
Seventh International Workshop on Optimal Codes and Related Topics
September 6-12, 2013, Albena, Bulgaria pp. 59-64

On the binary quasi-cyclic codes

Stefka Bouyuklieva stefka@uni-vt.bg
Faculty of Mathematics and Informatics, Veliko Tarnovo University,
and Institute of Mathematics and Informatics, Bulgarian Academy of Sciences,
5000 Veliko Tarnovo, Bulgaria
Iliya Bouyukliev1 iliya@moi.math.bas.bg
Institute of Mathematics and Informatics, Bulgarian Academy of Sciences
P.O.Box 323, 5000 Veliko Tarnovo, Bulgaria

Dedicated to the memory of Professor Stefan Dodunekov

Abstract. In this paper we present a description of quasi-cyclic codes which relies
on matrices and gives an efficient algorithm for their construction.

1 Introduction

A code is said to be quasi-cyclic if every cyclic shift of a codeword by s positions
results in another codeword (s ≥ 1). If s = 1 the code is cyclic and therefore
quasi-cyclic (QC) codes actually are a generalization of cyclic codes. Many such
codes have been discovered with minimum distance exceeding that previously
known for any linear code of the same length and dimension, or, indeed, taking
the maximum possible value. Eric Chen maintains a database of best-known
binary QC codes [5].

There are many construction methods for good QC codes. Generally, a QC
code of length lm and index l may be represented as the row space of a block
matrix, each row of which has the form (G1, . . . , Gl), where Gi is an m × m
circulant. These rows, or the equivalent polynomial vectors, are conventionally
called ”generators”. A method for constructing 1-generator quasi-cyclic codes
was given by van Tilborg in [10], as well as the results of an exhaustive computer
search for such codes over the binary alphabet, for m = 7, 8 and length up to
120. Some 1, 2 and 3-generator QC codes are constructed by Chen [2, 3].

QC codes have rich algebraic structure and therefore there are very inter-
esting theoretical results. A trace description of QC codes using modules has
been given by Séguin and Drolet in [9]. Another approach employs Gröbner
bases [6]. Ling and Solé have introduced another algebraic approach [7].

In this paper we present a description of quasi-cyclic codes which is close to
the Piret construction [8], because it uses irreducible cyclic codes, but relies on
matrices and gives an efficient algorithm for their construction.

1The research of this author is partially supported by the Bulgarian NSF under Contract
I01/0003/2012
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2 Irreducible cyclic codes

We begin with the usual definition of irreducible cyclic codes, and then switch
to an alternative which is more useful for our investigations.

Definition 1. Let f(x) be an irreducible divisor of xn−1 over Fq where (q, n) =
1. The cyclic code of length n over Fq generated by (xn − 1)/f(x) is called an
irreducible (or minimal) cyclic code.

Definition 2. Let n be a divisor of qs − 1 and let γ be a primitive n-th root of
unity in K = Fqs. Then

C(q, s, r) = Cγ = {(Tr(ξ), T r(ξγ), . . . , T r(ξγn−1)) | ξ ∈ K}
is called an irreducible cyclic code over Fq (r = (qs − 1)/n).

Remark 1: The dimension of Cγ is k = ordn(q). Moreover, every irreducible
cyclic [n, k] code is isomorphic to the field GF (qk).
Remark 2: These two definitions are equivalent even when γ is a nonprimitive
n-th root of unity, but in that case the codewords of Cγ are periodic with period
ord(γ). Such codes are called degenerate in [1].

We use a different representation of the irreducible cyclic codes. Let K = Fqs

be a finite field and α be its primitive element. Let qs−1 = m ·r and β = αr. If
G = 〈β〉 < K∗ then G is a cyclic group of order m and G,αG,α2G, . . . , αr−1G
are all different cosets of G in K∗.

For a ∈ Zr we define two circulant m×m matrices with i, j-th entry:

Da[i, j] = Tr(αaβj−i) and Ca[i, j] = Tr(αr(i+j)+ma) = Tr(αmaβi+j).

