Steiner quadruple systems S(n, 4, 3) of a fixed corank¹

D. V. ZINOVIEV V. A. ZINOVIEV dzinov@iitp.ru zinov@iitp.ru

A.A. Kharkevich Institute for Problems of Information Transmission, Russian Academy of Sciences, Moscow, RUSSIA

Dedicated to the memory of Professor Stefan Dodunekov

Abstract. Steiner systems $S(2^m, 4, 3)$ of rank $2^m - m - 1 + s$, $s \ge 0$ is fixed, over the field \mathbb{F}_2 are considered. We provide the construction of all such different systems and derive the estimate of the number of all such different systems.

1 Introduction

A Steiner System S(v, k, t) is a pair (X, B) where X is a set of v elements and B is a collection of k-subsets (blocks) of X such that every t-subset of X is contained in exactly one block of B. A system S(v, 4, 3) is called a Steiner quadruple system (briefly SQS(v)) (see [1-3] for more information).

Tonchev [5] enumerated all different Steiner quadruple systems $SQS(2^m)$ with 2-rank (i.e. rank over the field \mathbb{F}_2), equal to $2^m - m$.

In [6], the authors enumerated all different Steiner quadruple systems $SQS(2^m)$ with 2-rank $r \leq 2^m - m + 1$.

The goal of the present work is to enumerate all different Steiner quadruple systems $SQS(2^m)$ of the 2-rank $2^m - m - 1 + s$, where $s \ge 0$ is fixed. We provide a recursive construction of such systems, which in particular, allows us to construct all different systems of order $v = 2^m$ of 2-rank not greater than $2^m - m - 1 + s$ over \mathbb{F}_2 . Moreover, we estimate the total number of such different systems.

Let E_q be an alphabet of size q: $E_q = \{0, 1, \ldots, q - 1\}$, in particular, $E = \{0, 1\}$. Denote a q-ary code C of length n with the minimum (Hamming) distance d and cardinality N as an $(n, d, N)_q$ -code (or an (n, d, N)-code for q = 2). Denote by wt(\boldsymbol{x}) the Hamming weight of vector \boldsymbol{x} over E_q , and by $d(\boldsymbol{x}, \boldsymbol{y})$ the Hamming distance between the vectors $\boldsymbol{x}, \boldsymbol{y} \in E_q^n$. For a binary code C denote by $\langle C \rangle$ the linear envelope of words of C over the Galois Field \mathbb{F}_2 . The dimension of space $\langle C \rangle$ is the rank of code C over \mathbb{F}_2 denoted by rk (C).

¹This work has been partially supported by the Russian fund of fundamental researches (under the project No. 12 - 01 - 00905).

Denote by (n, w, d, N) a constant weight (n, d, N)-code, whose codewords have the same fixed weight w.

Let $J = \{1, 2, ..., n\}$ be the set of coordinate positions E_q^n . Denote by $\operatorname{supp}(\boldsymbol{v}) \subseteq J$ the support of a vector $\boldsymbol{v} = (v_1, ..., v_n) \in E^n$, $\operatorname{supp}(\boldsymbol{v}) = \{i : v_i \neq 0\}$. For an arbitrary set $X \subseteq E^n$ define

$$supp(X) = \bigcup_{\boldsymbol{x} \in X} supp(\boldsymbol{x}).$$

A binary (n, d, N)-code C, which is a linear k-dimensional space over \mathbb{F}_2 , is denoted as [n, k, d]-code. Let $(\boldsymbol{x} \cdot \boldsymbol{y}) = x_1y_1 + \cdots + x_ny_n$ be the scalar product over \mathbb{F}_2 of the binary vectors $\boldsymbol{x} = (x_1, \ldots, x_n)$ and $\boldsymbol{y} = (y_1, \ldots, y_n)$. For any (linear, non-linear or constant weight) code C of length n let C^{\perp} be its dual code: $C^{\perp} = \{\boldsymbol{v} \in \mathbb{F}_2^n : (\boldsymbol{v} \cdot \boldsymbol{c}) = 0, \forall \boldsymbol{c} \in C\}$. It is clear that C^{\perp} is a $[n, n - k, d^{\perp}]$ -code with minimum distance d^{\perp} , and where $k = \operatorname{rk}(C)$.

