{aligned}
$$

- Then there is a rational map

The counterpart for arcs

- Suppose that the points of the arcs

$$
\begin{aligned}
& \frac{\mathcal{A}_{\mathrm{i}}}{}=\left\{\mathrm{P}_{1}^{(\mathrm{i})}, \ldots, \mathrm{P}_{\mathrm{n}}^{(\mathrm{i})}\right\} \subset \mathbb{P}^{\mathrm{n}-\mathrm{k}-1}\left(\mathbb{F}_{\mathrm{q}}\right), 1 \leq \mathrm{i} \leq \mathrm{q}-1 \text { lift to } \\
& \mathrm{P}_{\mathrm{j}}^{(\mathrm{i})}
\end{aligned} \in \mathbb{F}_{\mathrm{q}}^{\mathrm{n}-\mathrm{k}} \text { with } \widetilde{\mathrm{P}_{1}^{(\mathrm{i})}}+\ldots+\overline{\mathrm{P}_{\mathrm{n}}^{(\mathrm{i})}} \neq(0, \ldots, 0) .
$$

- Then there is a rational map
$\left[f_{1}: \ldots: f_{n-k}\right]: \mathbb{F}_{\mathrm{q}}^{\mathrm{n}} \ldots \rightarrow \mathbb{P}^{\mathrm{n}-\mathrm{k}-1}\left(\mathbb{F}_{\mathrm{q}}\right)$, such that all $\frac{\partial}{\partial \mathrm{x}_{\mathrm{j}}}\left[\mathrm{f}_{1}: \ldots: \mathrm{f}_{\mathrm{n}-\mathrm{k}}\right]: \mathbb{F}_{\mathrm{q}}^{\mathrm{n}} \rightarrow \mathbb{P}^{\mathrm{n}-\mathrm{k}-1}\left(\mathbb{F}_{\mathrm{q}}\right)$ pass through $\frac{\partial}{\partial \mathrm{x}_{\mathrm{j}}}\left[\mathrm{f}_{1}: \ldots: \mathrm{f}_{\mathrm{n}-\mathrm{k}}\right]\left(\Phi_{\mathrm{p}}^{-1}\left(\mathrm{t}_{\mathrm{i}}\right), \ldots, \Phi_{\mathrm{p}}^{-1}\left(\mathrm{t}_{\mathrm{i}}\right)\right)=\mathrm{P}_{\mathrm{j}}^{(\mathrm{i})}$.

The rational normal curve

If $\mathbb{F}_{\mathrm{q}}=\left\{\mathrm{t}_{0}=0, \mathrm{t}_{1}, \ldots, \mathrm{t}_{\mathrm{q}-1}\right\}$ then the rational normal curve $\mathcal{A}_{\sigma}=\left\{\left[1: \mathrm{t}_{\mathrm{i}}: \ldots: \mathrm{t}_{\mathrm{i}}^{\mathrm{q}-\mathrm{k}}\right] \mid 0 \leq \mathrm{i} \leq \mathrm{q}-1\right\} \cup\{\infty=[0: \ldots: 0: 1]\}$ is a $(q+1)$-arc in $\mathbb{P}^{q-k}\left(\mathbb{F}_{q}\right)$.

A family with q! MDS-fibers

- If $\mathrm{S}_{\mathrm{d}}=\mathrm{x}_{1}^{\mathrm{d}}+\ldots+\mathrm{x}_{\mathrm{q}}^{\mathrm{d}}, \mathrm{p}=\operatorname{char}\left(\mathbb{F}_{\mathrm{q}}\right)$ and $\mathrm{a}=\left(\mathrm{a}^{\prime}, \mathrm{a}_{\mathrm{q}+1}\right) \in \mathbb{F}_{\mathrm{q}}^{\mathrm{q}+1}$ is a point with different $a_{1}, \ldots, a_{q} \in \mathbb{F}_{q}$ then the fiber J_{a} of $J=J\left(S_{1}, S_{p+1}, \ldots, S_{(q-k-1) p+1}, S_{(q-k) p+1}+x_{q+1}\right)$ is associated with \mathcal{A} and, therefore, is an $[\mathrm{q}+1, \mathrm{k}, \mathrm{q}-\mathrm{k}+2]_{\mathrm{q}}$-code.

coordinates then $J_{\left(\mathrm{a}^{\prime}, \mathrm{a}_{\mathrm{n}}\right)}$ is an $[\mathrm{q}+1, \mathrm{k}, 2]_{\mathrm{q}^{\prime}}$-code.
- When $a^{\prime} \in \mathbb{F}_{q}^{q}$ has $1 \leq t \leq q-k$ different components, $\mathrm{J}_{\left(\mathrm{a}^{\prime}, \mathrm{a}_{\mathrm{n}}\right)}$ is a $[\mathrm{q}+1, \mathrm{q}+1-\mathrm{t}, 2]_{\mathrm{q}}$-code with $\mathrm{q}+1-\mathrm{t}>\mathrm{k}$.

A family with q! MDS-fibers

- If $S_{d}=x_{1}^{d}+\ldots+x_{q}^{d}, p=\operatorname{char}\left(\mathbb{F}_{q}\right)$ and $a=\left(a^{\prime}, a_{q+1}\right) \in \mathbb{F}_{q}^{q+1}$ is a point with different $a_{1}, \ldots, a_{q} \in \mathbb{F}_{q}$ then the fiber J_{a} of $J=J\left(S_{1}, S_{p+1}, \ldots, S_{(q-k-1) p+1}, S_{(q-k) p+1}+x_{q+1}\right)$ is associated with \mathcal{A} and, therefore, is an $[\mathrm{q}+1, \mathrm{k}, \mathrm{q}-\mathrm{k}+2]_{\mathrm{q}}$-code.
- If $\mathrm{a}^{\prime}=\left(\mathrm{a}_{1}, \ldots, \mathrm{a}_{\mathrm{q}}\right) \in \mathbb{F}_{\mathrm{q}}^{\mathrm{q}}$ has $\mathrm{q}+1-\mathrm{k} \leq \mathrm{t} \leq \mathrm{q}-1$ different coordinates then $J_{\left(a^{\prime}, a_{n}\right)}$ is an $[q+1, k, 2]_{q}$-code.

A family with q! MDS-fibers

- If $S_{d}=x_{1}^{d}+\ldots+x_{q}^{d}, p=\operatorname{char}\left(\mathbb{F}_{q}\right)$ and $a=\left(a^{\prime}, a_{q+1}\right) \in \mathbb{F}_{q}^{q+1}$ is a point with different $\mathrm{a}_{1}, \ldots, \mathrm{a}_{\mathrm{q}} \in \mathbb{F}_{\mathrm{q}}$ then the fiber J_{a} of $J=J\left(S_{1}, S_{p+1}, \ldots, S_{(q-k-1) p+1}, S_{(q-k) p+1}+x_{q+1}\right)$ is associated with \mathcal{A} and, therefore, is an $[\mathrm{q}+1, \mathrm{k}, \mathrm{q}-\mathrm{k}+2]_{\mathrm{q}}$-code.
- If $\mathrm{a}^{\prime}=\left(\mathrm{a}_{1}, \ldots, \mathrm{a}_{\mathrm{q}}\right) \in \mathbb{F}_{\mathrm{q}}^{\mathrm{q}}$ has $\mathrm{q}+1-\mathrm{k} \leq \mathrm{t} \leq \mathrm{q}-1$ different coordinates then $J_{\left(a^{\prime}, a_{n}\right)}$ is an $[q+1, k, 2]_{q}$-code.
- When $\mathrm{a}^{\prime} \in \mathbb{F}_{\mathrm{q}}^{\mathrm{q}}$ has $1 \leq \mathrm{t} \leq \mathrm{q}-\mathrm{k}$ different components, $\mathrm{J}_{\left(\mathrm{a}^{\prime}, \mathrm{a}_{\mathrm{n}}\right)}$ is a $[\mathrm{q}+1, \mathrm{q}+1-\mathrm{t}, 2]_{\mathrm{q}^{-}}$-code with $\mathrm{q}+1-\mathrm{t}>\mathrm{k}$.
(1) Existence of MDS deformations
(2) The MDS deformations as \mathbb{F}_{q}-Zariski tangent bundles

Affine variety, defined over \mathbb{F}_{q}

- Let $\overline{\mathbb{F}_{\mathrm{q}}}=\cup_{\mathrm{s}=1}^{\infty} \mathbb{F}_{\mathrm{q}^{\mathrm{s}}}$ be the algebraic closure of \mathbb{F}_{q}.

- $\mathrm{X}\left(\mathbb{F}_{\mathrm{q}}\right):=\mathrm{X} \cap \mathbb{F}_{\mathrm{q}}^{\mathrm{n}}$ is the set of the \mathbb{F}_{q}-rational points of X .

Affine variety, defined over \mathbb{F}_{q}

- Let $\overline{\mathbb{F}_{\mathrm{q}}}=\cup_{\mathrm{s}=1}^{\infty} \mathbb{F}_{\mathrm{q}^{\mathrm{s}}}$ be the algebraic closure of \mathbb{F}_{q}.
- For any $g_{1}, \ldots, g_{m} \in \mathbb{F}_{q}\left[x_{1}, \ldots, x_{n}\right]$ the set $X=$ $\mathrm{V}\left(\mathrm{g}_{1}, \ldots, \mathrm{~g}_{\mathrm{m}}\right)=\left\{\mathrm{a} \in{\overline{\mathbb{F}_{\mathrm{q}}}}^{\mathrm{n}} \mid \mathrm{g}_{\mathrm{i}}\left(\mathrm{a}_{1}, \ldots, \mathrm{a}_{\mathrm{n}}\right)=0, \forall 1 \leq \mathrm{i} \leq \mathrm{m}\right\}$ is an affine variety, defined over \mathbb{F}_{q} and
- $\mathrm{X}\left(\mathbb{F}_{\mathrm{q}}\right):=\mathrm{X} \cap \mathbb{F}_{\mathrm{q}}^{\mathrm{n}}$ is the set of the $\mathbb{F}_{\mathrm{q}^{-}}$-rational points of X .

