Optimal quasi-cyclic Goppa codes ${ }^{1}$

Sergey Bezzateev
Natalia Shekhunova
bsv@aanet.ru
Saint Petersburg State University of Aerospace Instrumentation
sna@delfa.net

Dedicated to the memory of Professor Stefan Dodunekov

Abstract. A new class of quasi-cyclic Goppa codes is considered. It is shown that it contains optimal codes.

1 Introduction

A Goppa code [1] is determined by two objects: a Goppa polynomial $G(x)$ with coefficients from $G F\left(q^{m}\right)$ and location set L of codeword positions

$$
L=\left\{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right\} \subseteq G F\left(q^{m}\right), G\left(\alpha_{i}\right) \neq 0, \forall \alpha_{i} \in L
$$

Definition 1. q-ary vector $\boldsymbol{a}=\left(a_{1} a_{2} \ldots a_{n}\right)$ is a codeword of $\Gamma(L, G)$-code if and only if the following equality is satisfied

$$
\sum_{i=1}^{n} a_{i} \frac{1}{x-\alpha_{i}} \equiv 0 \quad \bmod G(x)
$$

It is known that quasi-cyclic Goppa codes can be constructed as special subclasses of extended Goppa codes or expurgated subcodes. Permutations of elements of the location set L from linear and semilinear projective line group are used for the construction of these codes $[2-4]$.

$$
\begin{aligned}
& P G L(2, L)=\left\{f \left\lvert\, f(\alpha)=\frac{a \alpha+b}{\alpha+c}\right., \alpha \in L, a, b, c \in G F\left(q^{m}\right), a c-b \neq 0\right\} \\
& P \Gamma L(2, L)=\left\{f \left\lvert\, f(\alpha)=\frac{a \alpha^{q}+b}{\alpha^{q^{l}}+c}\right., \alpha \in L, a, b, c \in G F\left(q^{m}\right), a c-b \neq 0,0 \leq l<m\right\}
\end{aligned}
$$

It has been proved in [2], Corollary 1 (Expurgated subcodes), Theorem 4 (Extended codes) that the equation

$$
\begin{equation*}
\sum_{i=1}^{n} a_{i}=0 \tag{1}
\end{equation*}
$$

[^0]for any codeword is the necessary and sufficient condition for the quasi-cyclicity of the Goppa code in case the groups of permutations $\operatorname{PGL}(2, L), P \Gamma L(2, L)$ are used. It should be noted [2-4] that in this case the element ∞ has been included into the numerator set L (extended code);in case expurgated subcode is considered, a subcode with words satisfied equation (1) only is used.

In this paper a consistent choice of a Goppa polynomial $G(x)$ and numerator set L that provides the fulfilment of (1) for all codewords of the $\Gamma(L, G)$-code is proposed. For the considered subclass of quasi-cyclic Goppa codes we have obtained estimations of the dimension and minimum distance. It is shown that there exist optimal codes among such quasi-cyclic codes.

2 Class of embedded quasi-cyclic separable Goppa codes

Theorem 1. [6] All codewords of the $\boldsymbol{a}=\left(a_{1} a_{2} \ldots a_{n}\right) \Gamma(L, G)$-code with $L \subseteq G F\left(q^{2 m}\right)$ and $G(x)$:

$$
\forall \alpha \in L, G(\alpha)^{q^{m}}=A \alpha^{-t} G(\alpha), A \in G F\left(q^{2 m}\right), t=\operatorname{deg} G(x)
$$

satisfy the equation:

$$
\sum_{i=1}^{n} a_{i}=0 .
$$

Let us define a set M of elements of the field $G F\left(q^{2 m}\right)$ as following:

$$
M=\left\{\alpha: \alpha^{q^{m}}=\alpha^{-1}, \alpha \in G F\left(q^{2 m}\right)\right\} .
$$

Theorem 2. The permutation given by the function

$$
f(x)=\frac{a x^{q^{l}}+b}{x^{q^{l}}+c}, a, b, c \in G F\left(q^{2 m}\right), a c-b \neq 0,0 \leq l<m
$$

is automorphism mapping on the set M if and only if

$$
b=1, c=a^{q^{m}} .
$$

Lemma 1. All roots of the polynomial

$$
\begin{equation*}
G(x)=x^{q^{l}+1}-a x^{q^{l}}+a^{q^{m}} x+1 \tag{2}
\end{equation*}
$$

are fixed with respect to the permutation $f(x)$ defined in Theorem 2.