Denote by K a q-ary MDS $(4, 2, q^3)_q$ -code and by Γ_K denote the number of different such codes K.

Lemma 1. [4] When $q = 2^s$, we have the following estimates:

$$\Gamma_K \ge (2)^{(q/2)^3}$$

Define the mapping φ of E_q^n into E^{qn} setting for $\mathbf{c} = (c_1, \ldots, c_n)$: $\varphi(\mathbf{c}) = (\varphi(c_1), \ldots, \varphi(c_n))$, where $\varphi(0) = (1, 0, \ldots, 0)$, $\varphi(1) = (0, 1, \ldots, 0), \ldots, \varphi(q-1) = (0, 0, \ldots, 1)$.

For a given code $(4, 2, q^3)_q$ -code K, define the constant weight $(4q, 4, 4, q^3)$ -code C(K):

$$C(K) = \{\varphi(\boldsymbol{c}): \boldsymbol{c} \in K\}.$$

Every codeword c of the code C(K), is split into blocks of length q so that $c = (c_1, c_2, c_3, c_4)$ and wt $(c_i) = 1$ for i = 1, 2, 3, 4. We say that C(K) has the block structure. For a code C(K) and a vector $\boldsymbol{x} = (x_1, \ldots, x_u)$ of weight 4 with support supp $(\boldsymbol{x}) = \{i_1, i_2, i_3, i_4\}$ define the following code $C(K; \boldsymbol{x}) = C(K; i_1, i_2, i_3, i_4)$ of length qu with block structure:

$$\{(\boldsymbol{c}_1,\ldots,\boldsymbol{c}_u): (\boldsymbol{c}_{i_1},\boldsymbol{c}_{i_2},\boldsymbol{c}_{i_3},\boldsymbol{c}_{i_4}) \in C(K), \text{ and } \boldsymbol{c}_j = (0,0,\cdots,0), \text{ if } j \neq i_1, i_2, i_3, i_4\}.$$

For a given set X of vectors of length u and weight 4, define

$$C(K;X) = \{C(K;\boldsymbol{x}): \boldsymbol{x} \in X\}.$$

Define the mapping $\psi(\cdot)$ from E^u into E^{qu} , so that for every vector $\boldsymbol{x} = (x_1, x_2, \ldots, x_u)$ we have:

$$\psi(\boldsymbol{x}) = (x_1, \dots, x_1, x_2, \dots, x_2, \dots, x_u, \dots, x_u).$$

200

Let V be the set of all words of weight 2 and length $q = 2^s$. Then V can be split into q - 1 trivial codes V_i , i = 1, ..., q - 1 with parameters (q, 2, 4, q/2). Let $\Gamma_V(q)$ be the number of different partitions $V^{(j)} = \{V_1^{(j)}, \ldots, V_{q-1}^{(j)}\}, j = 1, \ldots, \Gamma_V(q)$ of V.

Lemma 2. [7] The following equality is valid:

$$\Gamma_V(q) \ge \exp\{\frac{(q-1)^2}{12}(\log(q-1)-5)\}$$

where q = 2u and $u \equiv 1$ or 2 (mod 3).

We finally need constant weight codes W with parameters $(2q, 4, 4, q^2(q - 1)/4)$, where the codewords can be split into blocks of length q and each block has weight 0 or 2. The different codes are $W^{(j)}$, $j = 1, \ldots, \Gamma_W$, where $\Gamma_W = \Gamma_W(q)$ is the number of such different codes.

