New 5-dimensional linear codes over \mathbb{F}_{5}

Yuuki Kageyama (Joint work with Tatsuya Maruta)

Department of Mathematics and Information Sciences

Osaka Prefecture University

Contents

1. Optimal linear codes problem
2. Geometric method
3. Projective dual
4. Geometric puncturing
5. Quasi-cyclic codes
6. Construction of new codes
7. New results on $n_{5}(5, d)$

1. Optimal linear codes problem

\mathbb{F}_{q} : the field of q elements
$\mathbb{F}_{q}^{n}=\left\{\left(a_{1}, \cdots, a_{n}\right) \mid a_{i} \in \mathbb{F}_{q}\right\}$
For $\boldsymbol{a}=\left(a_{1}, \cdots, a_{n}\right), \boldsymbol{b}=\left(b_{1}, \cdots, b_{n}\right) \in \mathbb{F}_{q}^{n}$,
the (Hamming) distance between a and b is

$$
d(\boldsymbol{a}, \boldsymbol{b})=\left|\left\{i \mid a_{i} \neq b_{i}\right\}\right|
$$

The weight of $a=\left(a_{1}, \cdots, a_{n}\right) \in \mathbb{F}_{q}^{n}$ is

$$
\begin{aligned}
w t(\boldsymbol{a}) & =\left|\left\{i \mid a_{i} \neq 0\right\}\right| \\
& =d(\boldsymbol{a}, \mathbf{0})
\end{aligned}
$$

An $[n, k, d]_{q}$ code \mathcal{C} means a k-dimensional subspace of \mathbb{F}_{q}^{n} with minimum distance d,

$$
\begin{aligned}
d & =\min \{d(a, b) \mid a, b \in \mathcal{C}, a \neq b\} \\
& =\min \{w t(a) \mid a \in \mathcal{C}, a \neq 0\} .
\end{aligned}
$$

For an $[n, k, d]_{q}$ code \mathcal{C}, a $k \times n$ matrix G whose rows form a basis of \mathcal{C} is a generator matrix.

The weight distribution (w.d.) of \mathcal{C} is the list of numbers $A_{i}>0$, where

$$
A_{i}=|\{c \in \mathcal{C} \mid w t(c)=i\}|>0
$$

The weight distribution

$$
\left(A_{0}, A_{d}, \ldots\right)=(1, \alpha, \ldots)
$$

is also expressed as

$$
0^{1} d^{\alpha} \ldots
$$

A good $[n, k, d]_{q}$ code will have small n for fast transmission of messages, large k to enable transmission of a wide variety of messages, and
large d to correct many errors.

The problem to optimize one of the parameters n, k, d for given the other two is called "optimal linear codes problem" (Hill 1992).

Problem 1. Find $n_{q}(k, d)$, the smallest value of n for which an $[n, k, d]_{q}$ code exists.

Problem 2. Find $d_{q}(n, k)$, the largest value of d for which an $[n, k, d]_{q}$ code exists.

An $[n, k, d]_{q}$ code is called optimal if

$$
n=n_{q}(k, d) \text { or } d=d_{q}(n, k)
$$

We deal with Problem 1 for $q=5, k=5$.

The Griesmer bound

$$
n \geq g_{q}(k, d):=\sum_{i=0}^{k-1}\left\lceil\frac{d}{q^{i}}\right\rceil
$$

where $\lceil x\rceil$ is a smallest integer $\geq x$.

An $[n, k, d]_{q}$ code attaining the Griesmer bound is called a Griesmer code.

Griesmer codes are optimal.

Known results for $q=5$

The exact values of $n_{5}(k, d)$ are determined for all d for $k \leq 3$. $n_{5}(4, d)$ is not determined yet only for

$$
d=81,82,161,162 .
$$

$n_{5}(5, d)$ is not determined yet for many d, see Maruta's website:
www.mi.s.osakafu-u.ac.jp/~maruta/griesmer.htm.