Affine variety, defined over \mathbb{F}_{q}

- Let $\overline{\mathbb{F}_{\mathrm{q}}}=\cup_{\mathrm{s}=1}^{\infty} \mathbb{F}_{\mathrm{q}^{\mathrm{s}}}$ be the algebraic closure of \mathbb{F}_{q}.
- For any $g_{1}, \ldots, g_{m} \in \mathbb{F}_{q}\left[x_{1}, \ldots, x_{n}\right]$ the set $X=$ $\mathrm{V}\left(\mathrm{g}_{1}, \ldots, \mathrm{~g}_{\mathrm{m}}\right)=\left\{\mathrm{a} \in{\overline{\mathbb{F}_{\mathrm{q}}}}^{\mathrm{n}} \mid \mathrm{g}_{\mathrm{i}}\left(\mathrm{a}_{1}, \ldots, \mathrm{a}_{\mathrm{n}}\right)=0, \forall 1 \leq \mathrm{i} \leq \mathrm{m}\right\}$ is an affine variety, defined over \mathbb{F}_{q} and
- $\mathrm{X}\left(\mathbb{F}_{\mathrm{q}}\right):=\mathrm{X} \cap \mathbb{F}_{\mathrm{q}}^{\mathrm{n}}$ is the set of the \mathbb{F}_{q}-rational points of X .

Zariski topology

- The collection \mathcal{C} of $\mathrm{V}\left(\mathrm{g}_{1}, \ldots, \mathrm{~g}_{\mathrm{m}}\right) \subseteq{\overline{\mathbb{F}_{\mathrm{q}}}}^{\mathrm{n}}$ for all $\mathrm{g}_{1}, \ldots, \mathrm{~g}_{\mathrm{m}} \in \overline{\mathbb{F}_{\mathrm{q}}}\left[\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right]$ is a family of closed subsets since

- if $\forall X_{i} \in \mathcal{C}$ then $X_{1} \cup \ldots \cup X_{m} \in \mathcal{C}$ and
- if $\forall \mathrm{X}_{\alpha} \in \mathcal{C}$ then $\cap_{\alpha \in \mathrm{A}} \mathrm{X}_{\alpha} \in \mathcal{C}$.
- The Zariski topology on $\overline{\mathbb{F}}_{\mathrm{q}} \mathrm{n}$ has closed sets \mathcal{C}.

Zariski topology

- The collection \mathcal{C} of $\mathrm{V}\left(\mathrm{g}_{1}, \ldots, \mathrm{~g}_{\mathrm{m}}\right) \subseteq{\overline{\mathbb{F}_{\mathrm{q}}}}^{\mathrm{n}}$ for all $\mathrm{g}_{1}, \ldots, \mathrm{~g}_{\mathrm{m}} \in \overline{\mathbb{F}_{\mathrm{q}}}\left[\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right]$ is a family of closed subsets since
- $\emptyset, \overline{\mathbb{F}}^{\mathrm{n}} \in \mathcal{C}$,
- if $\forall \mathrm{X}_{\mathrm{i}} \in \mathcal{C}$ then $\mathrm{X}_{1} \cup \ldots \cup \mathrm{X}_{\mathrm{m}} \in \mathcal{C}$ and
- if $\forall \mathrm{X}_{\alpha} \in \mathcal{C}$ then $\cap_{\alpha \in \mathrm{A}} \mathrm{X}_{\alpha} \in \mathcal{C}$.
- The Zariski topology on $\overline{\mathbb{F}}_{\mathrm{q}} \mathrm{n}$ has closed sets \mathcal{C}.

Zariski topology

- The collection \mathcal{C} of $\mathrm{V}\left(\mathrm{g}_{1}, \ldots, \mathrm{~g}_{\mathrm{m}}\right) \subseteq{\overline{\mathbb{F}_{\mathrm{q}}}}^{\mathrm{n}}$ for all $\mathrm{g}_{1}, \ldots, \mathrm{~g}_{\mathrm{m}} \in \overline{\mathbb{F}_{\mathrm{q}}}\left[\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right]$ is a family of closed subsets since
- $\emptyset,{\overline{\mathbb{F}_{\mathrm{q}}}}^{\mathrm{n}} \in \mathcal{C}$,
- if $\forall X_{i} \in \mathcal{C}$ then $X_{1} \cup \ldots \cup X_{m} \in \mathcal{C}$ and

$$
\text { - if } \forall \mathrm{X}_{\alpha} \in \mathcal{C} \text { then } \cap_{\alpha \in \mathrm{A}} \mathrm{X}_{\alpha} \in \mathcal{C} \text {. }
$$

- The Zariski topology on $\overline{\mathbb{F}}_{\mathrm{q}}{ }^{\mathrm{n}}$ has closed sets \mathcal{C}.

Zariski topology

- The collection \mathcal{C} of $\mathrm{V}\left(\mathrm{g}_{1}, \ldots, \mathrm{~g}_{\mathrm{m}}\right) \subseteq{\overline{\mathbb{F}_{\mathrm{q}}}}^{\mathrm{n}}$ for all $\mathrm{g}_{1}, \ldots, \mathrm{~g}_{\mathrm{m}} \in \overline{\mathbb{F}_{\mathrm{q}}}\left[\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right]$ is a family of closed subsets since
- $\emptyset,{\overline{\mathbb{F}_{\mathrm{q}}}}^{\mathrm{n}} \in \mathcal{C}$,
- if $\forall \mathrm{X}_{\mathrm{i}} \in \mathcal{C}$ then $\mathrm{X}_{1} \cup \ldots \cup \mathrm{X}_{\mathrm{m}} \in \mathcal{C}$ and
- if $\forall \mathrm{X}_{\alpha} \in \mathcal{C}$ then $\cap_{\alpha \in \mathrm{A}} \mathrm{X}_{\alpha} \in \mathcal{C}$.
- The Zariski topology on $\overline{\mathbb{F}}_{\mathrm{q}}{ }^{\mathrm{n}}$ has closed sets \mathcal{C}.

Zariski topology

- The collection \mathcal{C} of $\mathrm{V}\left(\mathrm{g}_{1}, \ldots, \mathrm{~g}_{\mathrm{m}}\right) \subseteq{\overline{\mathbb{F}_{\mathrm{q}}}}^{\mathrm{n}}$ for all $\mathrm{g}_{1}, \ldots, \mathrm{~g}_{\mathrm{m}} \in \overline{\mathbb{F}_{\mathrm{q}}}\left[\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right]$ is a family of closed subsets since
- $\emptyset,{\overline{\mathbb{F}_{\mathrm{q}}}}^{\mathrm{n}} \in \mathcal{C}$,
- if $\forall \mathrm{X}_{\mathrm{i}} \in \mathcal{C}$ then $\mathrm{X}_{1} \cup \ldots \cup \mathrm{X}_{\mathrm{m}} \in \mathcal{C}$ and
- if $\forall \mathrm{X}_{\alpha} \in \mathcal{C}$ then $\cap_{\alpha \in \mathrm{A}} \mathrm{X}_{\alpha} \in \mathcal{C}$.
- The Zariski topology on $\overline{\mathbb{F}}_{\mathrm{q}} \mathrm{n}$ has closed sets \mathcal{C}.

Geometric characterization of the dimension

- A morphism $\varphi=\left(\varphi_{1}, \ldots, \varphi_{\mathrm{s}}\right): \mathrm{X} \rightarrow \overline{{\overline{\mathbb{F}_{\mathrm{q}}}}^{\mathrm{s}}}$, given by polynomials $\varphi_{1}, \ldots, \varphi_{\mathrm{s}} \in \overline{\mathbb{F}_{\mathrm{q}}}\left[\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right]$ is dominant if its image $\varphi(\mathrm{X})$ is Zariski dense in ${\overline{\mathbb{F}_{\mathrm{q}}}}^{\mathrm{s}}$.
- A morphism $\varphi=\left(\varphi_{1}, \ldots, \varphi_{\mathrm{s}}\right): \mathrm{X} \rightarrow{\overline{\mathbb{F}_{\mathrm{q}}}}^{\mathrm{s}}$ is finite if there is a non-empty, Zariski open, Zariski dense subset $U \subseteq \mathbb{F}_{\mathrm{q}}{ }^{\mathrm{s}}$ such that the fibers of $\varphi: \varphi^{-1}(\mathrm{U}) \rightarrow \mathrm{U}$ are finite sets.
- The dimension of an affine variety $X \subset \overline{\mathbb{F}}_{\mathrm{q}}{ }^{\mathrm{n}}$ is the natural number k , for which there exists a finite dominant morphism $\varphi: X \rightarrow \overline{\mathbb{F}}_{\mathrm{q}}{ }^{\mathrm{k}}$

Geometric characterization of the dimension

- A morphism $\varphi=\left(\varphi_{1}, \ldots, \varphi_{\mathrm{s}}\right): \mathrm{X} \rightarrow{\overline{\mathbb{F}_{\mathrm{q}}}}^{\mathrm{s}}$, given by polynomials $\varphi_{1}, \ldots, \varphi_{\mathrm{s}} \in \overline{\mathbb{F}_{\mathrm{q}}}\left[\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right]$ is dominant if its image $\varphi(\mathrm{X})$ is Zariski dense in $\overline{\bar{F}_{\mathrm{q}}} \mathrm{s}$.
- A morphism $\varphi=\left(\varphi_{1}, \ldots, \varphi_{\mathrm{s}}\right): \mathrm{X} \rightarrow{\overline{\mathbb{F}_{\mathrm{q}}}}^{\mathrm{s}}$ is finite if there is a non-empty, Zariski open, Zariski dense subset $\mathrm{U} \subseteq{\overline{\mathbb{F}_{\mathrm{q}}}}^{\mathrm{s}}$, such that the fibers of $\varphi: \varphi^{-1}(\mathrm{U}) \rightarrow \mathrm{U}$ are finite sets.
- The dimension of an affine variety $X \subset \overline{\mathbb{F}}_{\mathrm{q}}{ }^{n}$ is the natural number k , for which there exists a finite dominant morphism $\varphi: \mathrm{X} \rightarrow{\overline{\mathbb{F}_{\mathrm{q}}}}^{\mathrm{k}}$

Geometric characterization of the dimension

- A morphism $\varphi=\left(\varphi_{1}, \ldots, \varphi_{\mathrm{s}}\right): \mathrm{X} \rightarrow{\overline{\mathbb{F}_{\mathrm{q}}}}^{\mathrm{s}}$, given by polynomials $\varphi_{1}, \ldots, \varphi_{\mathrm{s}} \in \overline{\mathbb{F}_{\mathrm{q}}}\left[\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right]$ is dominant if its image $\varphi(\mathrm{X})$ is Zariski dense in $\overline{\bar{F}_{\mathrm{q}}} \mathrm{s}$.
- A morphism $\varphi=\left(\varphi_{1}, \ldots, \varphi_{\mathrm{s}}\right): \mathrm{X} \rightarrow{\overline{\mathbb{F}_{\mathrm{q}}}}^{\mathrm{s}}$ is finite if there is a non-empty, Zariski open, Zariski dense subset $\mathrm{U} \subseteq{\overline{\mathbb{F}_{\mathrm{q}}}}^{\mathrm{s}}$, such that the fibers of $\varphi: \varphi^{-1}(\mathrm{U}) \rightarrow \mathrm{U}$ are finite sets.
- The dimension of an affine variety $\mathrm{X} \subset{\overline{\mathbb{F}_{\mathrm{q}}}}^{\mathrm{n}}$ is the natural number k , for which there exists a finite dominant $\operatorname{morphism} \varphi: \mathrm{X} \rightarrow{\overline{\mathbb{F}_{\mathrm{q}}}}^{\mathrm{k}}$.

