
Seventh International Workshop on Optimal Codes and Related Topics
September 6-12, 2013, Albena, Bulgaria pp. 33-40

On q-ary optimal equitable symbol weight
codes1

L. A. Bassalygo bass@iitp.ru
V. A. Zinoviev zinov@iitp.ru
A.A. Kharkevich Institute for Problems of Information Transmission,
Russian Academy of Sciences, Moscow, RUSSIA

Dedicated to the memory of Professor Stefan Dodunekov

Abstract. Two new families of optimal equitable symbol weight q-ary codes are
constructed.

1 Introduction

Denote by Q = {0, 1, . . . , q − 1} an alphabet of size q and by Qn the set of all
words of length n over Q. Let x = (x1, x2, . . . , xn) be an arbitrary word over
Q. Denote by ξa(x) the number of times the symbol a ∈ Q occurs in x, i.e.

ξa(x) = |{j : xj = a, j = 1, 2, . . . , n}|.

Say that x ∈ Qn has equitable symbol weight if ξa(x) ∈ {bn/qc, dn/qe} for every
a ∈ Q.

Definition 1. A code C ⊂ Qn we call equitable symbol weight code, if every
its codeword has equitable symbol weight.

Denote such q-ary equitable symbol weight codes of length n, cardinality M
and with minimum distance d by E(n, M, d; q). Equitable symbol weight codes
were recently introduced in [1] for more precisely capture a code’s performance
against permanent narrowband noise in power line communication [2]. Several
optimal infinite families of such codes were constructed in [1,3]. In particular, a
family of optimal equitable symbol weight codes E(n,M, d; q) was constructed
in [3] with parameters

n = q2 − 1, M = q2, d = q(q − 1), (1)

for any q = ps, where p is any odd prime number.

1This work has been partially supported by the Russian fund of fundamental researches
(under the project No. 12 - 01 - 00905).



34 OC2013

In this paper we construct, using the other approach, equitable symbol
weight codes with parameters (1) for q = ps ≥ 3, where p is any prime number,
i.e. including the case p = 2. Besides, a family of optimal equitable symbol
weight q-ary codes is constructed with parameters

n, M = q(n− 1), d = n(q − 1)/q, (2)

where n is such, that there exists a difference matrix of size n × n over the
alphabet Q.

2 Main construction

It is well known (see, for example, [4,5] and references there) that optimal
equidistant q-ary codes of length q2 − 1, with minimum distance q(q − 1) and
cardinality q2 can be easily constructed for any prime power q ≥ 3. These codes
are not equitable symbol weight, but it is possible to reconstruct them such that
they become equitable symbol weight codes without missing the property to be
equidistant. To describe the construction of these codes we need a concept of
a Latin square. A square matrix of size q over an alphabet Q is called a Latin
square of order q, if every element occurs once in every row and in every column.

Let A be a matrix of size q × q of form



0 0 . . . 0
1 1 . . . 1
· · . . . ·

q − 1 q − 1 . . . q − 1


 ,

and let L1, L2, . . . , Lq−1 be a set of q − 1 Latin squares of order q over Q with
the following property: the pairwise distance between any two rows of different
squares is equal to q − 1 (it is clear that the pairwise distance between any
two rows of one square is equal to q). The rows of the following matrix of size
q2 × (q2 − 1) form an equidistant code with distance d = q(q − 1):




A · · · A e0 e1 · · · eq−2

L1 · · · L1 e1 e2 · · · eq−1

· · · · · · · · · · · · · · ·
Lq−1 · · · Lq−1 eq−1 e0 · · · eq−3


 ,

where ei is the column-vector (i i . . . i)t. Under reconstruction of this matrix
the last q−1 columns remain unchanged such that only the first q(q−1) columns
undergo to transformation. Denote by K the matrix of size q2×q(q−1), formed
by the first these q(q − 1) columns. We suggest a such reconstruction of the
matrix K, which keeps all pairwise distances between rows, but the matrix
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transforms to equitable symbol weight type, i.e. it contains every symbol in
every row exactly q − 1 times. It is enough, since in the last q − 1 positions all
elements are different in every row. The condition of equality of occurences of
different elements is not satisfied in the first layer of the matrix K:

[ A A · · · A ]

and we start reconstruction by adding to every row of matrix K the vector

a = (a1, a2, . . . ,aq−1),

where the vector aj of length q is of the form (0, j, j, . . . , j). For this purpose we
have to define the addition operation in the alphabet Q. Since q is a power of
a prime number, to the every nonzero element i ∈ Q set in correspondence the
element αi−1, where α is a primitive element of the Galois field Fq, and to 0 ∈ Q
set in correspondence the zero element of Fq. Define the addition operation ⊕
in Q as follows: i⊕ j = k, where k is such that αi−1 + αj−1 = αk−1.

