
Seventh International Workshop on Optimal Codes and Related Topics
September 6-12, 2013, Albena, Bulgaria pp. 53-58

About parallelization of an algorithm for the
maximum clique problem1

Iliya Bouyukliev iliya@moi.math.bas.bg
Institute of Mathematics and Informatics, Bulgarian Academy of Sciences
P.O.Box 323, 5000 Veliko Tarnovo, Bulgaria
Venelin Monev venelinmonev@gmail.com
Faculty of Mathematics and Informatics, Veliko Tarnovo University,
5000 Veliko Tarnovo, Bulgaria
Maria Dzhumalieva-Stoeva mdzhumalieva@gmail.com
Institute of Mathematics and Informatics, Bulgarian Academy of Sciences
P.O.Box 323, 5000 Veliko Tarnovo, Bulgaria

Dedicated to the memory of Professor Stefan Dodunekov

Abstract. Many construction and classification problems in coding theory can be
considered as a maximum clique problem. In this paper we consider some approaches
for parallel implementation of an algorithm which solves this problem.

1 Introduction

A graph is an ordered pair G = (V, E) which consists of a vertex set V and a
collection E of 2-element subsets of V . Each element of E is called an edge. A
hypergraph H = (VH , EH) consists of a vertex set VH and a collection EH of
subsets of VH . Each element of EH is called a hyperedge.

A clique in a graph G is a subset of the vertex set Cl ⊂ V , such that for
every two vertices in Cl, there exists an edge connecting them. A maximum
clique is a clique of the largest possible size in a given graph. An independent
set is a set of vertices in a graph, no two of which are adjacent. A maximum
independent set is a largest independent set for a given graph. Every clique
corresponds to an independent set in the complement graph.

Many construction and classification problems in coding theory can be con-
sidered as a maximum clique problem [5] [6] or the problem for maximum
independent set in the complement graph.

The construction of linear codes can be considered as a maximum indepen-
dent set problem in a hypergraph [1]. An independent set in H is a subset S
of VH that does not contain any edge. A maximum independent set in a given
hypergraph H is an independent set of maximum cardinality. Since these are
NP-hard problems, no polynomial time algorithms are expected to be found.

1This research is partially supported by the Bulgarian NSF under Contract I01/0003/2012

54 OC2013

Nevertheless, many instances of this problems can be solved with realizations
similar to the algorithm in [4]. In this paper we consider some approaches for
parallel implementation of this algorithm. Different ways for development of
parallel algorithms for solving a maximum clique problem are presented in [7].
They are related to parallelization of the back-track search.

2 Main ideas and notations in the serial algorithm

In this section we give the notations and main ideas of an algorithm for finding
maximum clique presented by Österg̊ard [4].

Consider the graph G(V, E) with V = {v1, v2, . . . , vn}. The set of vertices
adjacent to a vertex v is denoted by N(v) and the number of vertices in the
graph is n. The variable max, which is global, gives the size of a maximum
clique when the algorithm terminates. Let Si = {vi, vi+1, . . . , vn} and the func-
tion c(i) gives the largest clique in Si. The values of the function c(i) are saved
in the array C. The strategy of the algorithm is to consider cliques in Sn that
contain vn, then cliques in Sn−1 that contain vn−1, etc. Suppose that the al-
gorithm finds l = C[i] in the (n − i)th step (l is a maximum clique in Si).
In the next step the algorithm will search for a clique with size l + 1 which
contains the vertex vi−1. The possible values for C[i− 1] are l or l + 1. In the
search process the algorithm uses already obtained C[i], C[i + 1], . . . , C[n] for
the pruning strategy in the search tree (see line 14 of Algorithm 2 in [4]). If in
some step the algorithm has found a clique with size l + 1 the variable found
becomes true, the algorithm stops to search and goes to the next step.

3 Parallel implementations - notation and pseudocode

For the implementation of the algorithms we use the MPI interface [8], [3]. MPI
(Message Passing Interface) is a standardized programming environment for
distributed-memory parallel computers. The basic concept of MPI is message
passing: one process sends data via message to another process. If exactly two
processes are involved in this situation, it is called point to point communica-
tion. There are two kind of communications: blocking and nonblocking. In the
blocking form the process waits until the communication has completed. Other-
wise, in the nonblocking communication a process does not block and may check
for this completion while perform some other task in meantime. The program-
ming model SPMD (Single Program Multiple Data) is commonly used.This is
when many processes are all running the same program and they will be work-
ing on different parts of the program’s data. Many combinatorial problems
(like current) used backtracking algorithms for their solving. Backtrack search
is a potential example for parallelization and the well-known master/worker
pattern is more preferred. This patterns consists of two logical nodes: a master

Bouyukliev, Monev, Dzhumalieva-Stoeva 55

and one or more instances of a worker. The master sets up specific work to the
workers and manages their performance.

Any worker process is responsible to find a clique in Si (which contains vi)
with size greater than maxl, but not larger than maxu, keeps this value in maxl
and sends it to the master. The worker do this by Algorithm 1. Any worker
receives values of i, maxl, maxu and information to improve the local array C
from the master. The master only distributes the work. It sends values of i,
maxl, maxu and information for improvements of the array C and receives the
obtained value of maxl from any worker.