The Zariski and the \mathbb{F}_{q}-Zariski tangent bundles

- Let $\mathrm{I}=\left\langle\mathrm{g}_{1}, \ldots, \mathrm{~g}_{\mathrm{m}}\right\rangle \triangleleft \mathbb{F}_{\mathrm{q}}\left[\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right], \mathrm{X}=\mathrm{V}(\mathrm{I}) \subseteq{\overline{\mathbb{F}_{\mathrm{q}}}}^{\mathrm{n}}$, $\mathrm{I}(\mathrm{X})=\left\{\mathrm{h} \in \mathbb{F}_{\mathrm{q}}\left[\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right] \mid \mathrm{h}(\mathrm{a})=0, \forall \mathrm{a} \in \mathrm{X}\right\}=$ $\left\langle\mathrm{h}_{1}, \ldots, \mathrm{~h}_{\mathrm{s}}\right\rangle \triangleleft \mathbb{F}_{\mathrm{q}}\left[\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right]$ be the ideal of X over \mathbb{F}_{q}, $\overline{\mathrm{I}}(\mathrm{X})=\left\{\mathrm{h} \in \overline{\mathbb{F}_{\mathrm{q}}}\left[\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right] \mid \mathrm{h}(\mathrm{a})=0, \forall \mathrm{a} \in \mathrm{X}\right\}=$
- The \mathbb{F}_{q}-Zariski tangent bundle to X is $\mathrm{T}^{\mathbb{F}_{\mathrm{q}} \mathrm{X}}:=\left.\mathrm{J}\left(\mathrm{h}_{1}, \ldots, \mathrm{~h}_{\mathrm{s}}\right)\right|_{\mathrm{X}\left(\mathbb{F}_{\mathrm{q}}\right)}$
- The Zariski tangent bundle to X is $\mathrm{TX}:=\overline{\mathrm{J}}\left(\mathrm{h}_{1}, \ldots, \mathrm{~h}_{\mathrm{s}}, \ldots, \mathrm{h}_{\mathrm{r}}\right) \mid \mathrm{X}$.

The Zariski and the \mathbb{F}_{q}-Zariski tangent bundles

- Let $\mathrm{I}=\left\langle\mathrm{g}_{1}, \ldots, \mathrm{~g}_{\mathrm{m}}\right\rangle \triangleleft \mathbb{F}_{\mathrm{q}}\left[\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right], \mathrm{X}=\mathrm{V}(\mathrm{I}) \subseteq{\overline{\mathbb{F}_{\mathrm{q}}}}^{\mathrm{n}}$, $\mathrm{I}(\mathrm{X})=\left\{\mathrm{h} \in \mathbb{F}_{\mathrm{q}}\left[\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right] \mid \mathrm{h}(\mathrm{a})=0, \forall \mathrm{a} \in \mathrm{X}\right\}=$ $\left\langle\mathrm{h}_{1}, \ldots, \mathrm{~h}_{\mathrm{s}}\right\rangle \triangleleft \mathbb{F}_{\mathrm{q}}\left[\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right]$ be the ideal of X over \mathbb{F}_{q}, $\overline{\mathrm{I}}(\mathrm{X})=\left\{\mathrm{h} \in \overline{\mathbb{F}_{\mathrm{q}}}\left[\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right] \mid \mathrm{h}(\mathrm{a})=0, \forall \mathrm{a} \in \mathrm{X}\right\}=$ $\left\langle\mathrm{h}_{1}, \ldots, \mathrm{~h}_{\mathrm{s}}, \ldots \mathrm{h}_{\mathrm{r}}\right\rangle \triangleleft \overline{\mathbb{F}_{\mathrm{q}}}\left[\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right]$ be the ideal of X over $\overline{\mathbb{F}_{\mathrm{q}}}$.
- The \mathbb{F}_{q}-Zariski tangent bundle to X is

$$
T^{\mathbb{F}_{\mathrm{q}} \mathrm{X}}:=\left.\mathrm{J}\left(\mathrm{h}_{1}, \ldots, \mathrm{~h}_{\mathrm{s}}\right)\right|_{\mathrm{X}\left(\mathbb{F}_{\mathrm{q}}\right)}
$$

- The Zariski tangent bundle to X is

The Zariski and the \mathbb{F}_{q}-Zariski tangent bundles

- Let $\mathrm{I}=\left\langle\mathrm{g}_{1}, \ldots, \mathrm{~g}_{\mathrm{m}}\right\rangle \triangleleft \mathbb{F}_{\mathrm{q}}\left[\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right], \mathrm{X}=\mathrm{V}(\mathrm{I}) \subseteq{\overline{\mathbb{F}_{\mathrm{q}}}}^{\mathrm{n}}$, $\mathrm{I}(\mathrm{X})=\left\{\mathrm{h} \in \mathbb{F}_{\mathrm{q}}\left[\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right] \mid \mathrm{h}(\mathrm{a})=0, \forall \mathrm{a} \in \mathrm{X}\right\}=$ $\left\langle\mathrm{h}_{1}, \ldots, \mathrm{~h}_{\mathrm{s}}\right\rangle \triangleleft \mathbb{F}_{\mathrm{q}}\left[\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right]$ be the ideal of X over \mathbb{F}_{q}, $\overline{\mathrm{I}}(\mathrm{X})=\left\{\mathrm{h} \in \overline{\mathbb{F}_{\mathrm{q}}}\left[\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right] \mid \mathrm{h}(\mathrm{a})=0, \forall \mathrm{a} \in \mathrm{X}\right\}=$ $\left\langle\mathrm{h}_{1}, \ldots, \mathrm{~h}_{\mathrm{s}}, \ldots \mathrm{h}_{\mathrm{r}}\right\rangle \triangleleft \overline{\mathbb{F}_{\mathrm{q}}}\left[\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right]$ be the ideal of X over $\overline{\mathbb{F}_{\mathrm{q}}}$.
- The \mathbb{F}_{q}-Zariski tangent bundle to X is

$$
\mathrm{T}^{\mathbb{F}_{\mathrm{q}} \mathrm{X}}:=\left.\mathrm{J}\left(\mathrm{~h}_{1}, \ldots, \mathrm{~h}_{\mathrm{s}}\right)\right|_{\mathrm{X}\left(\mathbb{F}_{\mathrm{q}}\right)}
$$

- The Zariski tangent bundle to X is

$$
\mathrm{TX}:=\left.\overline{\mathrm{J}}\left(\mathrm{~h}_{1}, \ldots, \mathrm{~h}_{\mathrm{s}}, \ldots, \mathrm{~h}_{\mathrm{r}}\right)\right|_{\mathrm{x}}
$$

Relating Zariski and \mathbb{F}_{q}-Zariski tangent spaces

- $\mathrm{I}=\left\langle\mathrm{g}_{1}, \ldots, \mathrm{~g}_{\mathrm{m}}\right\rangle \subseteq \mathrm{I}(\mathrm{X})$ and $\mathrm{I} \otimes_{\mathbb{F}_{\mathrm{q}}} \overline{\mathbb{F}_{\mathrm{q}}} \subseteq \mathrm{I}(\mathrm{X}) \otimes_{\mathbb{F}_{\mathrm{q}}} \overline{\bar{F}_{\mathrm{q}}} \subseteq \overline{\mathrm{I}}(\mathrm{X})$
imply

$$
\mathrm{T}_{\mathrm{a}}^{\mathbb{F}_{\mathrm{a}}} \mathrm{X} \subseteq \mathrm{~J}\left(\mathrm{~g}_{1}, \ldots, \mathrm{~g}_{\mathrm{m}}\right)_{\mathrm{a}} \quad \text { and }
$$

$\mathrm{T}_{\mathrm{a}} \mathrm{X} \subseteq \mathrm{T}_{\mathrm{a}}^{\mathbb{F}_{\mathrm{q}}} \mathrm{X} \otimes_{\mathbb{F}_{\mathrm{q}}} \overline{\mathbb{F}_{\mathrm{q}}} \subseteq \mathrm{J}\left(\mathrm{g}_{1}, \ldots, \mathrm{~g}_{\mathrm{m}}\right)_{\mathrm{a}} \otimes_{\mathbb{F}_{\mathrm{q}}} \overline{\mathbb{F}_{\mathrm{q}}}$ for $\forall \mathrm{a} \in \mathrm{X}\left(\mathbb{F}_{\mathrm{q}}\right)$.

- Problem: Find a sufficient condition on g_{1}, \ldots, g_{m}, such that

Relating Zariski and \mathbb{F}_{q}-Zariski tangent spaces

- $\mathrm{I}=\left\langle\mathrm{g}_{1}, \ldots, \mathrm{~g}_{\mathrm{m}}\right\rangle \subseteq \mathrm{I}(\mathrm{X})$ and $\mathrm{I} \otimes_{\mathbb{F}_{\mathrm{q}}} \overline{\mathbb{F}_{\mathrm{q}}} \subseteq \mathrm{I}(\mathrm{X}) \otimes_{\mathbb{F}_{\mathrm{q}}} \overline{\mathbb{F}_{\mathrm{q}}} \subseteq \overline{\mathrm{I}}(\mathrm{X})$ imply

$$
\mathrm{T}_{\mathrm{a}}^{\mathbb{F}_{\mathrm{q}}} \mathrm{X} \subseteq \mathrm{~J}\left(\mathrm{~g}_{1}, \ldots, \mathrm{~g}_{\mathrm{m}}\right)_{\mathrm{a}} \quad \text { and }
$$

$\mathrm{T}_{\mathrm{a}} \mathrm{X} \subseteq \mathrm{T}_{\mathrm{a}}^{\mathbb{F}_{\mathrm{q}}} \mathrm{X} \otimes_{\mathbb{F}_{\mathrm{q}}} \overline{\overline{F_{q}}} \subseteq \mathrm{~J}\left(\mathrm{~g}_{1}, \ldots, \mathrm{~g}_{\mathrm{m}}\right)_{\mathrm{a}} \otimes_{\mathbb{F}_{\mathrm{q}}} \overline{\mathbb{F}_{\mathrm{q}}}$ for $\quad \forall \mathrm{a} \in \mathrm{X}\left(\mathbb{F}_{\mathrm{q}}\right)$.