When m and r are coprime, the matrices Ca correspond to the different
cosets of G in K∗. In the next statements we will consider the matrices Ca.

Lemma 1. If m and r are coprime, the code C(0) whose nonzero codewords
are the rows of the matrix 



C0

C1
...

Cr−1




is an irreducible cyclic code of length m and dimension ordm(q).

Proof. We take γ = β = αr. The i-th row of the circulant Ca is

(Tr(αmaβi), T r(αmaβi+1), . . . , T r(αmaβi+m−1))

= (Tr(αmaβi), T r(αmaβiβ), . . . , T r(αmaβiβm−1))
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= (Tr(ξ), T r(ξβ), . . . , T r(ξβm−1))

where ξ = αmaβi = αma+ir. Hence C(0) ⊆ Cβ = C(q, s, r).
In the other hand, if ξ ∈ K∗ then ξ = αb for some b ∈ {0, 1, . . . , qs − 2}.

Now, because of the Chinese remainder theorem, and because m and r are
coprime, b can be written uniquely as b = ri + ma for some 0 ≤ a ≤ r − 1 and
0 ≤ i ≤ m− 1. Thus

(Tr(ξ), T r(ξβ), . . . , T r(ξβm−1)) = (Tr(αmaβi), T r(αmaβi+1), . . . , T r(αmaβi+m−1))

is the i-th row of the matrix Ca. It follows that C(0) = Cβ and so C(0) is an
irreducible cyclic code.

In [2] Eric Chen uses simplex codes to construct 2-generator and 3-generator
QC codes, and in [3] he obtains good quai-cyclic codes from irreducible cyclic
codes. We also use irreducible cyclic codes and the simplex code but in a
different way.

From now on we consider only the binary case, so K = F2s , 2s − 1 = mr
where m and r are coprime.

Lemma 2. The code whose nonzero weights are the rows of the matrix

M =




C0 C1 . . . Cr−1

C1 C2 . . . C0
...

Cr−1 C0 . . . Cr−2


 (1)

is the simplex [2s − 1 = mr, s, 2s−1] code.

Proof. Let see how the element M [i, j] looks like. If i = mi1 + i2, j = mj1 + j2,
0 ≤ i1, j1 ≤ r − 1, 0 ≤ i2, j2 ≤ m− 1,

M [i, j] = Ci1+j1 [i2, j2] = Tr(αr(i2+j2)+m(i1+j1)) = Tr(α(mi1+ri2)+(mj1+rj2)).

Since m and r are coprime, for a fixed i the exponents (mi1 +ri2)+(mj′1 +rj′2)
and (mi1 + ri2) + (mj′′1 + rj′′2 ) are different for j′ = mj′1 + j′2 6= j′′ = mj′′1 + j′′2 ,
where j′, j′′ ∈ {0, 1, . . . , mr−1}. Hence the i-th row consists of the traces of all
nonzero elements of the field, and this holds for all i = 0, 1, . . . , mr−1. The same
is true for the columns of this matrix. Therefore we can reorder the rows and the
columns of M and obtain the matrix M ′ = (Tr(αi+j))i=0,...,mr−1;j=0,...,mr−1. It
is easy to see that the rows of M ′ are the different codewords of a linear constant
weight code, which is essentially the simplex [2s − 1 = mr, s, 2s−1] code.
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3 QC codes - a cyclotomic description

A code is quasi-cyclic if every cyclic shift of a codeword by s positions results
in another codeword. We can define this in the following way.

Definition 3. Let T be the cyclic shift operator on Fn
q . A quasi-cyclic (QC)

code is a linear subspace of Fn
q invariant under T r for some integer r. The

smallest such positive integer r is called the index of the code.

A trace description of QC codes using modules has been given by Séguin
and Drolet in [9]. Moreover, they have introduced the notion of an irreducible
quasi-cyclic code. Our approach is different because we don’t use modules but
only matrices.

Let 0 ≤ a1 < a2 < · · · < at ≤ r−1. We investigate the code C(a1, a2, . . . , at)
whose nonzero weights are the rows of the matrix




Ca1 Ca2 . . . Cat

Ca1+1 Ca2+1 . . . Cat+1
...