2. The geometric method

$\mathrm{PG}(r, q)$: projective space of dim. r over \mathbb{F}_{q}
j-flat: j-dim. projective subspace of $\mathrm{PG}(r, q)$
0 -flat: point 1-flat: line
2-flat: plane $(r-1)$-flat: hyperplane

$$
\theta_{j}:=\left(q^{j+1}-1\right) /(q-1)
$$

\mathcal{C} : an $[n, k, d]_{q}$ code generated by G.
The columns of G can be considered as a multiset of n points in $\Sigma=\mathrm{PG}(k-1, q)$ denoted also by \mathcal{C}.
$\mathcal{F}_{j}:=$ the set of j-flats of $\mathrm{PG}(k-1, q)$
i-point: a point of Σ with multiplicity i in \mathcal{C}. γ_{0} : the maximum multiplicity of a point from Σ in \mathcal{C}
C_{i} : the set of i-points in $\Sigma, 0 \leq i \leq \gamma_{0}$.
$\lambda_{i}:=\left|C_{i}\right|, 0 \leq i \leq \gamma_{0}$.

For ${ }^{\forall} S \subset \Sigma$, the multiplicity of S w.r.t. \mathcal{C}, denoted by $m_{\mathcal{C}}(S)$, is defined by

$$
m_{\mathcal{C}}(S)=\sum_{i=1}^{\gamma_{0}} i \cdot\left|S \cap C_{i}\right| .
$$

Then we obtain the partition

$$
\begin{aligned}
& \Sigma=C_{0} \cup C_{1} \cup \cdots \cup C_{\gamma_{0}} \text { such that } \\
& n=m_{\mathcal{C}}(\Sigma) \\
& n-d=\max \left\{m_{\mathcal{C}}(\pi) \mid \pi \in \mathcal{F}_{k-2}\right\} .
\end{aligned}
$$

Conversely such a partition of Σ as above gives an $[n, k, d]_{q}$ code in the natural manner.
i-hyperplane: a hyperplane π with $i=m_{\mathcal{C}}(\pi)$. $a_{i}:=\left|\left\{\pi \in \mathcal{F}_{k-2} \mid m_{\mathcal{C}}(\pi)=i\right\}\right|$.

The list of a_{i} 's is the spectrum of \mathcal{C}.

$$
a_{i}=A_{n-i} /(q-1) \text { for } 0 \leq i \leq n-d .
$$

3. Projective dual

An $[n, k, d]_{q}$ code is m-divisible (or m-div) if $\exists m>1 \quad$ s.t. $\quad A_{i}>0 \Rightarrow m \mid i$.

Ex. 1. There exists a 5-div $[36,5,25]_{5}$ code with w.d. $0^{1} 25^{804} 30^{2260} 35^{60}$. The spectrum is $\left(a_{1}, a_{6}, a_{11}\right)=(15,565,201)$.

Lemma 1. (Projective dual)
\mathcal{C} : m-div $[n, k, d]_{q}$ code, $q=p^{h}, p$ prime. $m=p^{r}$ for some $1 \leq r<h(k-2), \lambda_{0}>0$.
$\Rightarrow \exists \mathcal{C}^{*}: t$-div $\left[n^{*}, k, d^{*}\right]_{q}$ code with

$$
\begin{aligned}
& t=q^{k-2} / m \\
& n^{*}=n t q-\frac{d}{m} \theta_{k-1} \\
& d^{*}=n^{*}-n t+\frac{d}{m} \theta_{k-2}=((n-d) q-n) t
\end{aligned}
$$

A generator matrix for \mathcal{C}^{*} is given by considering ($n-d-j m$)-hyperplanes as j-points in the dual space Σ^{*} of Σ for $0 \leq j \leq w-1$.