Find a sufficient condition on g_{1}, \ldots, g_{m}, such that

Relating Zariski and \mathbb{F}_{q}-Zariski tangent spaces

- $\mathrm{I}=\left\langle\mathrm{g}_{1}, \ldots, \mathrm{~g}_{\mathrm{m}}\right\rangle \subseteq \mathrm{I}(\mathrm{X})$ and $\mathrm{I} \otimes_{\mathbb{F}_{\mathrm{q}}} \overline{\mathbb{F}_{\mathrm{q}}} \subseteq \mathrm{I}(\mathrm{X}) \otimes_{\mathbb{F}_{\mathrm{q}}} \overline{\bar{F}_{\mathrm{q}}} \subseteq \overline{\mathrm{I}}(\mathrm{X})$ imply

$$
\mathrm{T}_{\mathrm{a}}^{\mathbb{F}_{\mathrm{q}}} \mathrm{X} \subseteq \mathrm{~J}\left(\mathrm{~g}_{1}, \ldots, \mathrm{~g}_{\mathrm{m}}\right)_{\mathrm{a}} \quad \text { and }
$$

$$
\mathrm{T}_{\mathrm{a}} \mathrm{X} \subseteq \mathrm{~T}_{\mathrm{a}}^{\mathbb{F}_{\mathrm{q}}} \mathrm{X} \otimes_{\mathbb{F}_{\mathrm{q}}} \overline{\overline{F_{q}}} \subseteq \mathrm{~J}\left(g_{1}, \ldots, \mathrm{~g}_{\mathrm{m}}\right)_{\mathrm{a}} \otimes_{\mathbb{F}_{\mathrm{q}}}^{\overline{F_{\mathrm{q}}}} \text { for } \forall \mathrm{X}\left(\mathbb{F}_{\mathrm{q}}\right) .
$$

- Problem: Find a sufficient condition on $\mathrm{g}_{1}, \ldots, \mathrm{~g}_{\mathrm{m}}$, such that

$$
\begin{aligned}
& \mathrm{T}_{\mathrm{a}} \mathrm{X}=\mathrm{T}_{\mathrm{a}}^{\mathbb{F}_{\mathrm{q}}} \mathrm{X} \otimes_{\mathbb{F}_{\mathrm{q}}} \overline{\mathbb{F}_{\mathrm{q}}}=\mathrm{J}\left(\mathrm{~g}_{1}, \ldots, \mathrm{~g}_{\mathrm{m}}\right)_{\mathrm{a}} \otimes_{\mathbb{F}_{\mathrm{q}}} \overline{\mathbb{F}_{\mathrm{q}}} \text { and } \\
& \mathrm{T}_{\mathrm{a}}^{\mathbb{F}_{\mathrm{q}}} \mathrm{X}=\mathrm{J}\left(\mathrm{~g}_{1}, \ldots, \mathrm{~g}_{\mathrm{m}}\right)_{\mathrm{a}} \text { for } \quad \forall \mathrm{a} \in \mathrm{~S} \subseteq \mathrm{X}^{\text {smooth }}\left(\mathbb{F}_{\mathrm{q}}\right) .
\end{aligned}
$$

Smooth and singular points

- If $\operatorname{dim}_{\overline{\mathbb{F}_{q}}} \mathrm{~T}_{\mathrm{a}} \mathrm{X}=\operatorname{dim} \mathrm{X}$ then $\mathrm{a} \in \mathrm{X}$ is a smooth point.
- The smooth locus $X^{\text {smooth }}$ of X is non-empty, Zariski open, Zariski dense subset of X.
- The singular locus $X^{\text {sing }}:=X \backslash X^{\text {smooth }}$ is a proper affine subvariety or, equivalently, a proper closed subset of X .

Smooth and singular points

- If $\operatorname{dim}_{\overline{\mathbb{F}_{\mathrm{q}}}} \mathrm{T}_{\mathrm{a}} \mathrm{X}=\operatorname{dim} \mathrm{X}$ then $\mathrm{a} \in \mathrm{X}$ is a smooth point.
- The smooth locus $X^{\text {smooth }}$ of X is non-empty, Zariski open, Zariski dense subset of X.
- The singular locus $\mathrm{X}^{\text {sing }}:=\mathrm{X} \backslash \mathrm{X}^{\text {smooth }}$ is a proper affine subvariety or, equivalently, a proper closed subset of X.

Smooth and singular points

- If $\operatorname{dim}_{\overline{\mathbb{F}_{q}}} \mathrm{~T}_{\mathrm{a}} \mathrm{X}=\operatorname{dim} \mathrm{X}$ then $\mathrm{a} \in \mathrm{X}$ is a smooth point.
- The smooth locus $X^{\text {smooth }}$ of X is non-empty, Zariski open, Zariski dense subset of X.
- The singular locus $X^{\text {sing }}:=X \backslash X^{\text {smooth }}$ is a proper affine subvariety or, equivalently, a proper closed subset of X .

Realization of $J\left(f_{1}, \ldots, f_{n-k}\right)$ as $T^{\mathbb{P}_{q}} \mathrm{X}$

- Let $J\left(f_{1}, \ldots, f_{n-k}\right) \rightarrow \mathbb{F}_{q}^{n}$ be a Jacobian family with $\operatorname{dim}_{\mathbb{F}_{\mathrm{q}}} J\left(\mathrm{f}_{1}, \ldots, \mathrm{f}_{\mathrm{n}-\mathrm{k}}\right)_{\mathrm{a}}=\mathrm{k}$ for $\forall \mathrm{a} \in \mathrm{S}_{\mathrm{o}} \subseteq \mathbb{F}_{\mathrm{q}}^{\mathrm{n}}$, $\mathrm{D}=\max \left(\operatorname{deg}\left(\mathrm{f}_{1}\right), \ldots, \operatorname{deg}\left(\mathrm{f}_{\mathrm{n}-\mathrm{k}}\right)\right), \mathrm{p}=\operatorname{char}\left(\mathbb{F}_{\mathrm{q}}\right)$.

- $\mathrm{S}_{\mathrm{o}} \cap \mathrm{X}=\mathrm{S}_{\mathrm{o}} \cap \mathrm{X}\left(\mathbb{F}_{\mathrm{q}}\right)$ is contained in $\mathrm{X}^{\text {smooth }}\left(\mathbb{F}_{\mathrm{q}}\right)$.

Realization of $J\left(f_{1}, \ldots, f_{n-k}\right)$ as $T^{\mathbb{P}_{q}} \mathrm{X}$

- Let $J\left(f_{1}, \ldots, f_{n-k}\right) \rightarrow \mathbb{F}_{q}^{n}$ be a Jacobian family with $\operatorname{dim}_{\mathbb{F}_{\mathrm{q}}} J\left(\mathrm{f}_{1}, \ldots, \mathrm{f}_{\mathrm{n}-\mathrm{k}}\right)_{\mathrm{a}}=\mathrm{k}$ for $\forall \mathrm{a} \in \mathrm{S}_{\mathrm{o}} \subseteq \mathbb{F}_{\mathrm{q}}^{\mathrm{n}}$,
$\mathrm{D}=\max \left(\operatorname{deg}\left(\mathrm{f}_{1}\right), \ldots, \operatorname{deg}\left(\mathrm{f}_{\mathrm{n}-\mathrm{k}}\right)\right), \mathrm{p}=\operatorname{char}\left(\mathbb{F}_{\mathrm{q}}\right)$.
- Then the polynomials $\mathrm{g}_{\mathrm{s}}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right)=\mathrm{f}_{\mathrm{s}}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right)+\mathrm{x}_{\mathrm{s}}^{\mathrm{pD}}$, $1 \leq \mathrm{s} \leq \mathrm{n}-\mathrm{k}$ provide an affine variety $\mathrm{X}=\mathrm{V}\left(\mathrm{g}_{1}, \ldots, \mathrm{~g}_{\mathrm{n}-\mathrm{k}}\right) \subset{\overline{\mathbb{F}_{\mathrm{q}}}}^{\mathrm{n}}$ of $\operatorname{dim} \mathrm{X}=\mathrm{k}$, such that
- $\mathrm{S}_{\mathrm{o}} \cap \mathrm{X}=\mathrm{S}_{\mathrm{o}} \cap \mathrm{X}\left(\mathbb{F}_{\mathrm{q}}\right)$ is contained in $\mathrm{X}^{\text {smooth }}\left(\mathbb{F}_{\mathrm{q}}\right)$.

Realization of $\mathrm{J}\left(\mathrm{f}_{1}, \ldots, \mathrm{f}_{\mathrm{n}-\mathrm{k}}\right)$ as $\mathrm{T}^{\mathfrak{F}_{q} \mathrm{X}}$

- Let $J\left(f_{1}, \ldots, f_{n-k}\right) \rightarrow \mathbb{F}_{q}^{n}$ be a Jacobian family with $\operatorname{dim}_{\mathbb{F}_{\mathrm{q}}} J\left(\mathrm{f}_{1}, \ldots, \mathrm{f}_{\mathrm{n}-\mathrm{k}}\right)_{\mathrm{a}}=\mathrm{k}$ for $\forall \mathrm{a} \in \mathrm{S}_{\mathrm{o}} \subseteq \mathbb{F}_{\mathrm{q}}^{\mathrm{n}}$,
$\mathrm{D}=\max \left(\operatorname{deg}\left(\mathrm{f}_{1}\right), \ldots, \operatorname{deg}\left(\mathrm{f}_{\mathrm{n}-\mathrm{k}}\right)\right), \mathrm{p}=\operatorname{char}\left(\mathbb{F}_{\mathrm{q}}\right)$.
- Then the polynomials $\mathrm{g}_{\mathrm{s}}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right)=\mathrm{f}_{\mathrm{s}}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right)+\mathrm{x}_{\mathrm{s}}^{\mathrm{pD}}$, $1 \leq \mathrm{s} \leq \mathrm{n}-\mathrm{k}$ provide an affine variety $\mathrm{X}=\mathrm{V}\left(\mathrm{g}_{1}, \ldots, \mathrm{~g}_{\mathrm{n}-\mathrm{k}}\right) \subset{\overline{\mathbb{F}_{\mathrm{q}}}}^{\mathrm{n}}$ of $\operatorname{dim} \mathrm{X}=\mathrm{k}$, such that
- $J\left(f_{1}, \ldots, f_{n-k}\right)_{a}=J\left(g_{1}, \ldots, g_{n-k}\right)_{a}=T_{a}^{\mathbb{F}_{q}} X$ for $\forall a \in S_{o} \cap X$,
- $\mathrm{S}_{\mathrm{o}} \cap \mathrm{X}=\mathrm{S}_{\mathrm{o}} \cap \mathrm{X}\left(\mathbb{F}_{\mathrm{q}}\right)$ is contained in $\mathrm{X}^{\text {smooth }}\left(\mathbb{F}_{\mathrm{q}}\right)$.

