IN MEMORIAM

Stefan Dodunekov (1945–2012)

⁻ Seventh International Workshop on Optimal Codes and Related Topics, Albena, Bulgaria, 06.09.–12.09.2013 -

05.09.1945	born in Kilifarevo, Bulgaria	
1963–1968	study in Mathematics at the Faculty of Mathematics and Mechanics, Sofia University	
1968	graduates from Sofia University	
1969-1972	works at the Regional Computing Center, V. Tarnovo	
1972-1981	Assistant Professor at the Faculty of Mathematics and Mechanics, Sofia University	
1975	PhD Thesis:: Residual codes and Goppa codes, Supervisor: K. Dochev	

⁻ Seventh International Workshop on Optimal Codes and Related Topics, Albena, Bulgaria, 06.09.–12.09.2013 -

1981	Associated Professor, Institute of Mathematics, BAS
1986	Doctor of Sciences, Thesis: Optimal codes
1988	First Workshop on Algebraic and Combinatorial Coding Theory, St. Constantine and Elena
1989	Department of Mathematical Foundation of Informatics
1990	Full Professor, Institute of Mathematics and Informatics, BAS

⁻ Seventh International Workshop on Optimal Codes and Related Topics, Albena, Bulgaria, 06.09.-12.09.2013 -

1995	First Workshop on Optimal Codes and Related Topics
1999-2012	Director of the Institute of Mathematics and Informatics
since 2001	President of the Union of the Bulgarian Mathematicians
2004	Corresponding Member of the Bulgarian Academy of Sciences
2008	Academician

11.06.2012 President of the Bulgarian Academy of Sciences

⁻ Seventh International Workshop on Optimal Codes and Related Topics, Albena, Bulgaria, 06.09.–12.09.2013 -

Professor Stefan Dodunekov is the author of over 125 research papers in algebraic and combinatorial coding theory, 3 books and 12 textbooks.

His main scientific achivements are obtained in the following fields:

- theory of the optimal linear codes;
- covering radius of linear codes;
- codes of minimal defect;
- codes in Euclidean spaces;
- decoding algorithms for linear codes.

Optimal Linear Codes

The **Griesmer** bound:

$$n_q(k,d) \ge g_q(k,d) = \sum_{i=0}^{k-1} \lceil \frac{d}{q^i} \rceil$$

For binary codes Belov, Logachev, and Sandimirov gave a necessary and sufficient condition for binary $[g_2(k,d),k,d]$ -codes of so-called BV-type to exist.

Independently, Stefan Dodunekov and Ray Hill generalize their result to q-ary codes.

Given q, k and d write d as $d = sq^{k-1} - \sum_{i=1}^t q^{u_i-1}$, where $s = \lceil d/q^{k-1} \rceil$, $k \ge u_1 \ge u_2 \ge \ldots \ge u_t$ and at most q-1 u_i 's take any given value

Theorem. (S. Dodunekov, R. Hill)

There exists a $[g_q(k,d),k,d]$ -code of type BV over the field \mathbb{F}_q if and only if

$$\sum_{i=1}^{\min(s+1,t)} u_i \le sk.$$

S. DODUNEKOV, A comment on the weight structure of generator matrices of linear codes, *Problems of Information Transmission*, **26**, No. 2, 1990, 101-104.

Theorem. For every q-ary code of length $n=t+g_q(k,d)$ there exists a generator matrix having as rows only codewords of weight at most t+d.

⁻ Seventh International Workshop on Optimal Codes and Related Topics, Albena, Bulgaria, 06.09.-12.09.2013 -

A generalization of the Gray-Rankin bound:

L. A. BASSALYGO, S. DODUNEKOV, V. A. ZINOVIEV, T. HELLESETH, The Grey-Rankin bound for nonbinary codes, *Problems of Information Transmission*, **42**, No. 3, 2006, 37-44.

Theorem. Denote by $S_q(n,d)$ the maximal number of n-simplices in a q-ary Hamming space such that the distance between any two of them is at least d. Then

$$S_q(n,d) \le \frac{q(qd - (q-2)n)(n-d)}{n - ((q-1)n - qd)^2},$$

provided $n - ((q-1)n - qd)^2 > 0$. In case of equality the set of all codewords is an orthogonal array of strength 2.

Covering Radius of Linear Codes

- Conjecture: For all positive integers n, k with $k \leq n$ and k, there is always a binary [n,k]-code of minimal covering radius R=t(n,k) which is self-complementary, i.e. it contains the all-one word.
 - G. Cohen, S. Lytsin, I. Honkala, A. Lobstein, Covering codes
- A counterexample is constructed in:
 - S. DODUNEKOV, K. MANEV, V.TONCHEV, On the covering radius of binary (14,6) codes containing the all-one vector, *IEEE Trans. Inform. Theory*, **IT-34**, No. 3, 1988, 591-595.