Lemma 3. We have the following equality:

$$\Gamma_W(q) = (q-1)! \cdot \Gamma_V^2.$$

2 Main results

Suppose $S_v = S(v, 4, 3)$ is a Steiner quadruple system of order $v = 2^m$ and of 2rank $r \leq 2^m - m - 1 + s$. That means that the dual code S_v^{\perp} contains a subcode [v, m + 1 - s, v/2], denoted by \mathcal{A}_m with minimum distance $d^{\perp} = v/2 = 2^{m-1}$ [6]. More precisely, \mathcal{A}_m contains one word of weight v and the all other nonzero words have the same weight 2^{m-1} , i.e. the code is a subcode of a well known linear biorthogonal code and can be generated by the following matrix:

$$G(\mathcal{A}_m) = \begin{bmatrix} 1 & 1 & 1 & 1 & \dots & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & \dots & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & \dots & 1 & 1 & 0 & 0 \\ \dots & \dots \\ 1 & 0 & 1 & 0 & \dots & 1 & 0 & 1 & 0 \end{bmatrix},$$
(1)

where $\mathbf{1} = (1, ..., 1)$ and $\mathbf{0} = (0, ..., 0)$ are binary words of length $q = 2^s$. Every word $\mathbf{c} \in S_v$ has the block structure: $\mathbf{c} = (\mathbf{c}_1, \mathbf{c}_2, ..., |, \mathbf{c}_u)$ with blocks of length q, where $u = v/q = 2^{m-s}$. Define the following subsets J_i of size q of the coordinate set J, which correspond to the blocks of length q:

$$J_i = \{q(i-1) + 1, q(i-1) + 2, \dots, q\,i\}, \ i = 1, 2, \dots u.$$

Define the coordinate set $J(u) = \{1, 2, ..., u\}$ of block indices. Since the codewords of \mathcal{A}_m are orthogonal to our system S_v , its words can be divided naturally into three subsets $S^{(1,1,1,1)}$, $S^{(2,2)}$ and $S^{(4)}$:

- $S^{(1,1,1,1)} = \{ \boldsymbol{c} \in S : |\operatorname{supp}(\boldsymbol{c}) \cap J_i| \in \{0,1\}, i = 1, \dots, u \}.$
- $S^{(2,2)} = \{ \boldsymbol{c} \in S : |\operatorname{supp}(\boldsymbol{c}) \cap J_i| \in \{0,2\}, i = 1, \dots, u \}.$
- $S^{(4)} = \{ \boldsymbol{c} \in S : | \operatorname{supp}(\boldsymbol{c}) \cap J_i | \in \{0, 4\}, i = 1, \dots, u \}.$

For any $\mathbf{c} \in S^{(1,1,1,1)}$ with support $\operatorname{supp}(\mathbf{c}) = \{i_1, i_2, i_3, i_4\}$ define its block support $\operatorname{supp}_q(\mathbf{c})$ as a set of indices of its nonzero blocks (i.e. if $i \in \operatorname{supp}(\mathbf{c})$ then $j = \lfloor (i+q-1)/q \rfloor \in \operatorname{supp}_q(\mathbf{c})$).

Lemma 4. Let $S_v = S(v, 4, 3)$ be a Steiner system of order $v = 2^m$ with 2-rank $r_v \leq v - m - 1 + s$. Let S_v^{\perp} be a dual to S_v code which contains a subcode \mathcal{A}_m with parameters [v, s, v/2]. Suppose the system S_v splits into subsets $S^{(1,1,1,1)}$, $S^{(2,2)}$, $S^{(4)}$. Then we have

- $S^{(1,1,1,1)}$ is a set of codes $C(K_i, c^{(i)})$, where the set of indices $j_1, j_2, j_3, j_4 \in J(u) = \{1, 2, ..., u\}, u = 2^{m-s}, \{j_1, j_2, j_3, j_4\} = \operatorname{supp}_q(c^{(i)})$, forms a Steiner system $S_u = S(u, 4, 3)$ on the coordinate set J(u) when $c^{(i)}$ runs over $S^{(1,1,1,1)}$.
- The Steiner quadruple system S_u has the minimal 2-rank: $r_u = u log(u) 1$, i.e. it is a Boolean system.
- The set S^(2,2) is a set of arbitrary codes W^(j)(i₁, i₂), where i₁ and i₂ take all different values from {1,..., u} and j takes values from {1, 2, ..., Γ_W}.
- The set $S^{(4)}$ is a set of arbitrary Steiner systems $S_q(j) = S(q, 4, 3)$, where $\operatorname{supp}(S_q(j)) = J_j$.