After adding of a to the first layer of the matrix K the resulting q×q(q−1)
submatrix becomes of equitable symbol weight type. Further we will reconstruct
every i-th layer of the matrix K ⊕ a separately:

[
L

(1)
i L

(2)
i · · · L

(q−1)
i

]
,

where L
(j)
i is obtained from Li by adding of vector aj to the every row of matrix

Li.
The reconstruction would be concluded in permutation of rows in the ev-

ery matrix L
(j)
i independently. Evidently such permutation does not change

the distance properties of the matrix K and by this way the every i-th, i =
1, 2, . . . , q − 1, layer we will transform to equitable symbol weight type.

Without loss of generality we assume that the first column of the matrix Li

and, therefore, the first column of all matrices L
(j)
i , j = 1, 2, . . . , q − 1, is of

the form 


0
1
· · ·

q − 1


 .

In this case the k-th row of the every matrix L
(j)
i contains the element k exactly

two times and does not contain the element k⊕ j, and all other q− 2 elements
of Q occur exactly once. Similarly the `-th column of the every matrix L

(j)
i

contains the element ` exactly two times and does not contain the element
k ª j, and all other q − 2 elements of Q occur exactly once.
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Now set in correspondence to every matrix L
(j)
i the integer matrix B

(j)
i =

[b(j)
k,`] of size q × q over the numbers 0, 1, 2 in the following way:

b
(j)
k,` =





2, if k = `,
0, if k ⊕ j = `,
1, in other cases

To finish the proof we have to choose from the every matrix B
(j)
i , j =

1, 2, . . . , q − 1, one row r(j) in such way that the usual sum (i.e. sum in Z) of
all these rows would be equal to q − 1 for every position:

r(1) + r(2) + · · ·+ r(q−1) = (q − 1, q − 1, . . . , q − 1). (3)

This gives us one equal symbol weight row of length q(q−1) and we will continue
this procedure with the rest rows.

Now we explain how to make it. Taking the first arbitrary s1-th row r
(1)
s1

from the first matrix B
(1)
i (which contains the number 2 in s1-th position),

in the second matrix B
(2)
i chose the row r

(2)
s2 , which contains the number 0

in the position s1, implying that s2 = s1 ª 2. Then the row s2 contains the
number 2 in s2-th column, hence in the third matrix B

(3)
i chose the row r

(3)
s3

with s3 = s2 ª 3 = s1 ª 2 ª 3 and so on. Finally chose the row r
(q−1)
sq−1 in the

matrix B
(q−1)
i with

sq−1 = s1 ª 2ª 3 · · · ª (q − 1).

As we know the matrix B
(1)
i contains in the s1-th row the number 0 in the

position s1 ⊕ 1. Since

s1 ⊕ 1 = s1 ª 2ª 3 · · · ª (q − 1),

the number 2 of the last row r
(q−1)
sq−1 occupies the same position as the number 0

of the first row r
(1)
s1 . More short cycles are also possible, but it does not change

the merits of the case. Thus the equality (3) is satisfied for any choice of the
first row of the matrix B

(1)
i . Since the choice of the first row defines uniquely

the choice of the other rows, this equality is valid for all rows of the i-th layer
of the matrix K.

This completes the proof, since the given method does not depend on the
index i. The fact that these codes are optimal directly follows from the well
known Plotkin upper bound.

Therefore the following result takes place.

Theorem 1. Let q ≥ 3 be any prime power. Then there exists an optimal
equitable symbol weight equidistant q-ary code E(q2 − 1, q2, q(q − 1); q).
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Note once more that for the case of odd q this result has been obtained in
[3] using the other approach.

Consider an example of our construction for the case q = 4. Let Q4 =
{0, 1, 2, 3}, where 1 = α0, 2 = α, 3 = α2, and the element α is the primitive
element of the field F4 such that α2 = α + 1 (in this case the operation ⊕
coincides with addition operation in F4). Give the matrix C, formed by the
words of equidistant (5, 16, 4; 4) code, which can be presented as follows:

C =




A e0

L1 e1

L2 e2

L3 e3


 ,

where ei = (i i i i)t, i = 0, 1, 2, 3, and the matrices A,L1, L2, L3 are of the form:

A =




0 0 0 0
1 1 1 1
2 2 2 2
3 3 3 3


 , L1 =




0 1 2 3
1 0 3 2
2 3 0 1
3 2 1 0


 , L2 =




0 2 3 1
1 3 2 0
2 0 1 3
3 1 0 2


 , L3 =




0 3 1 2
1 2 0 3
2 1 3 0
3 0 2 1


 .

Construct the equidistant (15, 16, 12; 4) code E by repeting three times the
given above code C and define the matrix K:

E =




A A A e0 e1 e2

L1 L1 L1 e1 e2 e3

L2 L2 L2 e2 e3 e0

L3 L3 L3 e3 e0 e1


 , K =




A A A
L1 L1 L1

L2 L2 L2

L3 L3 L3


 .

Add to all rows of K the following vector

a = (0, 1, 1, 1, 0, 2, 2, 2, 0, 3, 3, 3).

Show how to reconstruct the first nontrivial layer of the matrix K:
[

L1 L1 L1

]
.