It is easy to show that $G(x)$ is a separable polynomial.
Let us choose a location set

$$
\begin{equation*}
L=M \backslash\{\alpha: G(\alpha)=0\} \tag{3}
\end{equation*}
$$

Then the $\Gamma(L, G)$-codes with the such set L and with the Goppa polynomial

$$
\begin{gather*}
G(x)=x^{q^{l}+1}-a x^{q^{l}}+a^{q^{m}} x+1 \text { or } \\
G(x)=x+\beta, \beta \in M \tag{4}
\end{gather*}
$$

satisfy the conditions of Theorem 1.
So, the equation $\sum_{i=1}^{n} a_{i}=0$ is satisfied for all words of such codes.
Theorem 3. $\Gamma(L, G)$-codes given by set $L(3)$ and Goppa polynomials $G(x)(2),(4)$ have:

- the minimum distance $d \geq t+2, t=\operatorname{deg} G(x)$ (for $q=2, d \geq 2 t+2$),
- and dimension $k \geq n-m t-1$.

Let us choose a subset \widehat{L} as a set of numerators of codeword positions:

$$
\begin{aligned}
& \widehat{L} \subseteq L, \widehat{L}=\left\{L_{1}, L_{2}, \ldots, L_{r}\right\}, \forall i, L_{i}=\left\{\alpha_{i_{1}}, \alpha_{i_{2}}, \ldots, \alpha_{i_{\mu}}\right\} \\
& \alpha_{i_{j+1}}=\frac{a \alpha_{i_{j}}^{l}+b}{\alpha_{i_{j}}^{q^{l}}+c}, \forall j, \alpha_{i_{j}} \in M, a, b, c \in G F\left(q^{2 m}\right), r \mu=n
\end{aligned}
$$

and the Goppa polynomial $\widehat{G}(x)$:

$$
\widehat{G}(x) \mid G(x), \widehat{G}(\alpha)^{q^{m}}=A \alpha^{-t} \widehat{G}(\alpha), A \in G F\left(q^{2 m}\right), t=\operatorname{deg} \widehat{G}(x)
$$

These $\widehat{G}(x)$ and \widehat{L} satisfy the conditions of Theorem 1 .
Theorem 4. The $\Gamma(\widehat{L}, \widehat{G})$-code is a quasi-cyclic code with the cycloid length μ, minimum distance

$$
d \geq \operatorname{deg} G(x)+2
$$

and dimension

$$
k \geq n-m \cdot \operatorname{deg} G(x)-1, n=r c
$$

It is obvious that if $G(x)$ is decomposed over $G F\left(q^{2 m}\right)$:

$$
G(x)=\prod_{i=1}^{\tau} \widehat{G}_{i}(x)
$$

and if every polynomial $\widehat{G}_{i}(x)$ satisfies the conditions of Theorem 1 , then we obtain a set of embedded quasi-cyclic Goppa codes.

For example, if all roots of polynomial $G(x)$ belong to the set M, i.e.

$$
G(x)=\prod_{i=1}^{t}\left(x+\beta_{i}\right), \beta_{i} \in M, t=\operatorname{deg} G(x)
$$

then the polynomials $x+\beta_{i}$ can be chosen as $\widehat{G}_{i}(x)$.

3 Examples

Let us choose a multiplicative subgroup M of the field $G F\left(2^{10}\right)$

$$
M=\left\{\alpha^{31 i}, i=0, \ldots, 32\right\}
$$

and transformation

$$
f(x)=\frac{\alpha^{29} x^{2}+1}{x^{2}+\left(\alpha^{29}\right)^{32}}=\frac{\alpha^{29} x^{2}+1}{x^{2}+\alpha^{928}}
$$

where α is a primitive element of $G F\left(2^{10}\right)$ and it is a root of a polynomial $x^{10}+x^{6}+x^{5}+x^{3}+x^{2}+x+1$.

The roots of a polynomial

$$
x^{3}+\alpha^{29} x^{2}+\alpha^{928} x+1=\left(x+\alpha^{310}\right) \cdot\left(x+\alpha^{806}\right) \cdot\left(x+\alpha^{930}\right)
$$

where $\alpha^{310}, \alpha^{806}, \alpha^{930} \in M$, are fixed points for this transformation With the exception of the roots of the polynomial $G(x)$:

$$
L=M \backslash\left\{\alpha^{310}, \alpha^{806}, \alpha^{930}\right\}=\left\{L_{1}, L_{2}, L_{3}, L_{4}, L_{5}, L_{6}\right\}
$$

where L_{i} is the i-th cycloid that is an orbit of the permutation $f(x)$:

$$
\begin{aligned}
& L_{1}=\left\{1, \alpha^{527}, \alpha^{279}, \alpha^{496}, \alpha^{248}\right\}, \\
& L_{2}=\left\{\alpha^{31}, \alpha^{217}, \alpha^{775}, \alpha^{465}, \alpha^{899}\right\}, \\
& L_{3}=\left\{\alpha^{62}, \alpha^{93}, \alpha^{744}, \alpha^{372}, \alpha^{992}\right\}, \\
& L_{4}=\left\{\alpha^{124}, \alpha^{589}, \alpha^{155}, \alpha^{341}, \alpha^{713}\right\}, \\
& L_{5}=\left\{\alpha^{186}, \alpha^{682}, \alpha^{651}, \alpha^{837}, \alpha^{558}\right\}, \\
& L_{6}=\left\{\alpha^{403}, \alpha^{961}, \alpha^{620}, \alpha^{434}, \alpha^{868}\right\} .
\end{aligned}
$$