The structure of the Steiner quadruple systems SQS(v) of order v = uq and 2-rank v - m - 1 + s that we described above, induce the following recursive construction of SQS(v) of order v for a given SQS(u) of an arbitrary order u (i.e. $u \equiv 2$ or 4 (mod 6)).

Construction II(s). Let $q = 2^s$ and $S_u = S(u, 4, 3)$ be a Steiner system of rank r_u , whose words $c^{(s)}$ are ordered by a fixed enumeration s = 1, 2, ..., h, where h = u(u - 1)(u - 2)/24. Suppose, we have a family of arbitrary q-ary codes $K_1, K_2, ..., K_h$ with parameters $(4, 2, q^3)_q$. Suppose we have u arbitrary Steiner systems $S_q(j) = S(q, 4, 3), j = 1, ..., u$. Assume that for any pair i_1, i_2 , where $i_1 < i_2$, run through all possible values from $\{1, 2, ..., u\}$, there is an arbitrary $(2q, 4, 4, q^2(q - 1)/4)$ -code $W(i_1, i_2)$. Let J(u) be the coordinate set of the system S_u . Define the new coordinate set J(v) of size $v = u \cdot q$, obtained from J(u) as follows: every index $j \in J(u)$ is associated with the set J_j , of qelements, namely $J_j = \{q(j - 1) + 1, ..., q j\}$. Define the coordinate set J(v)as the union:

$$J(v) = J_1 \cup \dots \cup J_u.$$

Zinoviev, Zinoviev

Every word $\boldsymbol{c}^{(i)}$ of S_u with support $\operatorname{supp}(\boldsymbol{c}^{(i)}) = \{j_1, j_2, j_3, j_4\}$ and a code K_i define the constant weight code $C(K_i; \boldsymbol{c}^{(i)}) = C(K_i; j_1, j_2, j_3, j_4)$. Define the following three sets:

$$S^{(1,1,1,1)} = \bigcup_{i=1}^{h} C(K_i; j_1, j_2, j_3, j_4), \quad \operatorname{supp}(\boldsymbol{c}^{(i)}) = \{j_1, j_2, j_3, j_4\},\$$

i.e. the supports of all words of $C(K_i; j_1, j_2, j_3, j_4)$ belong to the set $J_{j_1} \cup J_{j_2} \cup J_{j_3} \cup J_{j_4}$;

$$S^{(2,2)} = \bigcup_{i_1 \neq i_2 \in \{1,2,\dots,u\}} W(i_1,i_2);$$

i.e. the supports of all vectors of $W(i_1, i_2)$ is always contained in two blocks with numbers i_1 and i_2 ;

$$S^{(4)} = \bigcup_{j=1}^{u} \{ \boldsymbol{c} \in S_q(j) \}, \text{ supp}(S_q(j)) = J_j.$$

Theorem 1. Let $S_u = S(u, 4, 3)$ be a Steiner system, let $q = 2^s \ge 4$, and let $c^{(i)}$, i = 1, 2, ..., h be the words of this system, where h = u(u-1)(u-2)/24. Let $S^{(1,1,1,1)}$, $S^{(2,2)}$ and $S^{(4)}$ be the sets, obtained by construction II(s), based on the families of the $(4, 2, q^3)_q$ -codes $K_1, K_2, ..., K_h$, the family of u(u-1)/2constant weight $(2q, 4, 4, q^2(q-1)/4)$ -codes $W(i_1, i_2)$, where i_1 and i_2 , $i_1 \neq i_2$ run through all possible values from $\{1, 2, ..., u\}$ and u Steiner systems $S_q(j) = S(q, 4, 3)$. Let

$$S = S^{(1,1,1,1)} \cup S^{(2,2)} \cup S^{(4)}.$$
(2)

Then, for any choice of S_u , the codes K_1, K_2, \ldots, K_h , codes $W(i_1, i_2)$ and systems $S_q(j)$:

- The set S is the Steiner system $S_v = S(v, 4, 3), v = u \cdot q$.
- The rank of the new system S_v satisfies

$$u(q-1) + \operatorname{rk}(S_u) - s \leq \operatorname{rk}(S_v) \leq u(q-1) + \operatorname{rk}(S_u).$$

From this bound it follows, in particular, that if the original system S(u, 4, 3) has the full rank $r_u = u - 1$, then according to Theorem 1, the resulting system S(v, 4, 3) of order $v = u \cdot 2^s$, in general, can also be of the full rank $r_v = v - 1$.