Realization of $\mathrm{J}\left(\mathrm{f}_{1}, \ldots, \mathrm{f}_{\mathrm{n}-\mathrm{k}}\right)$ as $\mathrm{T}^{\mathfrak{F}_{q} \mathrm{X}}$

- Let $J\left(f_{1}, \ldots, f_{n-k}\right) \rightarrow \mathbb{F}_{q}^{n}$ be a Jacobian family with $\operatorname{dim}_{\mathbb{F}_{\mathrm{q}}} J\left(\mathrm{f}_{1}, \ldots, \mathrm{f}_{\mathrm{n}-\mathrm{k}}\right)_{\mathrm{a}}=\mathrm{k}$ for $\forall \mathrm{a} \in \mathrm{S}_{\mathrm{o}} \subseteq \mathbb{F}_{\mathrm{q}}^{\mathrm{n}}$,
$\mathrm{D}=\max \left(\operatorname{deg}\left(\mathrm{f}_{1}\right), \ldots, \operatorname{deg}\left(\mathrm{f}_{\mathrm{n}-\mathrm{k}}\right)\right), \mathrm{p}=\operatorname{char}\left(\mathbb{F}_{\mathrm{q}}\right)$.
- Then the polynomials $\mathrm{g}_{\mathrm{s}}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right)=\mathrm{f}_{\mathrm{s}}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right)+\mathrm{x}_{\mathrm{s}}^{\mathrm{pD}}$, $1 \leq \mathrm{s} \leq \mathrm{n}-\mathrm{k}$ provide an affine variety $\mathrm{X}=\mathrm{V}\left(\mathrm{g}_{1}, \ldots, \mathrm{~g}_{\mathrm{n}-\mathrm{k}}\right) \subset{\overline{\mathbb{F}_{\mathrm{q}}}}^{\mathrm{n}}$ of $\operatorname{dim} \mathrm{X}=\mathrm{k}$, such that
- $J\left(f_{1}, \ldots, f_{n-k}\right)_{a}=J\left(g_{1}, \ldots, g_{n-k}\right)_{a}=T_{a}^{\mathbb{F}_{q}} X$ for $\forall a \in S_{o} \cap X$,
- $\mathrm{S}_{\mathrm{o}} \cap \mathrm{X}=\mathrm{S}_{\mathrm{o}} \cap \mathrm{X}\left(\mathbb{F}_{\mathrm{q}}\right)$ is contained in $\mathrm{X}^{\text {smooth }}\left(\mathbb{F}_{\mathrm{q}}\right)$.

MDS-realization of $J\left(f_{1}, \ldots, f_{n-k}\right)$ as $T^{\mathfrak{P}_{q}} \mathrm{X}$

- If $J\left(f_{1}, \ldots, f_{n-k}\right)_{a(\lambda)}$ are $[\mathrm{n}, \mathrm{k}, \mathrm{n}-\mathrm{k}+1]_{\mathrm{q}}$-codes for $1 \leq \lambda \leq \mathrm{q}$,
- $\left\{\mathrm{a}^{(1)}, \ldots, \mathrm{a}^{(\mathrm{q})}\right\} \nsubseteq \mathrm{V}\left(\mathrm{f}_{\mathrm{s}}\right)$ for $\forall 1 \leq \mathrm{s} \leq \mathrm{n}-\mathrm{k}$ and
- there exist $1 \leq \mathrm{j}_{1}<\ldots<\mathrm{j}_{\mathrm{n}-\mathrm{k}} \leq \mathrm{n}$ with different $a_{j_{r}}^{(1)}, \ldots, a_{j_{r}}^{(q)} \in \mathbb{F}_{\mathrm{q}}^{*}$ for all $1 \leq r \leq n-k$,
- then one can find polynomials $\mathrm{g}_{\mathrm{s}}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right)=$

- such that $\mathrm{X}=\mathrm{V}\left(\mathrm{g}_{1}, \ldots, \mathrm{~g}_{\mathrm{n}-\mathrm{k}}\right) \subset{\overline{\mathbb{F}_{\mathrm{q}}}}^{\mathrm{n}}$ is an affine variety of $\operatorname{dim} \mathrm{X}=\mathrm{k}$, defined over \mathbb{F}_{q} with $\mathrm{a}^{(1)}, \ldots, \mathrm{a}^{(\mathrm{q})} \in \mathrm{S}_{\mathrm{o}} \cap \mathrm{X}$,

MDS-realization of $J\left(f_{1}, \ldots, f_{n-k}\right)$ as $T^{\mathfrak{P}_{4}} \mathrm{X}$

- If $J\left(\mathrm{f}_{1}, \ldots, \mathrm{f}_{\mathrm{n}-\mathrm{k}}\right)_{\mathrm{a}(\lambda)}$ are $[\mathrm{n}, \mathrm{k}, \mathrm{n}-\mathrm{k}+1]_{\mathrm{q}}$-codes for $1 \leq \lambda \leq \mathrm{q}$,
- $\left\{\mathrm{a}^{(1)}, \ldots, \mathrm{a}^{(\mathrm{q})}\right\} \nsubseteq \mathrm{V}\left(\mathrm{f}_{\mathrm{s}}\right)$ for $\forall 1 \leq \mathrm{s} \leq \mathrm{n}-\mathrm{k}$ and
- there exist $1 \leq \mathrm{j}_{1}<\ldots<\mathrm{j}_{\mathrm{n}-\mathrm{k}} \leq \mathrm{n}$ with different $a_{j_{\mathrm{r}}}^{(1)}$,

- then one can find polynomials $\mathrm{g}_{s}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right)=$

- such that $\mathrm{X}=\mathrm{V}\left(\mathrm{g}_{1}, \ldots, \mathrm{~g}_{\mathrm{n}-\mathrm{k}}\right) \subset{\overline{\mathbb{F}_{\mathrm{q}}}}^{\mathrm{n}}$ is an affine variety of $\operatorname{dim} \mathrm{X}=\mathrm{k}$, defined over \mathbb{F}_{q} with $\mathrm{a}^{(1)}, \ldots, \mathrm{a}^{(\mathrm{q})} \in \mathrm{S}_{\mathrm{o}} \cap \mathrm{X}$,

MDS-realization of $J\left(f_{1}, \ldots, f_{n-k}\right)$ as $T^{\mathfrak{F}_{4}} \mathrm{X}$

- If $J\left(\mathrm{f}_{1}, \ldots, \mathrm{f}_{\mathrm{n}-\mathrm{k}}\right)_{\mathrm{a}(\lambda)}$ are $[\mathrm{n}, \mathrm{k}, \mathrm{n}-\mathrm{k}+1]_{\mathrm{q}}$-codes for $1 \leq \lambda \leq \mathrm{q}$,
- $\left\{\mathrm{a}^{(1)}, \ldots, \mathrm{a}^{(\mathrm{q})}\right\} \nsubseteq \mathrm{V}\left(\mathrm{f}_{\mathrm{s}}\right)$ for $\forall 1 \leq \mathrm{s} \leq \mathrm{n}-\mathrm{k}$ and
- there exist $1 \leq \mathrm{j}_{1}<\ldots<\mathrm{j}_{\mathrm{n}-\mathrm{k}} \leq \mathrm{n}$ with different $\mathrm{a}_{\mathrm{j}_{\mathrm{r}}}^{(1)}, \ldots, \mathrm{a}_{\mathrm{j}_{\mathrm{r}}}^{(\mathrm{q})} \in \mathbb{F}_{\mathrm{q}}^{*}$ for all $1 \leq \mathrm{r} \leq \mathrm{n}-\mathrm{k}$,
- then one can find polynomials $\mathrm{g}_{\mathrm{s}}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right)=$

- such that $\mathrm{X}=\mathrm{V}\left(\mathrm{g}_{1}, \ldots, \mathrm{~g}_{\mathrm{n}-\mathrm{k}}\right) \subset{\overline{\mathbb{F}_{\mathrm{q}}}}^{\mathrm{n}}$ is an affine variety of $\operatorname{dim} \mathrm{X}=\mathrm{k}$, defined over \mathbb{F}_{q} with $\mathrm{a}^{(1)}$,

MDS-realization of $\mathrm{J}\left(\mathrm{f}_{1}, \ldots, \mathrm{f}_{\mathrm{n}-\mathrm{k}}\right)$ as $\mathrm{T}^{\mathfrak{F}_{\mathrm{q}} \mathrm{X}}$

- If $J\left(\mathrm{f}_{1}, \ldots, \mathrm{f}_{\mathrm{n}-\mathrm{k}}\right)_{\mathrm{a}(\lambda)}$ are $[\mathrm{n}, \mathrm{k}, \mathrm{n}-\mathrm{k}+1]_{\mathrm{q}}$-codes for $1 \leq \lambda \leq \mathrm{q}$,
- $\left\{\mathrm{a}^{(1)}, \ldots, \mathrm{a}^{(\mathrm{q})}\right\} \nsubseteq \mathrm{V}\left(\mathrm{f}_{\mathrm{s}}\right)$ for $\forall 1 \leq \mathrm{s} \leq \mathrm{n}-\mathrm{k}$ and
- there exist $1 \leq \mathrm{j}_{1}<\ldots<\mathrm{j}_{\mathrm{n}-\mathrm{k}} \leq \mathrm{n}$ with different $\mathrm{a}_{\mathrm{j}_{\mathrm{r}}}^{(1)}, \ldots, \mathrm{a}_{\mathrm{j}_{\mathrm{r}}}^{(\mathrm{q})} \in \mathbb{F}_{\mathrm{q}}^{*}$ for all $1 \leq \mathrm{r} \leq \mathrm{n}-\mathrm{k}$,
- then one can find polynomials $\mathrm{g}_{\mathrm{s}}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right)=$

$$
\mathrm{f}_{\mathrm{s}}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right)+\sum_{\delta=\mathrm{D}}^{\mathrm{D}+\mathrm{q}-1} \mathrm{c}_{\mathrm{s}, \delta} \mathrm{x}_{\mathrm{j}_{\mathrm{s}}}^{\mathrm{p} \delta} \in \mathbb{F}_{\mathrm{q}}\left[\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right], 1 \leq \mathrm{s} \leq \mathrm{n}-\mathrm{k}
$$

MDS-realization of $J\left(f_{1}, \ldots, f_{n-k}\right)$ as $T^{\mathbb{F}_{q}} \mathrm{X}$

- If $J\left(\mathrm{f}_{1}, \ldots, \mathrm{f}_{\mathrm{n}-\mathrm{k}}\right)_{\mathrm{a}(\lambda)}$ are $[\mathrm{n}, \mathrm{k}, \mathrm{n}-\mathrm{k}+1]_{\mathrm{q}}$-codes for $1 \leq \lambda \leq \mathrm{q}$,
- $\left\{\mathrm{a}^{(1)}, \ldots, \mathrm{a}^{(\mathrm{q})}\right\} \nsubseteq \mathrm{V}\left(\mathrm{f}_{\mathrm{s}}\right)$ for $\forall 1 \leq \mathrm{s} \leq \mathrm{n}-\mathrm{k}$ and
- there exist $1 \leq \mathrm{j}_{1}<\ldots<\mathrm{j}_{\mathrm{n}-\mathrm{k}} \leq \mathrm{n}$ with different $\mathrm{a}_{\mathrm{j}_{\mathrm{r}}}^{(1)}, \ldots, \mathrm{a}_{\mathrm{j}_{\mathrm{r}}}^{(\mathrm{q})} \in \mathbb{F}_{\mathrm{q}}^{*}$ for all $1 \leq \mathrm{r} \leq \mathrm{n}-\mathrm{k}$,
- then one can find polynomials $\mathrm{g}_{\mathrm{s}}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right)=$

$$
\mathrm{f}_{\mathrm{s}}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right)+\sum_{\delta=\mathrm{D}}^{\mathrm{D}+\mathrm{q}-1} \mathrm{c}_{\mathrm{s}, \delta} \mathrm{x}_{\mathrm{j}_{\mathrm{s}}}^{\mathrm{p} \delta} \in \mathbb{F}_{\mathrm{q}}\left[\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right], 1 \leq \mathrm{s} \leq \mathrm{n}-\mathrm{k},
$$

- such that $\mathrm{X}=\mathrm{V}\left(\mathrm{g}_{1}, \ldots, \mathrm{~g}_{\mathrm{n}-\mathrm{k}}\right) \subset{\overline{\mathbb{F}_{\mathrm{q}}}}^{\mathrm{n}}$ is an affine variety of $\operatorname{dim} \mathrm{X}=\mathrm{k}$, defined over \mathbb{F}_{q} with $\mathrm{a}^{(1)}, \ldots, \mathrm{a}^{(\mathrm{q})} \in \mathrm{S}_{\mathrm{o}} \cap \mathrm{X}$,

MDS-realization of $J\left(f_{1}, \ldots, f_{n-k}\right)$ as $T^{\mathbb{F}_{q}} \mathrm{X}$

- If $J\left(\mathrm{f}_{1}, \ldots, \mathrm{f}_{\mathrm{n}-\mathrm{k}}\right)_{\mathrm{a}(\lambda)}$ are $[\mathrm{n}, \mathrm{k}, \mathrm{n}-\mathrm{k}+1]_{\mathrm{q}}$-codes for $1 \leq \lambda \leq \mathrm{q}$,
- $\left\{\mathrm{a}^{(1)}, \ldots, \mathrm{a}^{(\mathrm{q})}\right\} \nsubseteq \mathrm{V}\left(\mathrm{f}_{\mathrm{s}}\right)$ for $\forall 1 \leq \mathrm{s} \leq \mathrm{n}-\mathrm{k}$ and
- there exist $1 \leq \mathrm{j}_{1}<\ldots<\mathrm{j}_{\mathrm{n}-\mathrm{k}} \leq \mathrm{n}$ with different $\mathrm{a}_{\mathrm{j}_{\mathrm{r}}}^{(1)}, \ldots, \mathrm{a}_{\mathrm{j}_{\mathrm{r}}}^{(\mathrm{q})} \in \mathbb{F}_{\mathrm{q}}^{*}$ for all $1 \leq \mathrm{r} \leq \mathrm{n}-\mathrm{k}$,
- then one can find polynomials $\mathrm{g}_{\mathrm{s}}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right)=$

$$
\mathrm{f}_{\mathrm{s}}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right)+\sum_{\delta=\mathrm{D}}^{\mathrm{D}+\mathrm{q}-1} \mathrm{c}_{\mathrm{s}, \delta} \mathrm{x}_{\mathrm{j}_{\mathrm{s}}}^{\mathrm{p} \delta} \in \mathbb{F}_{\mathrm{q}}\left[\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right], 1 \leq \mathrm{s} \leq \mathrm{n}-\mathrm{k},
$$

- such that $\mathrm{X}=\mathrm{V}\left(\mathrm{g}_{1}, \ldots, \mathrm{~g}_{\mathrm{n}-\mathrm{k}}\right) \subset{\overline{\mathbb{F}_{\mathrm{q}}}}^{\mathrm{n}}$ is an affine variety of $\operatorname{dim} \mathrm{X}=\mathrm{k}$, defined over \mathbb{F}_{q} with $\mathrm{a}^{(1)}, \ldots, \mathrm{a}^{(\mathrm{q})} \in \mathrm{S}_{\mathrm{o}} \cap \mathrm{X}$,
- $J\left(f_{1}, \ldots, f_{n-k}\right)_{a}=J\left(g_{1}, \ldots, g_{n-k}\right)_{a}=T_{a}^{\mathbb{F}_{q}} X$ for $\forall a \in S_{o} \cap X$.

Global geometric characterization of the maximum distance separability of an \mathbb{F}_{q}-Zariski tangent space

- Let $\mathrm{X}=\mathrm{V}\left(\mathrm{g}_{1}, \ldots, \mathrm{~g}_{\mathrm{n}-\mathrm{k}}\right) \subset{\overline{\mathbb{F}_{\mathrm{q}}}}^{\mathrm{n}}, \mathrm{g}_{\mathrm{s}} \in \mathbb{F}_{\mathrm{q}}\left[\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right]$ be an affine variety of $\operatorname{dim} \mathrm{X}=\mathrm{k}$. For $\forall \mathrm{i}=\left(\mathrm{i}_{1}, \ldots, \mathrm{i}_{\mathrm{k}}\right)$ consider the projection $\Pi_{\mathrm{i}}: \mathrm{X} \rightarrow \overline{\mathbb{E}}_{\mathrm{q}}^{\mathrm{k}}, \Pi_{\mathrm{i}}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right)=\left(\mathrm{x}_{\mathrm{i}}, \ldots, \mathrm{x}_{\mathrm{ik}}\right)$.
- If $T_{a}^{\mathbb{F}^{q}} \mathrm{X}=J\left(g_{1}, \ldots, g_{n-k}\right)_{a}, a \in X^{\text {smooth }}\left(\mathbb{F}_{q}\right)$ is an $[\mathrm{n}, \mathrm{k}, \mathrm{n}-\mathrm{k}+1]_{\mathrm{q}}$-code then the projections Π_{i} are dominant for all $\mathrm{i}=\left(\mathrm{i}_{1}, \ldots, \mathrm{i}_{\mathrm{k}}\right), 1 \leq \mathrm{i}_{1}<\ldots<\mathrm{i}_{\mathrm{k}} \leq \mathrm{n}$.
- If Π_{i} are dominant for all $\mathrm{i}=\left(\mathrm{i}_{1}, \ldots, \mathrm{i}_{\mathrm{k}}\right)$ then there exists $N \in \mathbb{N}$, depending on X and on the embedding of X in $\overline{\mathbb{F}}^{n}{ }^{n}$, such that for any $m \in \mathbb{N}$ with $q^{m}>N$ the spaces $\mathrm{T}_{\mathrm{a}}^{\mathbb{F}^{\mathrm{m}}} \mathrm{X}=J\left(\mathrm{~g}_{1}, \ldots, \mathrm{~g}_{\mathrm{n}-\mathrm{k}}\right) \mathrm{a}, \mathrm{a} \in \mathrm{X}^{\text {smooth }}\left(\mathbb{F}_{\mathrm{q}^{\mathrm{m}}}\right)$ are
$[\mathrm{n}, \mathrm{k}, \mathrm{n}-\mathrm{k}+1]_{\mathrm{q}^{\mathrm{m}}-\text { codes }}$.

Global geometric characterization of the maximum distance separability of an \mathbb{F}_{q}-Zariski tangent space

- Let $\mathrm{X}=\mathrm{V}\left(\mathrm{g}_{1}, \ldots, \mathrm{~g}_{\mathrm{n}-\mathrm{k}}\right) \subset \overline{\mathbb{F}_{\mathrm{q}}}{ }^{\mathrm{n}}, \mathrm{g}_{\mathrm{s}} \in \mathbb{F}_{\mathrm{q}}\left[\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right]$ be an affine variety of $\operatorname{dim} \mathrm{X}=\mathrm{k}$. For $\forall \mathrm{i}=\left(\mathrm{i}_{1}, \ldots, \mathrm{i}_{\mathrm{k}}\right)$ consider the projection $\Pi_{\mathrm{i}}: \mathrm{X} \rightarrow{\overline{\mathbb{F}_{\mathrm{q}}}}^{\mathrm{k}}, \Pi_{\mathrm{i}}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right)=\left(\mathrm{x}_{\mathrm{i}_{1}}, \ldots, \mathrm{x}_{\mathrm{i}_{\mathrm{k}}}\right)$.
 for all $\mathrm{i}=\left(\mathrm{i}_{1}, \ldots, \mathrm{i}_{\mathrm{k}}\right), 1 \leq \mathrm{i}_{1}<\ldots<\mathrm{i}_{\mathrm{k}} \leq \mathrm{n}$.
- If Π_{i} are dominant for all $\mathrm{i}=\left(\mathrm{i}_{1}, \ldots, \mathrm{i}_{\mathrm{k}}\right)$ then there exists $\mathrm{N} \in \mathbb{N}$, depending on X and on the embedding of X in ${\overline{\mathbb{F}_{\mathrm{q}}}}^{\mathrm{n}}$ such that for any $m \in \mathbb{N}$ with $q^{m}>N$ the spaces $\mathrm{T}_{\mathrm{a}}{ }^{\mathrm{T}} \mathrm{q}^{\mathrm{m}} \mathrm{X}=J\left(g_{1}, \ldots, g_{\mathrm{n}-\mathrm{k}}\right)_{\mathrm{a}}, a \in \mathrm{X}^{\text {smooth }}\left(\mathbb{F}_{\mathrm{q}^{\mathrm{m}}}\right)$ are $[\mathrm{n}, \mathrm{k}, \mathrm{n}-\mathrm{k}+1]_{\mathrm{q}^{\mathrm{m}}}$-codes.