Ex. 2.
\mathcal{C} 5-div $[36,5,25]_{5}$
with spec. $\left(a_{1}, a_{6}, a_{11}\right)=(15,565,201)$
\downarrow projetive dual
\mathcal{C}^{*} 25-div $[595,5,475]_{5} \quad\left(n^{*}=2 a_{1}+a_{6}\right)$
with spec. $\left(a_{95}^{*}, a_{120}^{*}\right)=(36,745)$

4. Geometric puncturing

The puncturing from a given $[n, k, d]_{q}$ code by deleting the coordinates corresponding to some geometric object in $\Sigma=\mathrm{PG}(k-1, q)$ is geometric puncturing.

Lemma 2. $\mathcal{C}:[n, k, d]_{q}$ code $\cup_{i=0}^{\gamma_{0}} C_{i}$: the partition of Σ obtained from \mathcal{C}. If $\cup_{i \geq 1} C_{i}$ contains a t-flat Π and if $d>q^{t}$ $\Rightarrow \exists \mathcal{C}^{\prime}:\left[n-\theta_{t}, k, d-q^{t}\right]_{q}$ code.

5. Quasi-cyclic codes

$R=\mathbb{F}_{q}[x] /\left(x^{N}-1\right)$: ring of polynomials over \mathbb{F}_{q} modulo $x^{N}-1$.
We associate $\left(a_{0}, a_{1}, \ldots, a_{N-1}\right) \in \mathbb{F}_{q}^{N}$
with $a_{0}+a_{1} x+\cdots+a_{N-1} x^{N-1} \in R$.

For $\mathrm{g}=\left(g_{1}(x), \cdots, g_{m}(x)\right) \in R^{m}$, an ideal $C \mathrm{~g}$ of R^{m} defined by

$$
C_{\mathrm{g}}=\left\{\left(r(x) g_{1}(x), \cdots, r(x) g_{m}(x)\right) \mid r(x) \in R\right\}
$$

is called the 1-generator quasi-cyclic (QC)
code with generator g.

When $m=1, \mathcal{C}=C_{\mathrm{g}}$ is called cyclic satisfying that $c(x) \in \mathcal{C}$ implies $x \cdot c(x) \in \mathcal{C}$,
i.e., $\quad\left(c_{0}, c_{1}, \ldots, c_{N-1}\right) \in \mathcal{C}$
$\Rightarrow \quad\left(c_{N-1}, c_{0}, c_{1}, \ldots, c_{N-2}\right) \in \mathcal{C}$.

Let $g(x)=x^{k}-\Sigma_{i=0}^{k-1} g_{i} x^{i} \in \mathbb{F}_{q}[x]$ dividing x^{N} 1. We denote by [g^{N}] or by [$g_{0} g_{1} \cdots g_{k-1}^{N}$] the $k \times N$ matrix

$$
\left[P, T P, T^{2} P, \ldots, T^{N-1} P\right]
$$

where

$$
T=\left[\begin{array}{ccccc|c}
0 & 0 & \ldots & \ldots & 0 & g_{0} \\
\hline 1 & 0 & \ldots & \ldots & 0 & g_{1} \\
0 & 1 & 0 & \ldots & 0 & g_{2} \\
0 & 0 & \cdots & 0 & \vdots & \vdots \\
0 & \ldots & 0 & \cdots & 0 & g_{k-2} \\
0 & \ldots & \ldots & 0 & 1 & g_{k-1}
\end{array}\right], P=\left[\begin{array}{c}
1 \\
0 \\
0 \\
\vdots \\
0 \\
0
\end{array}\right]
$$

i.e. T is the companion matrix of $g(x)$.

$$
\tau: \mathrm{PG}(k-1, q) \longrightarrow \mathrm{PG}(k-1, q)
$$

defined by

$$
\tau\left(\mathrm{P}\left(x_{0}, \cdots, x_{k-1}\right)\right)=\mathrm{P}\left(T\left(x_{0}, \cdots, x_{k-1}\right)^{\top}\right)
$$

Then the columns of [g^{N}] can be considered as an orbit of τ.

