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Abstract. Steiner systems S(2™,4,3) of rank 2™ —m — 1+ s, s > 0 is fixed, over
the field Fy are considered. We provide the construction of all such different systems
and derive the estimate of the number of all such different systems.

1 Introduction

A Steiner System S(v, k,t) is a pair (X, B) where X is a set of v elements and
B is a collection of k-subsets (blocks) of X such that every t-subset of X is
contained in exactly one block of B. A system S(v,4,3) is called a Steiner
quadruple system (briefly SQS(v)) (see [1-3] for more information).

Tonchev [5] enumerated all different Steiner quadruple systems SQS(2™)
with 2-rank (i.e. rank over the field Fg), equal to 2™ — m.

In [6], the authors enumerated all different Steiner quadruple systems SQS(2"™)
with 2-rank r < 2™ —m + 1.

The goal of the present work is to enumerate all different Steiner quadruple
systems SQS(2™) of the 2-rank 2™ — m — 1 + s, where s > 0 is fixed. We
provide a recursive construction of such systems, which in particular, allows us
to construct all different systems of order v = 2™ of 2-rank not greater than
2™ —m—1+4s over Fy. Moreover, we estimate the total number of such different
systems.

Let E,; be an alphabet of size ¢: E; = {0,1,...,¢ — 1}, in particular,
E = {0,1}. Denote a g-ary code C of length n with the minimum (Hamming)
distance d and cardinality N as an (n,d, N),-code (or an (n,d, N)-code for
¢ = 2). Denote by wt(x) the Hamming weight of vector « over E,;, and by
d(z,y) the Hamming distance between the vectors x,y € Ey. For a binary
code C denote by (C) the linear envelope of words of C' over the Galois Field
[Fy. The dimension of space (C) is the rank of code C over Fy denoted by rk (C').

!This work has been partially supported by the Russian fund of fundamental researches
(under the project No. 12 - 01 - 00905).
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Denote by (n,w,d, N) a constant weight (n, d, N)-code, whose codewords have
the same fixed weight w.

Let J = {1,2,...,n} be the set of coordinate positions Ej'. Denote by
supp(v) C J the support of a vector v = (v1,...,v,) € E", supp(v) =
{i: v; # 0}. For an arbitrary set X C E™ define

supp(X) = [ supp(x).
xeX

A binary (n,d, N)-code C, which is a linear k-dimensional space over Fy, is
denoted as [n, k,d]-code. Let (x-y) = z1y1 + - - - + Tnyn be the scalar product

over Fy of the binary vectors @ = (x1,...,2,) and y = (y1,...,yn). For any
(linear, non-linear or constant weight) code C of length n let C* be its dual
code: C+ = {veF}: (v-¢c) =0, Vece C} Itisclear that C* is a

[n,n — k,d*]-code with minimum distance d*, and where k = 1k (C).
Denote by K a g-ary MDS (4, 2, q3)q—code and by I'r denote the number of
different such codes K.

Lemma 1. [4] When q = 2°, we have the following estimates:

Ty > (2)(11/2)3"

Define the mapping ¢ of Ej' into B setting for ¢ = (c1,...,¢n): ¢(c) =
ESO(Cl), bes 7)@(%))7 where ¢(0) = (1,0,...,0), ¢(1) =(0,1,...,0),..., p(g—1) =
0,0,...,1).

For a given code (4,2, ¢%),-code K, define the constant weight (4q, 4,4, ¢%)-
code C(K):

C(K) = {p(c): ce K}.
Every codeword ¢ of the code C(K), is split into blocks of length ¢ so that
c = (c1,¢2,¢3,¢4) and wt(c;) = 1 for i = 1,2,3,4. We say that C(K) has
the block structure. For a code C(K) and a vector = (x1,...,x,) of weight
4 with support supp(x) = {i1,i2,13,i4} define the following code C(K;x) =
C(K;iy,i2,13,14) of length qu with block structure:

{(Cl, .. .,Cu) : (cil,ciz,czs,cm) S C(K),and Cj = (0,0, s ,0),ifj 75 i1,i2,i3,i4}.
For a given set X of vectors of length u and weight 4, define
CK;X) = {C(K;z): x€ X}.

Define the mapping ¢(-) from E* into E9", so that for every vector & =
(x1,x2,...,2,) we have:

V(@) = (T1,. 1, T2, 0 Ty e Ty v oy Tyy)-
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Let V' be the set of all words of weight 2 and length ¢ = 2°. