A NOTE ON THE EXISTENCE OF SPREADS IN PROJECTIVE HJELMSLEV SPACES

Nevyana Georgieva

Ivan Landjev

New Bulgarian University

1. Modules over finite chain rings

Theorem. Let R be a finite chain ring of nilpotency index m. For any finite module $_RM$ there exists a uniquely determined partition

$$\lambda = (\lambda_1, \dots, \lambda_k) \vdash \log_q |M|,$$

 $0 \le \lambda_i \le m$, such that

$$_{R}M \cong R/(\operatorname{rad} R)^{\lambda_{1}} \oplus \ldots \oplus R/(\operatorname{rad} R)^{\lambda_{k}}.$$

The partition λ is called the **shape** of $_RM$.

The number k is called the **rank** of $_RM$.

2. Projective Hjelmslev spaces

- $M = {}_R R^k$; $M^* := M \setminus \theta M$; $\theta \in \operatorname{rad} R \setminus (\operatorname{rad} R)^2$
- $\bullet \ \mathcal{P} = \{Rx \mid x \in M^*\};$
- $\mathcal{L} = \{Rx + Ry \mid x, y \text{ linearly independent}\};$
- $I \subseteq \mathcal{P} \times \mathcal{L}$ incidence relation;
- neighbour relation:

(N1)
$$X \bigcirc Y$$
 if $\exists s, t \in \mathcal{L} \colon X, YIs, X, YIt$;

(N2)
$$s \odot t$$
 if $\forall X \ I \ s \ \exists Y \ I \ t : \ X \odot Y$ and $\forall Y \ I \ t \ \exists X \ I \ s : \ Y \odot X$.

Definition. The incidence structure $\Pi = (\mathcal{P}, \mathcal{L}, I)$ with neighbour relation \bigcirc is called the (left) projective Hjelmslev geometry over the chain ring R.

Definition. A set of points H in the projective Hjelmslev space Π is called a **Hjelmlsev subspace** if for any two points $x,y\in H$ there is at least one line incident with both of them which is entirely contained in H.

Definition. A set of points H in the projective Hjelmlsev space Π is called a **subspace** if it is the intersection of Hjelmlsev subspaces.

Hjelmslev subspaces \longrightarrow free submodules of ${}_RR^n$

subspaces \longrightarrow submodules of ${}_RR^n$ with at least one free submodule

subspace of type $\lambda \longrightarrow$ submodule of type λ

$\mathrm{PHG}(\mathbb{Z}_9^3)$

3. The Lattice of Submodules

Theorem. Let $_RM$ be a module of shape $\lambda=(\lambda_1,\ldots,\lambda_n)$. For every sequence $\mu=(\mu_1,\ldots,\mu_n)$, $\mu_1\geq\ldots\geq\mu_n\geq0$, satisfying $\mu\leq\lambda$ the module $_RM$ has exactly

$$\begin{bmatrix} \lambda \\ \mu \end{bmatrix}_{q^m} = \prod_{i=1}^m q^{\mu'_{i+1}(\lambda'_i - \mu'_i)} \cdot \begin{bmatrix} \lambda'_i - \mu'_{i+1} \\ \mu'_i - \mu'_{i+1} \end{bmatrix}_q$$

submodules of shape μ . In particular, the number of free rank s submodules of $_{R}M$ equals

$$q^{s(\lambda'_1-s)+\ldots+s(\lambda'_{m-1}-s)} \cdot \begin{bmatrix} \lambda'_m \\ s \end{bmatrix}_q$$

Here

$${n \brack k}_q = \frac{(q^n - 1) \dots (q^{n-k+1} - 1)}{(q^k - 1) \dots (q - 1)}.$$

are the Gaussian coefficients.

Example. Let

- $\bullet \ \mathbb{Z}_4^4 = \mathbb{Z}_4 \oplus \mathbb{Z}_4 \oplus \mathbb{Z}_4 \oplus \mathbb{Z}_4$
- $q^m = 2^2$, i.e. q = 2, m = 2
- $\lambda = (2, 2, 2, 2), \lambda' = (4, 4);$
- $\bullet \mu = (2, 2, 1, 0), \mu' = (3, 2)$
- $\begin{bmatrix} \lambda \\ \mu \end{bmatrix}_{2^2} = 2^{2(4-3)} \begin{bmatrix} 4-2 \\ 3-2 \end{bmatrix}_2 \begin{bmatrix} 4-0 \\ 2-0 \end{bmatrix}_2 = 2^2 \cdot 3 \cdot 35 = 420.$

Theorem. Let

$$m{m} = (\underbrace{m, \ldots, m}_n)$$
 and $\mu = (\mu_1, \ldots, \mu_n)$.

Set
$$\overline{\mu}=(m-\mu_n,\ldots,m-\mu_1)$$
. Then

$$egin{bmatrix} m{m} \ \mu \end{bmatrix}_{q^m} = egin{bmatrix} m{m} \ \overline{\mu} \end{bmatrix}_{q^m}.$$

Let R be a chain ring with $|R|=q^m$, $R/\operatorname{rad} R\cong \mathbb{F}_q$.

Let
$$\kappa = (\kappa_1, \dots, \kappa_n)$$
, $m \ge \kappa_1 \ge \kappa_2 \ge \dots \ge \kappa_n \ge 0$.

 $\mathcal{G}_R(n,\kappa)$ – the set of all submodules of $_RR^n$ of shape κ .

 $\mathcal{H}_R(\kappa)$ – the lattice of all submodules of

$$R/(\operatorname{rad} R)^{\kappa_1} \oplus \ldots \oplus R/(\operatorname{rad} R)^{\kappa_n},$$

ordered by inclusion.