Now, take m orbits $\mathcal{O}_{1}, \mathcal{O}_{2}, \cdots, \mathcal{O}_{m}$ of τ with length N, and select a point P_{i} from each \mathcal{O}_{i}. We take $P_{1}, P_{2}, \cdots, P_{m}$ as non-zero column vectors in \mathbb{F}_{q}^{k}.

We always take P_{1} as $P=(1,0,0, \cdots, 0)^{\top}$. We denote the matrix

$$
\begin{aligned}
& {\left[P_{1}, T P_{1}, T^{2} P_{1}, \ldots, T^{n_{1}-1} P_{1} ; P_{2}, T P_{2}, \cdots\right.} \\
& \left.\cdots ; P_{m}, T P_{m}, T^{2} P_{m}, \ldots, T^{n_{m}-1} P_{m}\right]
\end{aligned}
$$

by $\left[g^{n_{1}}\right]+P_{2}^{n_{2}}+\cdots+P_{m}^{n_{m}}$.
Then, the matrix $\left[g^{N}\right]+P_{2}^{N}+\cdots+P_{m}^{N}$ defined from m orbits $\mathcal{O}_{1}, \mathcal{O}_{2}, \cdots, \mathcal{O}_{m}$ of τ generates a QC code.

Ex. 3.
S : companion matrix of $x^{4}+x+1 \in \mathbb{F}_{2}[x]$. Label the points of $\operatorname{PG}(3,2)$ as

$$
Q_{0}=P=1000, Q_{i}=S^{i} P \text { for } 1 \leq i \leq 14
$$

$g(x)=1+x+x^{2}+x^{4}$ which divides $x^{7}-1$.
Let τ be the projectivity defined by $g(x)$.

Then τ has three orbits:

$$
\begin{aligned}
& \mathcal{O}_{1}=\left\{Q_{0}, Q_{1}, Q_{2}, Q_{3}, Q_{10}, Q_{11}, Q_{7}\right\}, \\
& \mathcal{O}_{2}=\left\{Q_{8}, Q_{9}, Q_{4}, Q_{5}, Q_{6}, Q_{12}, Q_{14}\right\}, \\
& \mathcal{O}_{3}=\left\{Q_{13}=1011\right\} . \\
& =\left[g^{7}\right]+Q_{8}^{7}=\left[1110^{7}\right]+1010^{7} \\
& =\left[\begin{array}{llllllllllllll}
1 & 0 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 1 & 0 & 0 & 1 & 1 \\
0 & 1 & 0 & 0 & 1 & 1 & 1 & 0 & 1 & 1 & 1 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 1 & 1 & 0 & 1 & 0 & 0 & 1 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 1 & 0 & 0 & 1 & 1 & 1
\end{array}\right]
\end{aligned}
$$

generates a QC $[14,4,7]_{2}$ code.

6. Construction of new codes

Lemma 3. There exists a $[169,5,131]_{5}$ code. Proof.
\mathcal{C} : QC code with generator matrix
$\left[10320^{13}\right]+11000^{13}+31000^{13}+21100^{13}+23100^{13}$ $+34100^{13}+32010^{13}+31110^{13}+12110^{13}+42110^{13}$ $+12210^{13}+22210^{13}+21310^{13}$.
Then \mathcal{C} is a $[169,5,131]_{5}$ code.

Lemma 4. There exists a [609, 5, 485] ${ }_{5}$ code.

Proof.

\mathcal{C} : QC code with generator matrix
$\left[12411^{11}\right]+11000^{11}+20100^{11}+31100^{11}+40010^{11}$.
Then \mathcal{C} is a 5 -div $[55,5,40]_{5}$ code with spectrum $\left(a_{5}, a_{10}, a_{15}\right)=(66,495,220)$.

