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Abstract. First, we give an alternative proof of the famous McEliece’s result
about divisibility of the weights of the binary Reed-Muller codes fully relying on
knowledge for Boolean functions. Second, we prove that any binary Reed-Muller
code RM(r, m) contains codeword such that the highest power of 2 dividing its
weight is exactly 2[(m−1)/r].

1 Introduction

For basic definitions and facts we refer to [1]. Reed-Muller (or RM) codes are
one of the oldest and best understood families of codes. However, there are
relatively few general results concerning their weight structure. For instance,
the problem of finding the weight-distribution of RM codes of arbitrary possible
lengths is solved completely only for the first and second-order codes (and their
duals, of course) [2], and for arbitrary order it is determined only for weights
less than 2.5 of the minimum distance [3, 4]. Therefore, the general result of
R.J.McEliece about divisibility of the weights in the binary RM codes can be
considered as a deep and very useful theorem (see, e.g. [5, 6] and [7]).

Apart from the original proof of that theorem based on some facts about
binary cyclic codes (see, [1][p. 447] and [8, 9], respectively), J.H. van Lint
has exhibited an proof which is based on a specific theorem (again due to
R.J.McEliece) stated in terms of zeros of polynomials on many variables over
GF(2) (see, [10][p. 123-125]). In this note, we present another comprehensive
proof given in terms of Boolean functions and their weights.

The rest of that note is organized as follows. In the next section, we recall
needed knowledge about Boolean functions and the binary RM codes. Then we
exhibit our results and their proofs. Finally, some facts about works concerning
the topic of divisible codes are present and conclusions are drawn.

1This research is partially supported by the Bulgarian NSF grant I01/0003.
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2 Preliminaries

We will give shortly some facts about the binary RM codes (see for details, e.g.
[1][Ch. 13]). Let Vm be m−dimensional binary vector space. A Boolean func-
tion f on m variables x1, x2, . . . , xm is a mapping from Vm into F2 = GF(2).
Let Fm be the set of all Boolean functions on m variables. Fm constitutes a
2m−dimensional binary vector space. Special kind of Boolean functions which
form basis of Fm are the so-called monomials, i.e. all products (including the
”empty” product, 1): xi1xi2 . . . xiν , where 1 ≤ i1 < i2 < . . . < iν ≤ m. So, any
f ∈ Fm can be uniquely expressed as a linear combination (polynomial) of some
monomials, sometimes called Algebraic Normal Form (ANF ) of f . Degree of
monomial is defined to be the number of its (essential) variables. The greatest
degree of a monomial in the ANF of function f is called algebraic degree of
f (denoted by deg(f)). A truth table of the Boolean function f ∈ Fm is the
binary vector f of length 2m whose coordinates are the values of f arranged
according to the ordinary lexicographic order supplied in Vm. The weight of
truth table f (namely the number of its nonzero positions), is called as well
weight of f and denoted by wt(f).

Herein, we present without proofs three simple properties of Boolean func-
tions needed in further:

• P1: For arbitrary Boolean function f it holds f2 = f .

• P2: Let g be a monomial which is product of n ≥ 2 monomials g1, g2, . . . gn.
Then

deg(g) ≤ ∑n
i=1 deg(gi),

and equality holds if and only if the sets of essential variables of any pair
(gi, gj) are disjoint.

• P3: The weight of any monomial g ∈ Fm is equal to 2m−deg(g).

The subset of Fm consisting of the Boolean functions having degree at
most r (or equivalently their truth tables) form a linear subspace of dimension
k =

∑r
i=0

(
m
i

)
, called binary Reed-Muller code RM(r,m) of order r and length

2m. Further on, we consider only non-trivial case r > 0. Recall as well that
punctured RM code RM(r,m)∗ is equivalent to a cyclic code (see, e.g. [1][p.
383]) which we point out in connection with the original proof mentioned in
the Introduction.

The following theorem (subject of this note) is due to McEliece :

Theorem 1. ( [9] or [1][p. 447]) The weight of every codeword in RM(r,m)
is divisible by 2[(m−1)/r].
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3 Proofs

First, we prove the following

Proposition 1. Let g1, g2, . . . , gn be n arbitrary Boolean functions from Fm.
Then it holds

wt(
n∑

i=1

gi) =
n∑

i=1

wt(gi)− 2
∑

i,j

wt(gigj) + . . .

+(−2)l−1
∑

i1,i2,...,il

wt(gi1gi2 . . . gil) + . . . + (−2)n−1wt(g1g2 . . . gn) (1)

Proof. The proof is by induction on n.

For n = 2, it is well-known that:

wt(g1 + g2) = wt(g1) + wt(g2)− 2wt(g1g2) (2)

Assume the statement is true for n = k. For n = k + 1, we have the following
chain of equations first making use of (2) and then by inductive hypothesis
(simultaneously on

∑k
i=1 gi and

∑k
i=1 gigk+1), regrouping the summands :

wt(
k+1∑

i=1

gi) = wt(
k∑

i=1

gi + gk+1) = wt(
k∑

i=1

gi) + wt(gk+1)− 2wt(
k∑

i=1

gigk+1) =

k+1∑

i=1

wt(gi)− 2
∑

1≤i,j≤k+1

wt(gigj) + 4
∑

1≤i,j,l≤k+1

wt(gigjgl)− . . .+

+(−2)kwt(g1g2 . . . gk+1).