Theorem 2. Suppose $S_v = S(v, 4, 3)$ is a Steiner system of order $v = 2^m$. Suppose that its 2-rank satisfies $\operatorname{rk}(S_v) \leq 2^m - m - 1 + s$. Then the system S_v is obtained from the Boolean (i.e. of the minimal rank) Steiner quadruple system $S_u = S(u, 4, 3)$ of order $u = 2^{m-s}$ using construction II(s), described above. So, we know the structure of all quadruple Steiner systems $S_v = S(v, 4, 3)$ of order $v = 2^m$ and of 2-rank not greater than v - 1 - m + s. Now we can estimate the number of all such different systems, which we denote by $\Gamma_S(v, s)$.

Theorem 3. The number $\Gamma_S(v, s)$ of different Steiner systems $S_v = S(v, 4, 3)$ of order $v = 2^m$ of rank not greater than v - 1 - m + s satisfies the following equality:

$$\Gamma_{S}(v,s) = \Gamma_{S}(u,0) \cdot (\Gamma_{K})^{u(u-1)(u-2)/24} \cdot (\Gamma_{W})^{u(u-1)/2} \cdot (\Gamma_{S}(q,s))^{u}$$

> $(2)^{c \cdot \frac{v^{3}}{24}},$

where c < 1/8 and $c \to 1/8$ when q is fixed and $u \to \infty$.

Here $\Gamma_S(u,0)$ is the number of different Boolean quadruple systems $S_u = S(u,4,3)$, and $\Gamma_S(q,s)$ is the number of different quadruple systems of order q, where $q = 2^s$, $u = 2^{\ell}$, and $\ell = m - s$. Recall that the best lower bound for the number $\Gamma_S(v)$ (i. e. of arbitrary ranks) looks as [8]:

$$\Gamma_S(v) > (2)^{\frac{v^3}{24}}$$

References

- J. Doyen, X. Hubaut, M. Vandensavel, Ranks of incidence matrices of Steiner triple systems, *Mathem. Zeitschr.* 163, 1978, 251-259.
- [2] E. F. Assmus, Jr., On 2-ranks of Steiner triple systems, The Electr. J. Combin. 1995, V. 2. Paper R9.
- [3] A. Hartman, K. T. Phelps, Steiner quadruple systems, In: Contemporary Design Theory: A Collection of Surveys. Dinitz J.H., Stinson D.R., Eds. John Wiley & Sons. 1992. Ch. 6. P. 205-240.
- [4] V. N. Potapov, D. S. Krotov, P. V. Sokolova, On reconstructing reducible n-ary quasigroups and switching subquasigroups, *Quasigroups Relat. Syst.* 16, 2008, 55-67.
- [5] V. D. Tonchev, A formula for the number of Steiner quadruple system on 2^n points of 2-rank $2^n n$, J. Combin. Designs 11, 2003, 260-274.
- [6] V. A. Zinoviev, D. V. Zinoviev, On resolvability of Steiner systems $S(2^m, 4, 3)$ of rank $r \leq 2^m m + 1$ over F_2 , Probl. Inform. Transmission 43, No. 1, 2007, 39-55.
- [7] C. C. Lindner, E. Mendelsohn, A. Rosa, On the number of 1-factorizations of the complete graph, J. Combin. Theory (B) 20, 1976, 265-282.
- [8] J. Doyen, M. Vandensavel, Nonisomorphic Steiner quadruple systems, Bull. Soc. Math. Belg. 23, 1971, 393-410.