As projective dual, we get a $[627,5,500]_{5}$ code \mathcal{C}^{*} with w.d. $0^{1} 500^{2904} 525^{220}$.

The multiset for \mathcal{C}^{*} has three skew lines
$l_{1}=\langle 30100,33010\rangle, l_{2}=\langle 11100,30010\rangle$,
$l_{3}=\langle 21100,31001\rangle$.
The geometric puncturing $\mathcal{C}^{*}-\left(l_{1} \cup l_{2} \cup l_{3}\right)$
yields a $[609,5,485]_{5}$ code.

Lemma 5. There exist
$[571,5,455]_{5},[577,5,460]_{5},[583,5,465]_{5}$, $[589,5,470]_{5}$ and $[595,5,475]_{5}$ codes.

Proof.

\mathcal{C} : extended QC code with generator matrix

$$
\left[10000^{5}\right]+11000^{5}+34100^{5}+11310^{5}
$$

$$
+33410^{5}+31411^{5}+24121^{5}+11111
$$

$\Rightarrow \mathcal{C}: 5-d i v[36,5,25]_{5}$ code with spectrum

$$
\left(a_{1}, a_{6}, a_{11}\right)=(15,565,201)
$$

C \quad 5-div $[36,5,25]_{5}$
\downarrow projetive dual
\mathcal{C}^{*} 25-div [595, 5, 475] 5
The multiset for \mathcal{C}^{*} contains four skew lines

$$
\begin{aligned}
& l_{1}=\langle 10100,22011\rangle, l_{2}=\langle 30100,23011\rangle, \\
& l_{3}=\langle 21100,20011\rangle, l_{4}=\langle 31100,11011\rangle .
\end{aligned}
$$

Hence, we get
[595-6t,5, 475-5t] $]_{5}$ codes for $t=1,2,3,4$ by geometric puncturing.

Lemma 6. (Hill-Newton, 1992)
$\mathcal{C}_{1}:\left[n_{1}, k, d_{1}\right]_{q}$ code
$\mathcal{C}_{2}:\left[n_{2}, k-1, d_{2}\right]_{q}$ code
$\exists c_{1} \in \mathcal{C}_{1}$ with $w t\left(c_{1}\right) \geq d_{1}+d_{2}$
$\Rightarrow \exists \mathcal{C}:\left[n_{1}+n_{2}, k, d_{1}+d_{2}\right]_{q}$ code

Lemma 7. There exist

$[377,5,300]_{5},[385,5,305]_{5},[391,5,310]_{5}$, $[397,5,315]_{5}$ and $[403,5,320]_{5}$ codes.

Proof.

$\mathcal{C}_{1}: 5$-div $[53,5,40]_{5}$ code generated by
$G_{1}=\left[\begin{array}{l}00011111110001111111001111111100111111110011111111110 \\ 11111133441111113344111233334411111144441112333344000 \\ 01101304040240141234241013340413114400220323011401241 \\ 00110100440100110044444421213333333322224444112233000 \\ 40444310243122104020113200044010132404343303431121042\end{array}\right]$
$\mathcal{C}_{1} \quad$ 5-div $[53,5,40]_{5}$
\downarrow projetive dual
\mathcal{C}_{1}^{*} 25-div [377, 5, 300] ${ }_{5}$
generator matrix: G_{1}^{*}
spectrum: $\left(a_{52}, a_{77}\right)=(53,728)$
\mathcal{C}_{2} : $[26,4,20]_{5}$ code with generator matrix

$$
G_{2}=\left[\begin{array}{l}
00142323230023014140231414 \\
00002233112344122334001144 \\
10111111222222333333444444 \\
01111111111111111111111111
\end{array}\right]
$$