Adding to this layer of the vector a, we obtain the following matrices L
(j)
1 :

L
(1)
1 =




0 0 3 2
1 1 2 3
2 2 1 0
3 3 0 1


 , L

(2)
1 =




0 3 0 1
1 2 1 0
2 1 2 3
3 0 3 2


 , L

(3)
1 =




0 2 1 0
1 3 0 1
2 0 3 2
3 1 2 3


 .
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The corresponding matrices B
(j)
1 look as follows:

B
(1)
1 =




2 0 1 1
0 2 1 1
1 1 2 0
1 1 0 2


 , B

(2)
1 =




2 1 0 1
1 2 1 0
0 1 2 1
1 0 1 2


 , B

(3)
1 =




2 1 1 0
1 2 0 1
1 0 2 1
0 1 1 2


 .

Chose the row (2 0 1 1) of the first matrix B
(1)
1 . This choice uniquely implies

the choice of the row (0 1 2 1) of the second matrix B
(2)
1 and the choice of the

row (1 2 0 1) of the third matrix B
(3)
1 . We see, that 2 in the third row of the

matrix B
(3)
1 occupies the same position as 0 of the first row of the matrix B

(1)
1

such that

(2 0 1 1) + (0 1 2 1) + (1 2 0 1) = (3 3 3 3).

Then the choice of the first row (0 2 1 1) from B
(1)
1 implies the choice of (1 0 1 2)

from B
(2)
1 and (2 1 1 0) from the third matrix. This gives

(0 2 1 1) + (1 0 1 2) + (2 1 1 0) = (3 3 3 3)

and so on. Continuing in this way we obtain the optimal equitable symbol
weight equidistant 4-ary code E(15, 16, 12; 4), whose all codewords look as fol-
lows:

0 1 1 1 0 2 2 2 0 3 3 3 0 1 2
1 0 0 0 1 3 3 3 1 2 2 2 0 1 2
2 3 3 3 2 0 0 0 2 1 1 1 0 1 2
3 2 2 2 3 1 1 1 3 0 0 0 0 1 2
0 0 3 2 2 1 2 3 1 3 0 1 1 2 3
1 1 2 3 3 0 3 2 0 2 1 0 1 2 3
2 2 1 0 0 3 0 1 3 1 2 3 1 2 3
3 3 0 1 1 2 1 0 2 0 3 2 1 2 3
0 3 2 0 2 2 3 1 1 0 1 3 2 3 0
1 2 3 1 3 3 2 0 0 1 0 2 2 3 0
2 1 0 2 0 0 1 3 3 2 3 1 2 3 0
3 0 1 3 1 1 0 2 2 3 2 0 2 3 0
0 2 0 3 2 3 1 2 1 1 3 0 3 0 1
1 3 1 2 3 2 0 3 0 0 2 1 3 0 1
2 0 2 1 0 1 3 0 3 3 1 2 3 0 1
3 1 3 0 1 0 2 1 2 2 0 3 3 0 1
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3 Optimal E(n,M, d; q) codes from difference matri-
ces

For construction of codes with parameters (2) recall the definition of difference
matrix D(n, q) [6]. Assume that the alphabet Q is an additive abelian group
with neutral element 0.

Definition 2. Call the matrix D(n, q) of size n × n over Q by the difference
matrix, if the difference of any two its rows contains every symbol of the alphabet
Q exactly n/q times.

Theorem 2. Let integer numbers q ≥ 2 and n be such that there exists a
difference matrix D(n, q) over the alphabet Q. Then there exists an optimal
equitable symbol weight q-ary code E(n,M, d; q) with parameters n, M = q(n−
1), d = (q − 1)n/q.

Proof. Without loss of generality assume that the difference matrix D(n, q)
contains a zero word (0, 0, . . . , 0). Then clearly all other rows contain every
symbol exactly n/q times. There are n− 1 such rows and the pairwise distance
between any two different rows equals (q − 1)n/q according to definiton of a
difference matrix. Adding all these rows with vectors of length n

(0, 0, . . . , 0), (1, 1, . . . , 1), . . . , (q − 1, q − 1, . . . , q − 1)

we obtain all together q(n− 1) vectors, which form our code (this construction
was used in [7] for construction codes from simplices). It is easy to see that
this code is equitable symbol weight with two pairwise distances (q−1)n/q and
n [4]. Since every codeword has the same weight w = (q − 1)n/q, the number
of codewords is less or equal to Aq(n, d, w), i.e. maximal possible number of
codewords of length n, distance d on sphere of radius w. Further

Aq(n, d, w) ≤ q ×Aq(n− 1, d, w)

and
Aq(n− 1, (q − 1)n/q, (q − 1)n/q) ≤ n− 1,

where the last inequality follows from the following (Johnson type) bound for
q-ary constant weight codes [8]:

Aq(n, d, w) ≤

(
1− 1

q

)
dn

w2 −
(
1− 1

q

)
(2w − d)n

.

Therefore the constructed code is optimal as equitable symbol weight code of
length n with distance d = (q− 1)n/q (but it is not optimal as a code of length
n even with the same two distances [4, 7]).
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