Global geometric characterization of the maximum distance separability of an \mathbb{F}_{q}-Zariski tangent space

- Let $\mathrm{X}=\mathrm{V}\left(\mathrm{g}_{1}, \ldots, \mathrm{~g}_{\mathrm{n}-\mathrm{k}}\right) \subset{\overline{\mathbb{F}_{\mathrm{q}}}}^{\mathrm{n}}, \mathrm{g}_{\mathrm{s}} \in \mathbb{F}_{\mathrm{q}}\left[\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right]$ be an affine variety of $\operatorname{dim} \mathrm{X}=\mathrm{k}$. For $\forall \mathrm{i}=\left(\mathrm{i}_{1}, \ldots, \mathrm{i}_{\mathrm{k}}\right)$ consider the projection $\Pi_{\mathrm{i}}: \mathrm{X} \rightarrow{\overline{\mathbb{F}_{\mathrm{q}}}}^{\mathrm{k}}, \Pi_{\mathrm{i}}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right)=\left(\mathrm{x}_{\mathrm{i}_{1}}, \ldots, \mathrm{x}_{\mathrm{i}_{\mathrm{k}}}\right)$.
- If $T_{a}^{\mathbb{F}_{q}} X=J\left(g_{1}, \ldots, g_{n-k}\right)_{a}, a \in X^{\text {smooth }}\left(\mathbb{F}_{q}\right)$ is an $[\mathrm{n}, \mathrm{k}, \mathrm{n}-\mathrm{k}+1]_{\mathrm{q}}$-code then the projections Π_{i} are dominant for all $\mathrm{i}=\left(\mathrm{i}_{1}, \ldots, \mathrm{i}_{\mathrm{k}}\right), 1 \leq \mathrm{i}_{1}<\ldots<\mathrm{i}_{\mathrm{k}} \leq \mathrm{n}$.
- If Π_{i} are dominant for all $\mathrm{i}=\left(\mathrm{i}_{1}, \ldots, \mathrm{i}_{\mathrm{k}}\right)$ then there exists $N \in \mathbb{N}$, depending on X and on the embedding of X in $\overline{\mathbb{F}}^{n} n$ such that for any $m \in \mathbb{N}$ with $q^{m}>N$ the spaces $\mathrm{T}_{\mathrm{a}}^{\mathrm{F}^{\mathrm{m}}} \mathrm{X}=J\left(\mathrm{~g}_{1}, \ldots, \mathrm{~g}_{\mathrm{n}-\mathrm{k}}\right)_{\mathrm{a}}, \mathrm{a} \in \mathrm{X}^{\text {smooth }}\left(\mathbb{F}_{\mathrm{q}^{\mathrm{m}}}\right)$ are $[\mathrm{n}, \mathrm{k}, \mathrm{n}-\mathrm{k}+1]_{\mathrm{q}^{\mathrm{m}}-\text { codes. }}$.

Global geometric characterization of the maximum distance separability of an \mathbb{F}_{q}-Zariski tangent space

- Let $\mathrm{X}=\mathrm{V}\left(\mathrm{g}_{1}, \ldots, \mathrm{~g}_{\mathrm{n}-\mathrm{k}}\right) \subset{\overline{\mathbb{F}_{\mathrm{q}}}}^{\mathrm{n}}, \mathrm{g}_{\mathrm{s}} \in \mathbb{F}_{\mathrm{q}}\left[\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right]$ be an affine variety of $\operatorname{dim} \mathrm{X}=\mathrm{k}$. For $\forall \mathrm{i}=\left(\mathrm{i}_{1}, \ldots, \mathrm{i}_{\mathrm{k}}\right)$ consider the projection $\Pi_{\mathrm{i}}: \mathrm{X} \rightarrow{\overline{\mathbb{F}_{\mathrm{q}}}}^{\mathrm{k}}, \Pi_{\mathrm{i}}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right)=\left(\mathrm{x}_{\mathrm{i}_{1}}, \ldots, \mathrm{x}_{\mathrm{i}_{\mathrm{k}}}\right)$.
- If $T_{a}^{\mathbb{F}_{q}} X=J\left(g_{1}, \ldots, g_{n-k}\right)_{a}, a \in X^{\text {smooth }}\left(\mathbb{F}_{q}\right)$ is an $[\mathrm{n}, \mathrm{k}, \mathrm{n}-\mathrm{k}+1]_{\mathrm{q}}$-code then the projections Π_{i} are dominant for all $\mathrm{i}=\left(\mathrm{i}_{1}, \ldots, \mathrm{i}_{\mathrm{k}}\right), 1 \leq \mathrm{i}_{1}<\ldots<\mathrm{i}_{\mathrm{k}} \leq \mathrm{n}$.
- If Π_{i} are dominant for all $i=\left(i_{1}, \ldots, i_{k}\right)$ then there exists $\mathrm{N} \in \mathbb{N}$, depending on X and on the embedding of X in ${\overline{\mathbb{F}_{\mathrm{q}}}}^{\mathrm{n}}$, such that for any $m \in \mathbb{N}$ with $q^{m}>N$ the spaces $\mathrm{T}_{\mathrm{a}}^{\mathbb{F}_{\mathrm{q}^{\mathrm{m}}}} \mathrm{X}=\mathrm{J}\left(\mathrm{g}_{1}, \ldots, \mathrm{~g}_{\mathrm{n}-\mathrm{k}}\right)_{\mathrm{a}}, \mathrm{a} \in \mathrm{X}^{\text {smooth }}\left(\mathbb{F}_{\mathrm{q}^{\mathrm{m}}}\right)$ are $[\mathrm{n}, \mathrm{k}, \mathrm{n}-\mathrm{k}+1]_{\mathrm{q}^{\mathrm{m}}}$-codes.

The ideal of the leading terms

- Let us endow the monomials of x_{1}, \ldots, x_{n} by the lexicographic order $\mathrm{x}_{1}^{\lambda_{1}} \ldots \mathrm{x}_{\mathrm{n}}^{\lambda_{\mathrm{n}}} \succ \mathrm{x}_{1}^{\mu_{1}} \ldots \mathrm{x}_{\mathrm{n}}^{\mu_{\mathrm{n}}}$ if and only if there is $1 \leq \mathrm{j} \leq \mathrm{n}$ with $\lambda_{1}=\mu_{1}, \ldots, \lambda_{\mathrm{j}-1}=\mu_{\mathrm{j}-1}, \lambda_{\mathrm{j}}>\mu_{\mathrm{j}}$.
- If $\mathrm{I} \triangleleft \mathbb{F}_{\mathrm{q}}\left[\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right]$ then
$\operatorname{LT}(\mathrm{I})=\langle\operatorname{LT}(\mathrm{f}) \mid \mathrm{f} \in \mathrm{I}\rangle \triangleleft \mathbb{F}_{\mathrm{q}}\left[\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right]$ is called the ideal of
the leading terms of I.

The ideal of the leading terms

- Let us endow the monomials of $\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}$ by the lexicographic order $\mathrm{x}_{1}^{\lambda_{1}} \ldots \mathrm{x}_{\mathrm{n}}^{\lambda_{\mathrm{n}}} \succ \mathrm{x}_{1}^{\mu_{1}} \ldots \mathrm{x}_{\mathrm{n}}^{\mu_{\mathrm{n}}}$ if and only if there is $1 \leq \mathrm{j} \leq \mathrm{n}$ with $\lambda_{1}=\mu_{1}, \ldots, \lambda_{\mathrm{j}-1}=\mu_{\mathrm{j}-1}, \lambda_{\mathrm{j}}>\mu_{\mathrm{j}}$.
- If $\mathrm{I} \triangleleft \mathbb{F}_{\mathrm{q}}\left[\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right]$ then
$\operatorname{LT}(\mathrm{I})=\langle\operatorname{LT}(\mathrm{f}) \mid \mathrm{f} \in \mathrm{I}\rangle \triangleleft \mathbb{F}_{\mathrm{q}}\left[\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right]$ is called the ideal of the leading terms of I.

Groebner basis

- If $\operatorname{LT}(\mathrm{I})=\left\langle\operatorname{LT}\left(\gamma_{1}\right), \ldots, \operatorname{LT}\left(\gamma_{\mathrm{s}}\right)\right\rangle \triangleleft \mathbb{F}_{\mathrm{q}}\left[\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right]$ for some polynomials $\gamma_{1}, \ldots, \gamma_{\mathrm{s}} \in \mathrm{I}$ then $\mathrm{I}=\left\langle\gamma_{1}, \ldots, \gamma_{\mathrm{s}}\right\rangle$ and $\mathrm{G}=\left\{\gamma_{1}, \ldots, \gamma_{\mathrm{s}}\right\}$ is a Groebner basis of I with respect to the considered monomial order.
 order.

Groebner basis

- If $\operatorname{LT}(\mathrm{I})=\left\langle\operatorname{LT}\left(\gamma_{1}\right), \ldots, \operatorname{LT}\left(\gamma_{\mathrm{s}}\right)\right\rangle \triangleleft \mathbb{F}_{\mathrm{q}}\left[\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right]$ for some polynomials $\gamma_{1}, \ldots, \gamma_{\mathrm{s}} \in \mathrm{I}$ then $\mathrm{I}=\left\langle\gamma_{1}, \ldots, \gamma_{\mathrm{s}}\right\rangle$ and $\mathrm{G}=\left\{\gamma_{1}, \ldots, \gamma_{\mathrm{s}}\right\}$ is a Groebner basis of I with respect to the considered monomial order.
- $\Pi_{(\mathrm{n}-\mathrm{k}+1, \ldots, \mathrm{n})}: \mathrm{V}(\mathrm{I}) \rightarrow{\overline{\mathbb{F}_{\mathrm{q}}}}^{\mathrm{k}}, \Pi\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right)=\left(\mathrm{x}_{\mathrm{n}-\mathrm{k}+1}, \ldots, \mathrm{x}_{\mathrm{n}}\right)$ is dominant if and only if $\mathrm{G} \cap \mathbb{F}_{\mathrm{q}}\left[\mathrm{x}_{\mathrm{n}-\mathrm{k}+1}, \ldots, \mathrm{x}_{\mathrm{n}}\right]=\emptyset$ for any Groebner basis G of I with respect to the lexicographic order.