(Note that above we have applied also the property P1.)
Thus, (1) is true for n = k + 1 and the proof is completed.

Remark 1. This proposition is in some sense analogous to the inclusion-
exclusion principle from elementary combinatorics and may have individual
significance.

A powerful technique known as combinatorial (or weight) polarization, which
is related to the above proposition, was developed in [11] and [12] for the goals
of studying the divisibility of group-algebra codes.
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Lemma 1. Let f ∈ RM(r,m) and α = [(m−1)/r]. Then (up to sign) the terms
in equation (1) for the ANF (f) involving the products of monomials which
consist of l ≤ α multipliers, are powers of 2 greater or equal to 2m−(r−1)l−1.

Proof. By the common form of terms in equation (1) and properties P3 and
P2, taking into account that maximum degree of such product is achieved
when all multipliers have disjoint sets of variables of cardinality r (hence, the
corresponding power of 2 can always be lower bounded by 2m−rl if the number
of multipliers l is at most α).

Remark 2. The degree m−(r−1)l−1 decreases with l (strictly if r > 1). Also,
the signs of terms have no significance in studying the divisibility properties of
weights through equation (1) and are ignored further on.

Now, we shall prove the McEliece’s theorem on the base of Proposition 1.

Proof. Put α = [(m−1)/r], and let f 6= 0 be a Boolean function corresponding
to some codeword from RM(r,m). For the proof it is sufficient to show that
all of the terms with l ≤ α in equation (1) applied for the ANF (f) are greater
or equal to 2α. For that, by Lemma 1 and the subsequent remark, the lowest
degree m− (r− 1)α− 1 must be at least α, or equivalently (m− 1)/r ≥ α. But
this follows by the definition of α and the proof is completed.

Making use of Proposition 1, we can also prove the following:

Theorem 2. Any Reed-Muller code RM(r,m) contains codeword such that the
highest power of 2 which divides its weight is exactly 2[(m−1)/r].

Proof. If r = 1, the weight-distribution of the first-order RM codes implies that
statement is true for all codewords 6= 0,1.

So, further on we assume r > 1 and let again α = [(m− 1)/r]. If α = 0, i.e.
m = r, the monomial x1x2 . . . xm has weight 1. Now, let α > 0 and β = m−αr.
It is easily seen that 1 ≤ β ≤ r, and the proof can be split into the following
two cases:

• β = 1. In this case, we construct a Boolean function f1 = g1 + . . . gα such
that each gi is a monomial of degree r and the sets of essential variables
for any pair (gi, gj), 1 ≤ i < j ≤ α are disjoint. (The construction of f1 is
always possible since m > αr.) Then applying equation (1) in regard to
f1, it can be easily seen that last term (l = α) is exactly 2α−1 ∗ 2β = 2α

while the preceding ones are powers > 2α by Lemma 1 and Remark 2.

• β > 1. In this case, we consider the Boolean function f2 = f1 + gα+1,
where f1 is described as in the previous case but gα+1 is the monomial
which contains the remaining m− αr = β ≤ r variables. Again, the last
term (l = α+1) in equation (1) applied for f2 will be exactly 2α ∗20 = 2α

while the preceding ones are greater powers of 2 since that of minimum
magnitude (corresponding to g1g2 . . . gα) equals to 2α−1 ∗ 2β = 2α+β−1,
and the proof follows.
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Example 1. Let r = 2. If m = 2 then α = 0 and wt(x1x2) = 1; if m = 3 take
f1 = x1x2; if m = 4, f2 = x1x2 + x3x4. In the last two cases α = 1, and it can
be easily checked that wt(f1) = 2 while wt(f2) = 6.

4 Some works on divisible codes

An thorough survey on divisible codes is given in [13]. In this survey, McEliece’s
theorem is cited in connection with an theorem of Ax about divisibility of the
generalized RM codes [14] and its generalizations. Works on divisible codes
have been done by the bulgarian coding theory group members, e.g. [15] and
[16]. The first one concerns divisibility of a binary Griesmer code whilst the
second proves more general theorem for Griesmer codes over prime fields using
polynomial methods (see, as well [17]). Another contribution of this topic is [18].
Finally, it is worth noting the existence of link between the McEliece’s result
and properties of some classes of cryptographic Boolean functions [19].

5 Conclusion

In this note, based on general formula for the weight of sum of arbitrary Boolean
functions, we have presented an alternative proof of McEliece’s theorem about
divisibility of the binary RM codes. We also have shown the bound determined
by that theorem is tight.

Acknowledgments. The author would like to thank Gary McGuire for
helpful comments and paying attention to the article [11].
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