Anonymous and Secure Network Coding

E. Gabidulin, O. Trushina

Moscow Institute of Physics and Technology (State University)

2013

Dedicated to the memory of Stefan Dodunekov (1945-2012)

E. Gabidulin, O. Trushina

Content

- 1. Anonymity outlines
 - 1.1 Models of anonymity
 - 1.2 Anonymous communication tasks
- 2. Coset coding overview
- 3. New anonymous network coding scheme
 - 3.1 Preliminaries
 - 3.1.1 Network and adversary models
 - 3.1.2 Silva-Kschischang scheme
 - 3.2 Basic idea
- 4. Conslusion

Models of anonymity

proposed by A. Pfitzmann and M. Hansen

- 1. *Unobservability*: impossibility to ascertain whether a communication exists
- 2. *Sender/receiver anonymity*: impossobility to identify the sender/receiver of data flow
- 3. *Relationship anonymity*: impossibility to relate a sender and a receiver of a communication

Our interest is relationship anonymity.

Anonymity outlines ○●	New anonymous network coding scheme 00 00	
Introduction		

Anonymous communication task

Anonymous transmission: to guarantee a forwarding to be untraceable

Adversary: Are m and m' the same? Can I reveal the previous and next path nodes of m'?

Coset coding	New anonymous network coding scheme	

Coset coding overview

S = HX

source symbols $S = (s_1, s_2 \dots s_k)$ - syndrome $(x_1, x_2 \dots x_n) = X \in$ corresponding coset S is secret under μ observations, $k \leq n - \mu$

E. Gabidulin, O. Trushina

	New anonymous network coding scheme ●0 ○○	
Preliminaries		

Model

Network error free links multiple sources and multiple receivers packet $x \in \mathbb{F}_{q^m}$ message $X = (x_1, x_2, \dots x_n) \in \mathbb{F}_{q^m}^n$ coherent network coding: transmiting the linear combinations of packets, fixed coefficients.

Adversary

passive, wiretapping not more than μ packets of earch source traffic analysis abilities

	New anonymous network coding scheme ○● ○○	
Preliminaries		

Silva-Kschischang scheme

C - [n, n - k] maximun-rank-distance (MRD) code, parity check matrix $H \in \mathbb{F}_{q^m}^{k \times n}, m \ge n$

$$\begin{split} \phi &: \mathbb{F}_{q^m}^k \to \mathbb{F}_{q^m}^n \\ \phi(S) &= X = T \begin{pmatrix} S \\ V \end{pmatrix}, \text{ random } V \in \mathbb{F}_{q^m}^{n-k} \\ T^{-1} &= \begin{pmatrix} H \\ L \end{pmatrix}, \ T \text{ is nonsingular, } \ T \in \mathbb{F}_{q^m}^{n \times n}, \ L \in \mathbb{F}_{q^m}^{(n-k) \times n} \end{split}$$

perfect secrecy: I(S; Z) = 0, adversary observation $Z \subset X$, $Z \in \mathbb{F}_{q^m}^{\mu}$, $\mu \leq n - k$

E. Gabidulin, O. Trushina

.

Anonymous and secure network coding scheme

$$T = (T_1 \quad T_2),$$

$$T_1 \text{ - sender and receiver secret,}$$

$$T_2 \text{ - public} \implies X_{out} = X_{in} + T_2 V_{rand}$$

$$X = (T_1 \quad T_2) \begin{pmatrix} S \\ V \end{pmatrix} = T_1 S + T_2 V$$
Sender $X \xrightarrow[network coding]{} \bigoplus X' \xrightarrow[ne$

E. Gabidulin, O. Trushina

Basic idea

Anonymous and secure network coding scheme

perfect anonymity: $I(X_i; X'_j) = 0, i, j = 1, 2, ..., r$

perfect secrecy under μ observations: $I(S_i; Z_i) = 0, i = 1, 2, ..., r$

Coset coding	New anonymous network coding scheme 00 00	Conclusion

Summary

E. Gabidulin, O. Trushina

oscow Institute of Physics and Technology(State University)

Q&A

E. Gabidulin, O. Trushina

Anonymous and Secure Network Coding

oscow Institute of Physics and Technology(State University)

Anonymity outlines Coset coding New anonymous network coding scheme Conclusion

Communication process

oscow Institute of Physics and Technology(State University)

	00		

Decoding process

Sender:
$$T^{-1} = \begin{pmatrix} H \\ L \end{pmatrix}$$
 for some L
 $T^{-1}T = \begin{pmatrix} H \\ L \end{pmatrix} \begin{pmatrix} T_1 & T_2 \end{pmatrix} = \begin{pmatrix} I_k & 0 \\ 0 & I_{n-k} \end{pmatrix} \Rightarrow HT_1 = I_k, \ HT_2 = 0$

$$\begin{array}{c} \xrightarrow{X^{(p)}} \text{Receiver} \\ X^{(p)} = \begin{pmatrix} T_1 & T_2 \end{pmatrix} \begin{pmatrix} S \\ V_1 + V_2 + \ldots + V_p \end{pmatrix} \\ \underline{\text{Receiver}} \colon \tilde{T}^{-1} = \begin{pmatrix} H \\ \tilde{L} \end{pmatrix} \text{ for some } \tilde{L} \\ \tilde{T}^{-1} X^{(p)} = \begin{pmatrix} I_k & 0 \\ \tilde{L}T_1 & \tilde{L}T_2 \end{pmatrix} \begin{pmatrix} S \\ V_1 + V_2 + \ldots + V_p \end{pmatrix} \Rightarrow S \end{array}$$

E. Gabidulin, O. Trushina

MRD code contribution

S = HXadversary observation $Z \subset X, \ Z = WX$

S and Z are linearly independent
$$\iff$$

 $\operatorname{Rk}\begin{pmatrix} H\\ W \end{pmatrix} = \operatorname{Rk}H + \operatorname{Rk}W \iff \langle H \rangle \cap \langle W \rangle = 0$

C -[n, n-k] linear code, $H \in \mathbb{F}_{q^m}^{k \times n}$. If C is MRD code, $\mu \leq n-k$, then

$$\operatorname{Rk}\begin{pmatrix} H\\ W \end{pmatrix} = \operatorname{Rk} H + \operatorname{Rk} W$$
, for all $W \in \mathbb{F}_q^{\mu \times n}$

E. Gabidulin, O. Trushina

	New anonymous network coding scheme 00 00	

Network coding

loscow Institute of Physics and Technology(State University

	New anonymous network coding scheme 00 00	

State of Art

Method Proposed method	Description overhead $O(n^2)$ per message, total relay node overhead $O(tn^2)$, t - number of flows, n - size of message	Ον	erhead
ALNCode	obfuscating the messages, constructing intersection of basis of incoming coding vectors, overhead $O(tn^3)$		<u>=</u> .
Homomorphic encryption based method	exponentiations and multiplications on each relay node, overhead $O(n^3)$ per message		ıcrease
Adapting Onion Routing	encryption/decryption on each relay node + additional key sharing + additional decryption		
E. Gabidulin, O. Trushina			