Ca1+r−1 Ca2+r−1 . . . Cat+r−1


 ,

where ai + l is taken modulo r. It is easy to see that C(a1, . . . , at) can be
obtained by selecting the columns a1, . . . , at from the block matrix M given in
(1), and therefore it is linear (after adding the zero vector). Since the matrices
Cai+l are circulants, it is a quasi-cyclic code of length mt.

The following theorem gives some equivalences between the codes of the
defined type.

Theorem 1. The following transformations send the code C(a1, a2, . . . , at) to
an equivalent one:

(i) a permutation of the column-circulants: C(a1, . . . , at) ≈ C(a1σ, . . . , atσ),
σ ∈ St;

(ii) a cyclic shift with l positions to each circulant: C(a1, a2, . . . , at) =
C(a1 + l, a2 + l, . . . , at + l), 0 ≤ l ≤ r − 1;

(iii) a substitution x → x2 (Frobenius isomorphism): C(2a1, 2a2, . . . , 2at) ≈
C(a1, a2, . . . , at).

From the second condition in the theorem we have

C(a1, a2, . . . , at) = C(0, a2 − a1, . . . , at − a1).

We have realized this construction method and have obtained many results
but here we give only two examples.
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Example 1. Let k = 6. Since 26− 1 = 63 = 7 · 9, we take m = 9, r = 7. Using
Theorem 1, we have C(a1, a2) ≈ C(0, a2 − a1) and

C(0, 1) ≈ C(0, 2) ≈ C(0, 4) ≈ C(0, 3) ≈ C(0, 6) ≈ C(0, 5).

Hence there is a unique code for t = 2, and this is the binary [18,6,6] code.
For t = 3 we have C(0, 1, 3) ≈ C(0, 2, 6) ≈ C(0, 4, 5), C(0, 1, 5) ≈ C(0, 4, 6) ≈

C(0, 2, 3), and C(0, 1, 2) ≈ C(0, 2, 4) ≈ C(0, 1, 4) ≈ · · ·
These codes have length n = 27 and dimension k = 6. The codes C(0, 1, 3),

C(0, 1, 5) and C(0, 1, 2) are inequivalent. We list their weight enumerators and
the order of their automorphism groups.

1 + 9y10 + 9y12 + 27y14 + 18y16, |Aut(C)| = 18
1 + 36y12 + 27y16, |Aut(C)| = 51840
1 + 27y12 + 27y14 + 9y18, |Aut(C)| = 1296

Example 2. Let k = 8. Since 28−1 = 255 = 15·17 we can take m = 17, r = 15.
The number of the constructed codes is written in the following table. In the
third row we present the number of the obtained optimal codes, and in the
next row we give the minimum distances of the optimal codes of corresponding
length and dimension 8.

t 2 3 4 5 6 7
inequivalent codes 3 10 27 56 91 115

optimal codes 1 1 1 1 3 -
d 14 24 32 40 48 57

two-wight codes - 1 1 1 2 1

We see in the table, that there are two-weight quasi-cyclic codes in almost
all cases. There are constructions especially for two-weight quasi-cyclic codes
(see for example [4]). So it is an interesting question when a quasi-cyclic code
constructed with the proposed method, is also a two-weight code.

QC codes - open problems

Nevertheless we started this project three years ago, we didn’t work on it some
time. Recently we decided to continue our research on quasi-cyclic codes be-
cause there are many open problems regarding our approach and the quasi-
cyclic codes in general. We list some of these problems.

• A sequence of the transformations from Theorem 1 is a sufficient condition
for equivalence of two binary QC codes. When the products of these three
transformations give a necessary condition for equivalence?

• What is going on when m < k?
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• Is the theory for q > 2 the same?

• Are there Balanced weight distribution quasi-cyclic codes?

• What about two-weight irreducible quasi-cyclic codes?

Acknowledgments. The authors would like to thank Cris Coolsaet for the
useful discussions on the subject during their visit to the University of Ghent.
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