Then \mathcal{C}_{2} has spectrum $\left(a_{1}, a_{6}\right)=(26,130)$.
Π : hyperplane $\left(V\left(3 x_{1}-x_{4}\right)\right)$

$$
m_{\mathcal{C}_{1}^{*}}(\square)=52
$$

Define the mapping

$$
\varphi: \operatorname{PG}(3,5) \rightarrow \Pi
$$

for $\mathrm{P}\left(x_{0}, x_{1}, x_{2}, x_{3}\right) \in \mathrm{PG}(3,5)$ by

$$
\varphi\left(\mathrm{P}\left(x_{0}, x_{1}, x_{2}, x_{3}\right)\right)=\mathrm{P}\left(x_{0}, x_{1}, x_{2}, x_{3}, 3 x_{1}\right)
$$

$$
G_{2}=\left[\begin{array}{l}
00142323230023014140231414 \\
00002233112344122334001144 \\
10111111222222333333444444 \\
01111111111111111111111111
\end{array}\right]
$$

$G_{2}^{\prime}=\left[\begin{array}{c}\downarrow \varphi \\ 00142332410014014410232332 \\ 00002222222222222222002222 \\ 101111444423113322444322 \\ 01111144221433211443112233 \\ 00001111111111111111001111\end{array}\right]$
\mathcal{C} : a code generated by $\left[G_{1}^{*}, G_{2}^{\prime}\right]$
Then \mathcal{C} is a $[403,5,320]_{5}$ code by Lemma 6.
The multiset for \mathcal{C} contains three skew lines

$$
\begin{aligned}
& l_{1}=\langle 12100,31011\rangle, l_{2}=\langle 42100,01021\rangle, \\
& l_{3}=\langle 23100,23021\rangle .
\end{aligned}
$$

Hence, we get
[403-6t, 5, 320 $-5 t]_{5}$ codes for $t=1,2,3$ by geometric puncturing.
7. New results on $n_{5}(5, d)$

We determined $n_{5}(5, d)$ for 68 values of d.
(1) $n_{5}(5, d)=g_{5}(5, d)+1$ for

$$
d \in\{296-300,346-350,394,395,398-400,426-475\}
$$

(2) $n_{5}(5, d)=g_{5}(5, d)+2$ for $373 \leq d \leq 375$
(3) $n_{5}(5, d)=g_{5}(5, d)$ or $g_{5}(5, d)+1$ for

$$
d \in\{376-393,396,397\}
$$

(4) $n_{5}(5, d) \leq g_{5}(5, d)+2$ for $d \in\{131,401-410\}$
(5) $n_{5}(5, d)=g_{5}(5, d)+1$ or $g_{5}(5, d)+2$ for

$$
\begin{aligned}
d \in & \{151-155,301-320,326-345,351-372,411-425, \\
& 481-485\} .
\end{aligned}
$$

References

A.E. Brouwer, M. van Eupen, The correspondence between projective codes and 2-weight codes, Des. Codes Cryptogr. 11, 261-266, 1997.
R. Hill, Optimal linear codes, in Cryptography and Coding II, C. Mitchell, Ed., Oxford Univ. Press, Oxford, 1992, 75-104.
R. Hill, D.E. Newton, Optimal ternary linear codes, Des. Codes Cryptogr. 2, 137-157, 1992.
T. Maruta, Construction of optimal linear codes by geometric puncturing, Serdica J. Computing, to appear.
T. Maruta, Griesmer bound for linear codes over finite fields, http://www.mi.s.osakafu-u.ac.jp/~maruta/griesmer.htm.
T. Maruta, Y. Oya, On optimal ternary linear codes of dimension 6, Adv. Math. Commun., 5, 505-520, 2011.
T. Maruta, M. Shinohara, A. Kikui, On optimal linear codes over \mathbb{F}_{5}, Discrete Math., 309, 1255-1272, 2009.
T. Maruta, M. Shinohara, M. Takenaka, Constructing linear codes from some orbits of projectivities, Discrete Math., 308, 832-841, 2008.

Thank you for your attention!