• Another famous conjecture from F.J. MACWILLIAMS, N. J. A. SLOANE, The Theory of Error-correcting Codes:

Conjecture. Apart from the primitive binary BCH codes there are no other quasi-perfect BCH codes.

• D. DANEV, S. DODUNEKOV, A family of ternary quasi-perfect BCH codes, Designs, Codes and Cryptography, 49, No 1, 2008, 265–271.

Danev and Dodunekov construct a family of ternary quasi-perfect BCH codes.

Codes of Minimal Defect

- S. DODUNEKOV, I. LANDJEV, On near-MDS codes, *Journal of Geometry*, **54**, 1995, 30–43.
- S. DODUNEKOV, I. LANDJEV, On the quaternary [11,6,5] and [12,6,6] codes, in: "Applications of Finite Fields" (ed. D. Gollmann), IMA Conference Series 59, Clarendon Press, Oxford, 1996, 75–84.
- S. DODUNEKOV, I. LANDJEV, Near-MDS Codes over some small fields, *Discrete Mathematics*, **213**, 2000, 55–65.

The Singleton Bound and MDS Codes

$$\mathcal{C}\colon [n,k,d]_q$$
-code

SINGLETON:
$$n \ge d + k - 1$$
,

SINGLETON*:
$$n \geq d_r + k - r$$
, $\forall r = 1, ..., k$.

"=" in SINGLETON: MDS-codes

"=" in SINGLETON* for $r=1,\ldots,k$: MDS-codes.

MDS = Maximum Distance Separable

The MDS Conjecture

For a non-trivial $[n,k]_q$ MDS code

$$n \leq \left\{ \begin{array}{ll} q+2 & \text{ for } q \text{ even and } k=3 \text{ or } q-1; \\ q+1 & \text{ otherwise.} \end{array} \right.$$

If there exist n points in $\mathrm{PG}(t,q)$ that are in general position then

$$n \leq \left\{ \begin{array}{ll} q+2 & \text{ for } q \text{ even and } t=2 \text{ or } t=q-2; \\ q+1 & \text{ otherwise.} \end{array} \right.$$

For PG(t, p), p – prime: S. BALL, *J. Europ. Math. Soc.*, 14(2012), 733–748.

Near-MDS Codes

Definition 1. A linear $[n,k]_q$ -code \mathcal{C} is called a near-MDS code if $d_i(\mathcal{C}) = n-k+i$, for $i=2,3,\ldots,k$, and $d_1(\mathcal{C})=n-k$.

Definition 2. A linear $[n, k]_q$ -code \mathcal{C} is called a near-MDS code if there exists a parity check matrix $\mathbf{H}_{\mathcal{C}}$ of \mathcal{C} with the following properties:

- (1) any n-k-1 columns of $\mathbf{H}_{\mathcal{C}}$ are linearly independent;
- (2) there exist n-k linearly dependent columns of $\mathbf{H}_{\mathcal{C}}$;
- (3) any n-k+1 columns of $\mathbf{H}_{\mathcal{C}}$ have full rank n-k.

Definition 3. A linear $[n, k]_q$ -code \mathcal{C} is called a near-MDS code if there exists a generator matrix $\mathbf{G}_{\mathcal{C}}$ of \mathcal{C} , with the following properties:

- (1) any k-1 columns of $\mathbf{G}_{\mathcal{C}}$ are linearly independent;
- (2) there exist k linearly dependent columns of $\mathbf{G}_{\mathcal{C}}$;
- (3) every k+1 columns of $\mathbf{G}_{\mathcal{C}}$ have full rank k.

Definition 4. A linear $[n,k]_q$ -code $\mathcal C$ is called a near-MDS code if

$$d(\mathcal{C}) + d(\mathcal{C}^{\perp}) = n.$$

Results on Near-MDS Codes

Theorem. Let $\mathcal C$ be a $[n,k]_q$ near-MDS code. Then for every $s\in\{0,1,\ldots,k\}$:

$$A_{n-k+s} = \binom{n}{k-s} \sum_{j=0}^{s-1} (-1)^j \binom{n-k+s}{j} (q^{s-j}-1) + (-1)^s \binom{k}{s} A_{n-k},$$

Corollary. For an $[n,k]_q$ near-MDS code $\mathcal C$

$$A_{n-k} \le \binom{n}{k-1} \frac{q-1}{k},$$

with equality iff $A_{n-k+1}=0$. By duality

$$A_k' \le \binom{n}{k+1} \frac{q-1}{n-k},$$

with equality iff $A'_{k+1} = 0$.

Problem. Given the positive integer k and the prime power q, find the maximal length m'(k,q) of a near-MDS code of dimension k over \mathbb{F}_q .