The designed minimum distance of a tangent space

- Let $\mathrm{X}=\mathrm{V}\left(\mathrm{g}_{1}, \ldots, \mathrm{~g}_{\mathrm{n}-\mathrm{k}}\right) \subset{\overline{\mathbb{F}_{\mathrm{q}}}}^{\mathrm{n}}, \mathrm{g}_{\mathrm{s}} \in \mathbb{F}_{\mathrm{q}}\left[\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right]$ be an affine variety of $\operatorname{dim} \mathrm{X}=\mathrm{k}$. For $\forall \mu=\left(\mu_{1}, \ldots, \mu_{\mathrm{n}-\mathrm{d}}\right)$ consider $\Pi_{\mu}: X \rightarrow \overline{\mathbb{F}}^{\mathrm{n}-\mathrm{d}}, \Pi_{\mu}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right)=\left(\mathrm{x}_{\mu_{1}}, \ldots, \mathrm{x}_{\mu_{n-\mathrm{d}}}\right)$.
- If $T_{a}^{\mathbb{F}_{\mathrm{q}}} \mathrm{X}=\mathrm{J}\left(\mathrm{g}_{1}, \ldots, \mathrm{~g}_{\mathrm{n}-\mathrm{k}}\right)_{\mathrm{a}}, \mathrm{a} \in \mathrm{X}^{\text {smooth }}\left(\mathbb{F}_{\mathrm{q}}\right)$ is an $\left[\mathrm{n}, \mathrm{k}, \mathrm{d}_{\mathrm{o}}\right]_{\mathrm{q}}$-code with $\mathrm{d}_{\mathrm{o}}>\mathrm{d}$ then $\operatorname{dim} \Pi_{\mu}(\mathrm{X})=\mathrm{k}$ for $\forall \mu$.
- If $\operatorname{dim} \Pi_{\mu}(\mathrm{X})=\mathrm{k}$ for $\forall \mu$ then there exists $\mathrm{N} \in \mathbb{N}$, such that for any $m \in \mathbb{N}$ with $q^{m}>N$ the spaces
$\mathrm{T}_{\mathrm{a}}^{\mathbb{F}^{\mathrm{m}}} \mathrm{X}=J\left(\mathrm{~g}_{1}, \ldots, \mathrm{~g}_{\mathrm{n}-\mathrm{k}}\right)_{\mathrm{a}}, \mathrm{a} \in \mathrm{X}^{\text {smooth }}\left(\mathbb{F}_{\mathrm{q}^{\mathrm{m}}}\right)$ are
$\left[\mathrm{n}, \mathrm{k}, \mathrm{d}_{\mathrm{o}}\right]_{\mathrm{q}^{\mathrm{m}-\text { codes }}}$ with $\mathrm{d}_{\mathrm{o}}>\mathrm{d}$.

The designed minimum distance of a tangent space

- Let $\mathrm{X}=\mathrm{V}\left(\mathrm{g}_{1}, \ldots, \mathrm{~g}_{\mathrm{n}-\mathrm{k}}\right) \subset{\overline{\mathbb{F}_{\mathrm{q}}}}^{\mathrm{n}}, \mathrm{g}_{\mathrm{s}} \in \mathbb{F}_{\mathrm{q}}\left[\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right]$ be an affine variety of $\operatorname{dim} \mathrm{X}=\mathrm{k}$. For $\forall \mu=\left(\mu_{1}, \ldots, \mu_{\mathrm{n}-\mathrm{d}}\right)$ consider $\Pi_{\mu}: \mathrm{X} \rightarrow{\overline{\mathbb{F}_{\mathrm{q}}}}^{\mathrm{n}-\mathrm{d}}, \Pi_{\mu}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right)=\left(\mathrm{x}_{\mu_{1}}, \ldots, \mathrm{x}_{\mu_{\mathrm{n}-\mathrm{d}}}\right)$.
- If $\mathrm{T}_{\mathrm{a}}^{\mathbb{F}_{\mathrm{q}}} \mathrm{X}=\mathrm{J}\left(\mathrm{g}_{1}, \ldots, \mathrm{~g}_{\mathrm{n}-\mathrm{k}}\right)_{\mathrm{a}}, \mathrm{a} \in \mathrm{X}^{\text {smooth }}\left(\mathbb{F}_{\mathrm{q}}\right)$ is an
$\left[\mathrm{n}, \mathrm{k}, \mathrm{d}_{\mathrm{o}}\right]_{\mathrm{q}^{-}}$-code with $\mathrm{d}_{\mathrm{o}}>\mathrm{d}$ then $\operatorname{dim} \Pi_{\mu}(\mathrm{X})=\mathrm{k}$ for $\forall \mu$.
- If $\operatorname{dim} \Pi_{\mu}(\mathrm{X})=\mathrm{k}$ for $\forall \mu$ then there exists $\mathrm{N} \in \mathbb{N}$, such that for any $m \in \mathbb{N}$ with $q^{m}>N$ the spaces $T_{a}^{\mathbb{T}} q^{m} X=J\left(g_{1}, \ldots, g_{n-k}\right)_{a}, a \in X^{\text {smooth }}\left(\mathbb{F}_{q^{m}}\right)$ are $\left[\mathrm{n}, \mathrm{k}, \mathrm{d}_{\mathrm{o}}\right]_{\mathrm{q}^{\mathrm{m}}}$-codes with $\mathrm{d}_{\mathrm{o}}>\mathrm{d}$.

The designed minimum distance of a tangent space

- Let $\mathrm{X}=\mathrm{V}\left(\mathrm{g}_{1}, \ldots, \mathrm{~g}_{\mathrm{n}-\mathrm{k}}\right) \subset \overline{\mathbb{F}_{\mathrm{q}}}{ }^{\mathrm{n}}, \mathrm{g}_{\mathrm{s}} \in \mathbb{F}_{\mathrm{q}}\left[\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right]$ be an affine variety of $\operatorname{dim} \mathrm{X}=\mathrm{k}$. For $\forall \mu=\left(\mu_{1}, \ldots, \mu_{\mathrm{n}-\mathrm{d}}\right)$ consider $\Pi_{\mu}: \mathrm{X} \rightarrow{\overline{\mathbb{F}_{\mathrm{q}}}}^{\mathrm{n}-\mathrm{d}}, \Pi_{\mu}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right)=\left(\mathrm{x}_{\mu_{1}}, \ldots, \mathrm{x}_{\mu_{\mathrm{n}-\mathrm{d}}}\right)$.
- If $\mathrm{T}_{\mathrm{a}}^{\mathbb{F}_{\mathrm{q}}} \mathrm{X}=\mathrm{J}\left(\mathrm{g}_{1}, \ldots, \mathrm{~g}_{\mathrm{n}-\mathrm{k}}\right)_{\mathrm{a}}$, $a \in \mathrm{X}^{\text {smooth }}\left(\mathbb{F}_{\mathrm{q}}\right)$ is an $\left[\mathrm{n}, \mathrm{k}, \mathrm{d}_{\mathrm{o}}\right]_{\mathrm{q}}$-code with $\mathrm{d}_{\mathrm{o}}>\mathrm{d}$ then $\operatorname{dim} \Pi_{\mu}(\mathrm{X})=\mathrm{k}$ for $\forall \mu$.
- If $\operatorname{dim} \Pi_{\mu}(\mathrm{X})=\mathrm{k}$ for $\forall \mu$ then there exists $\mathrm{N} \in \mathbb{N}$, such that
 $\left[\mathrm{n}, \mathrm{k}, \mathrm{d}_{\mathrm{o}}\right]_{\mathrm{q}^{\mathrm{m}}}$-codes with $\mathrm{d}_{\mathrm{o}}>\mathrm{d}$.

The designed minimum distance of a tangent space

- Let $\mathrm{X}=\mathrm{V}\left(\mathrm{g}_{1}, \ldots, \mathrm{~g}_{\mathrm{n}-\mathrm{k}}\right) \subset \overline{\mathbb{F}_{\mathrm{q}}}{ }^{\mathrm{n}}, \mathrm{g}_{\mathrm{s}} \in \mathbb{F}_{\mathrm{q}}\left[\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right]$ be an affine variety of $\operatorname{dim} \mathrm{X}=\mathrm{k}$. For $\forall \mu=\left(\mu_{1}, \ldots, \mu_{\mathrm{n}-\mathrm{d}}\right)$ consider $\Pi_{\mu}: \mathrm{X} \rightarrow{\overline{\mathbb{F}_{\mathrm{q}}}}^{\mathrm{n}-\mathrm{d}}, \Pi_{\mu}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right)=\left(\mathrm{x}_{\mu_{1}}, \ldots, \mathrm{x}_{\mu_{\mathrm{n}-\mathrm{d}}}\right)$.
- If $\mathrm{T}_{\mathrm{a}}^{\mathbb{F}_{\mathrm{q}}} \mathrm{X}=\mathrm{J}\left(\mathrm{g}_{1}, \ldots, \mathrm{~g}_{\mathrm{n}-\mathrm{k}}\right)_{\mathrm{a}}$, $a \in \mathrm{X}^{\text {smooth }}\left(\mathbb{F}_{\mathrm{q}}\right)$ is an $\left[\mathrm{n}, \mathrm{k}, \mathrm{d}_{\mathrm{o}}\right]_{\mathrm{q}}$-code with $\mathrm{d}_{\mathrm{o}}>\mathrm{d}$ then $\operatorname{dim} \Pi_{\mu}(\mathrm{X})=\mathrm{k}$ for $\forall \mu$.
- If $\operatorname{dim} \Pi_{\mu}(\mathrm{X})=\mathrm{k}$ for $\forall \mu$ then there exists $\mathrm{N} \in \mathbb{N}$, such that for any $\mathrm{m} \in \mathbb{N}$ with $\mathrm{q}^{\mathrm{m}}>\mathrm{N}$ the spaces $\mathrm{T}_{\mathrm{a}}^{\mathbb{F}_{\mathrm{q}}} \mathrm{X}=\mathrm{J}\left(\mathrm{g}_{1}, \ldots, \mathrm{~g}_{\mathrm{n}-\mathrm{k}}\right)_{\mathrm{a}}, \mathrm{a} \in \mathrm{X}^{\text {smooth }}\left(\mathbb{F}_{\mathrm{q}^{\mathrm{m}}}\right)$ are $\left[\mathrm{n}, \mathrm{k}, \mathrm{d}_{\mathrm{o}}\right]_{\mathrm{q}^{\mathrm{m}}}$-codes with $\mathrm{d}_{\mathrm{o}}>\mathrm{d}$.

Thank you very much for your attention!