We present two versions of this implementation. In the first one the master
waits for a response from the process which has received his work first. This
is written by lines with (*) in the pseudo code of Algorithm 2. This version
is based on the assumption that the work of Algorithm 1 in the vertex with
smaller index will be heavier in most of the cases.

In the second version the master gives work to the first ready process. This
is written by a line with (**) in the pseudo code of Algorithm 2.

The first version is implemented by blocking communication, because the
master process waits to receive messages back from the worker processes in strict
order. This is not the case in the second version. It implements nonblocking
communications and each result from a worker will be send to the others by
the master.

We have made experimental results on the dual core four tasks INTEL i3
processor. We use graphs Gp,q with the following property: The vertex set is
V = {v1, v2, . . . , vp}. There is an edge from vi to vj if and only if the Hamming
distance between the binary representations of i and j is larger than q − 1.

The calculational times and approximate number of operations for the two
versions are given in Table 1 and Table 2.

Remark 1: This implementation is proper only for sparse graphs.
Remark 2: It is known that many problems are reducible to clique problem.

As an example satisfiability (or SAT) [2], which is a fundamental problem in
computer science, since solutions to many important problems, such as circuit
testing, combinatorial search, cryptography algorithms, and so forth, can be
formulated as satisfiability questions.

References

[1] I. Bouyukliev, E. Jakobsson, Results on binary linear codes with minimum
distance 8 and 10, IEEE Trans. Inform. Theory, 57, 6089–6093, 2011.

[2] S. A. Cook, The complexity of theorem proving procedures, in STOC ’71:
Proceedings of the third annual ACM symposium on Theory of computing,
Shaker Heights, Ohio, United States, 1971, 151–158.

56 OC2013

Algorithm 1.

| var U: array of sets;
| found:boolean;

Procedure cliquep(size, var maxl, var maxu:integer);
| var i:integer;
| {
| if |U [size− 1]| = 0 then
| {
| if (size>maxl) then
| {
| maxl:=size;
| if maxl = maxu then found:=true;
| };
| };
| while |U [size− 1]| <> 0 do
| {
| if (size + |U [size− 1]| <= maxl) then return;
| i := min{j : vj ∈ U [size− 1]};
| if ((size + C[i]) <= maxl) then return;
| U [size− 1] := U [size− 1]\{vi};
| U [size] := {U [size− 1]

⋂
N(vi)};

| cliquep(size+1,maxl,maxu);
| if found = true then return;
| };
| };

Procedure Mainclique(i, var maxl,var maxu:integer);
| {
| found:=false;
| U [0] := {Si

⋂
N(vi) };

| cliquep(1,maxl,maxu);
| };

Bouyukliev, Monev, Dzhumalieva-Stoeva 57

Algorithm 2.

Clique_paralel (G(V,E));
{
if (master)

{Send initial work for all workers;
work:=|V|-numworkers;
while (work>0) do
{* wait_message_from_next;
* receive_from_next (maxl,workdone,workernum);
** receive_from_any (maxl,workdone,workernum);
update C;
find "maxl"’ and "maxu" for current "work";
send_to_workernum(maxl,maxu,work, info for C);
work:=work-1;

}
}

if (worker)
{while (work>0) do
{
receive_from_master(maxl,maxu,work, info for C);
update C;
Mainclique(work,maxl,maxu);
send_to_master(maxl,workdone,workernum);

}
}

}

58 OC2013

Table 1: Computational results of Algorithm 1
Graph Measure Number of processors

1 2 3 4
G185,3 runtime(sec) 317.89 174.15 141.37 114.57

operations(109) 9.69 9.76 9.80 9.88
G330,4 runtime(sec) 47.43 26.61 20.92 17.25

operations(109) 1,53 1.53 1.53 1.53
G700,5 runtime(sec) 40.03 20.88 18.71 17.12

operations(109) 1,24 1.24 1.24 1.24

Table 2: Computational results of Algorithm 2
Graph Measure Number of workers

1 2 3 4
G185,3 runtime(sec) 314.67 166.32 138.42 119.22

operations(109) 9.69 9.75 10.40 10.48
G330,4 runtime(sec) 45.78 24.81 19.53 17.06

operations(109) 1,49 1.50 1.51 1.52
G700,5 runtime(sec) 38.74 21.25 18.67 16.20

operations(109) 1,24 1.24 1.24 1.25

[3] W. Gropp, E. Lusk, A. Skjellum, UsingMPI: Portable parallel programming
with the message-passing Interface, The MIT Press, 1994.

[4] P. R. J. Österg̊ard, A fast algorithm for the maximum clique problem,
Discrete Applied Mathematics, 120, 197–207, 2002.

[5] P. R. J. Österg̊ard, Constructing combinatorial objects via cliques, in:
Surveys in Combinatorics, B. S. Webb (Editor), Cambridge University
Press, Cambridge, 57–82, 2005.

[6] P. R. J. Österg̊ard, T. Baicheva, E. Kolev, Optimal binary One-Error-
Correcting codes of length 10 have 72 codewords, IEEE Trans. Inform.
Theory, 45, 1229–1231, 1999.

[7] C. Brewbaker, Parallel implementation of the CLIQUER algorithm for the
computing the MAX CLIQUE of a random graph of order 900, 2005.

[8] P. S. Pacheco, Parallel programming with MPI, San Francisco, Calif.: Mor-
gan Kaufmann Publishers, 1997.