Theorem. Let k be a positive integer and let q be a prime power. Then

$$(i) m'(k,q) \le 2q + k;$$

$$(ii) \ m'(2,q) = 2q + 2;$$

(iii)
$$m'(k,q) \leq m'(k-\alpha,q) + \alpha$$
, for every α with $0 \leq \alpha \leq k$;

$$(iv)$$
 $m'(k,q) = k+1$, for every $k > 2q$;

(v)
$$m'(k,q) \leq 2q + k - 2$$
, for every $q > 3$;

$$(vi)$$
 $m'(2q,q) = 2q + 2$, for every $q > 3$ and every $k > 2$;

$$(vii) \ m'(2q-1,q) = 2q + 1$$
, for every $q > 3$;

$$(viii)$$
 If $q = p^m$,

$$m'(k,q) \geq \left\{ \begin{array}{ll} q + \lceil 2\sqrt{q} \rceil & \text{if } p \text{ divides } \lceil 2\sqrt{q} \rceil \text{ and } m \geq 3; \\ q + \lceil 2\sqrt{q} \rceil + 1 & \text{otherwise.} \end{array} \right.$$

Codes in Euclidean Spaces

S. Dodunekov, Th. Ericson, V.A.Zinoviev, Concatenation Methods for Construction of Spherical Codes in N-dimensional Euclidean space, *Problems of Information Transmission*, **27**, No. 4, 1991, 34-38.

Theorem. Let s binary codes $B_i:(w_i,d_{b,i},M_i)$ and s binary constant weight codes $A_i:(n,w_i,d_i,N_i)$, $i=1,\ldots,s$, $w_1<\ldots< w_s$, be given. Then the set of vectors

$$\bigcup_{i=1}^{s} \bigcup_{a \in A_i} \mathcal{X}(B_i, a)$$

is a spherical code Y:(n,
ho,M) with

$$\rho = \min(\rho^{(1)}, \rho^{(2)}), M = \sum_{i=1}^{s} M_{i} N_{i},$$

$$\rho^{(1)} = \min_{1 \le i \le s} \left\{ \frac{4d_{b,i}}{w_{i}}, \frac{d_{i}}{w_{i}} \right\},$$

$$\rho^{(2)} = \min_{1 \le i \le s-1} \left\{ 2 - \left(1 - \sqrt{\frac{w_{i}}{w_{i+1}}} \right) \right\}.$$

In particular, if $d_{i,j}=d(A_i,A_j)$ is the distance between the codes A_i and A_j the above set forms a spherical code $Y:(n,\rho,M)$ with

$$\rho^{(2)} = \min_{i \neq j} \left\{ 2 - \frac{w_i + w_j - d_{i,j}}{\sqrt{w_i w_j}} \right\}.$$

Decoding Algorithms for Linear Codes

- The family of Zetterberg codes with parameters $(2^m + 1, 2^m + 1 2u)$ for even m is one of the best known families of double-error correcting codes because of their large code rate.
- The algorithm of Dodunekov-Nillson uses the fact that these codes are quasi-perfect and reversible.
- At the time no procedure for full decoding of the Zetterberg codees was known.
- The ideas were further developed to obtain algorithms for full decoding of the ternary Golay code as well as for the quasi-perfect Gashkov-Sidelnikov codes.

- S. DODUNEKOV, J.NILSSON, Algebraic Decoding of Zetterberg Codes, *IEEE Trans. Inform. Theory*, **IT-38**, No. 5, 1992, 1570-1573.
- S. DODUNEKOV, J. NILSSON, On the decoding of some remarkable ternary codes, *Problems of Information Transmission* **31**, No. 2, 1995, 36-43.

⁻ Seventh International Workshop on Optimal Codes and Related Topics, Albena, Bulgaria, 06.09.-12.09.2013 -

Workshops on Algebraic and Combinatorial Coding Theory

	1988	St. Constantine and Elena (then Druzhba)
H	1990	Leningrad, Ol'gino
Ш	1992	Voneshta voda
IV	1994	Novgorod
V	1996	Sozopol
VI	1998	Pskov
VII	2000	Bansko
VIII	2002	Carskoe selo
IX	2004	Kranevo
X	2006	Zvenigorod
XI	2008	Pamporovo
XII	2010	Novosibirsk
XIII	2012	Pomorie

⁻ Seventh International Workshop on Optimal Codes and Related Topics, Albena, Bulgaria, 06.09.-12.09.2013 -

Workshops on Optimal Codes and Related Topics

	1995	Sozopol
H	1998	Sozopol
Ш	2001	Sunny Beach
IV	2005	Pamporovo
V	2007	White Lagoon
VI	2009	St. Constantine and Elena
VII	2013	Albena

⁻ Seventh International Workshop on Optimal Codes and Related Topics, Albena, Bulgaria, 06.09.-12.09.2013 -