Example 1. Using the location set L and Goppa polynomial $G(x)=x^{3}+$ $\alpha^{29} x^{2}+\alpha^{928} x+1$ we obtain quasi-cyclic $(30,14,8)$-code with the weight distribution

$$
\begin{aligned}
& <0,1>,<8,225>,<10,840>,<12,2800>,<14,4200> \\
& <16,4635>,<18,2520>,<20,1008>,<22,120>,<24,35>
\end{aligned}
$$

This is a new optimal quasi-cyclic code with the length of cycloid equal to $\mu=5$ [7, 8].

Example 2. Using the same set L and different polynomials of the second degree

$$
\begin{aligned}
& G_{1}(x)=x^{2}+\alpha^{307} x+\alpha^{713}=\left(x+\alpha^{806}\right) \cdot\left(x+\alpha^{930}\right) \\
& G_{2}(x)=x^{2}+\alpha^{360} x+\alpha^{93}=\left(x+\alpha^{310}\right) \cdot\left(x+\alpha^{806}\right) \\
& G_{3}(x)=x^{2}+\alpha^{455} x+\alpha^{217}=\left(x+\alpha^{310}\right) \cdot\left(x+\alpha^{930}\right)
\end{aligned}
$$

as divisors of the Goppa polynomial $G(x)$ we obtain new equivalent optimal quasi-cyclic $(30,19,6)$-codes with weight distribution

$$
\begin{aligned}
& <0,1>,<6,675>,<8,5635>,<10,29127>,<12,85120>,<14,141270> \\
& <16,142335>,<18,84630>,<20,29040>,<22,5895>,<24,525>,<26,35>
\end{aligned}
$$

and the length of cycloid equal to $\mu=5[7,8]$.
Example 3. Using the same set L and different polynomials of the first power

$$
\begin{aligned}
& G_{11}(x)=G_{22}(x)=x+\alpha^{806} \\
& G_{12}(x)=G_{32}(x)=x+\alpha^{930} \\
& G_{21}(x)=G_{31}(x)=x+\alpha^{310}
\end{aligned}
$$

as divisors of $G(x)$ we obtain new equivalent optimal quasi-cyclic $(30,24,4)$ codes with the weight distribution

$$
\begin{aligned}
& <0,1>,<4,945>,<6,18200>,<8,183885>,<10,936936>,<12,2705885> \\
& <14,4541040>,<16,4547475>,<18,2700880>,<20,939939>,<22,182520> \\
& <24,18655>,<26,840>,<28,15>
\end{aligned}
$$

and the length of cycloid equal to $\mu=5[7,8]$.

4 Conclusion

The new class of classical Goppa codes with separable Goppa polynomials and special location sets L are proposed. It is shown that these codes are quasicyclic codes. Moreover, many codes have the best known parameters (minimum distance and dimension).

References

[1] V. D. Goppa, A new class of linear error-correcting codes, Probl. Inform. Transm., 6, 3, 24-30, 1970.
[2] T. P. Berger, Goppa and related codes invariant under a prescribed permutation, IEEE Trans. Inform. Theory., 46, 7, 2628-2633, 2000.
[3] T. P. Berger, On the cyclicity of Goppa codes, parity-check subcodes of Goppa codes, and extended Goppa codes, Finite Fields and Their Applications, 6, 255-281, 2000.
[4] T. P. Berger, Quasi-cyclic Goppa codes, in Proc. ISIT2000, Sorrente, Italy, 2000, 195.
[5] F. J. MacWilliams, N. J. A. Sloane, The Theory of Error-Correcting Codes, Amsterdam, Netherlands, North-Holland, 1977.
[6] S. Bezzateev, N. Shekhunova, Chain of separable binary Goppa codes and their minimal distance, IEEE Trans. Inform.Theory., 54, 12, 5773-5778, 2008.
[7] Z. Chen, A database on binary quasi-cyclic codes, http://moodle.tec.hkr.se/ chen/research/codes/qc.htm
[8] M. Grassl, Tables of Linear Codes and Quantum Codes. http://www.codetables.de/

[^0]: ${ }^{1}$ This research is partially supported by Erasmus Mundus scholarship for the Erasmus Mundus Masters Course NordSecMob.