 $\mathcal{H}_R(n)$ - the lattice of all submodules of $_RR^n$.

$\mathcal{H}_R(\kappa)$, $\kappa=(2,2,1)$

3. Spreads

Definition. A r-spread of the projective Hjelmslev geometry $PHG({}_RR^{n+1})$ is a set $\mathcal S$ of r-dimensional Hjelmslev subspaces such that every point is contained in exactly one subspace of $\mathcal S$.

Theorem. Let R be a chain ring with $|R| = q^2$, $R/\operatorname{rad} R \cong \mathbb{F}_q$. There exists a spread S of r-dimensional spaces of the n-dimensional projective Hjelmslev geometry $\operatorname{PHG}({}_RR^{n+1})$ if and only if r+1 divides n+1.

Theorem. Let R be a chain ring with $|R| = q^m$, $R/\operatorname{rad} R \cong \mathbb{F}_q$. There exists a spread S of r-dimensional Hjelmslev subspaces of $\operatorname{PHG}(_RR^n)$ if and only if r+1 divides n+1.

The factor-image of the spreads from the previous constructions is $q^{n-r}\overline{S}$. Such spreads can be considered as trivial. Do there exist non-trivial sprads?

Very interesting: construct spreads in which no two subspaces are neighbours.

In case of $PHG(_RR^4)$ such spreads do exist for

$$R = \mathbb{Z}_4$$
, $\mathbb{F}_2[X]/(X^2)$, \mathbb{Z}_9 , $\mathbb{F}_3[X]/(X^2)$.

(a computational result)

$PHG(\mathbb{Z}_4^4)$:

$\langle 1001, 0121 \rangle$	$\langle 2103,0011\rangle$	$\langle 1020, 0121 \rangle$	$\langle 0010, 2201 \rangle$
$\langle 0103, 2010 \rangle$	$\langle 1023, 0113 \rangle$	$\langle 1002, 0210 \rangle$	$\langle 1000, 0100 \rangle$
$\langle 1003, 0110 \rangle$	$\langle 1010,0021\rangle$	$\langle 1302,0212\rangle$	$\langle 1330,0201 \rangle$
$\langle 1030, 0122 \rangle$	$\langle 1102, 0211 \rangle$	$\langle 0130,0001 \rangle$	$\langle 1011, 0112 \rangle$
$\langle 1202,0013 \rangle$	$\langle 1032, 0111 \rangle$	$\langle 1021, 0120 \rangle$	$\langle 1013, 0102 \rangle$

⁻ Seventh International Workshop on Optimal Codes and Related Topics, Albena, Bulgaria, 06.09.-12.09.2013 -

$$\kappa = (\kappa_1, \dots, \kappa_n)$$

Definition. A κ -spread of the projective Hjelmslev geometry $PHG(R_R^n)$ is a set \mathcal{S} of subspaces of type κ such that every point is contained in exactly one subspace of \mathcal{S} .

 κ -spreads are exactly the $\tau-(n,\kappa,1)$ -designs with $\tau=(m,0,\ldots,0)$.

Take
$$\kappa = (\underbrace{2, \dots, 2}_{n/2}, \underbrace{1, \dots, 1}_{n/2-1}, 0).$$

The number of points in a subspace of type κ is $q^{n-2}\frac{q^{\frac{n}{2}}-1}{q-1}$ and divides the number of points in PHG_RR^n which is $q^{n-1}\frac{q^n-1}{q-1}$.

Theorem. Let R be a chain ring of nilpotency index 2. Let $\Pi = \mathrm{PHG}(_RR^n)$. There exists no κ -spread of Π for $\kappa = (\underbrace{2,\ldots,2}_{n/2},\underbrace{1,\ldots,1}_{n/2-1},0)$.

Corollary. There exists no κ -spread of $PHG(_RR^4)$ with $\kappa=(2,2,1,0)$.

⁻ Seventh International Workshop on Optimal Codes and Related Topics, Albena, Bulgaria, 06.09.-12.09.2013 -

More generally:

Theorem. Let R be a chain ring of nilpotency index m. Let $\Pi = \mathrm{PHG}(_RR^n)$. There exists no κ -spread of Π for $\kappa = (\underbrace{m, \ldots, m}_{n/2}, \underbrace{m-1, \ldots, m-1}_{n/2-1}, 0)$.

Problem. Find a necessary and sufficient condition on κ for the existence κ -spread in $PHG(_RR^n)$.

Theorem. Let R be a finite chain ring of nilpotency index 2 and let $\Pi=\mathrm{PHG}(_RR^n)$ be the corresponding (left) projective Hjelmslev space. There exists no λ -spread of $\Pi=\mathrm{PHG}(_RR^n)$ with $\lambda=(\underbrace{2,\ldots,2}_{n/2},\underbrace{1,\ldots,1}_{n/2-a},\underbrace{0,\ldots,0}_{a})$, where $1\leq a\leq \frac{n}{2}-1$.

Shape	Existence
$(\underbrace{2,\ldots,2}_{n/2},\underbrace{0,\ldots,0}_{n/2})$	YES
$(\underbrace{2,\ldots,2},1,\underbrace{0,\ldots,0})$	NO
$(\underbrace{2,\ldots,2}_{n/2},1,1\underbrace{0,\ldots,0}_{n/2-2})$	NO
$(2,\ldots,2,\underbrace{1,\ldots,1},0)$	NO
$(\underbrace{2,\ldots,2}_{n/2},\underbrace{1,\ldots,1}_{n/2})$	YES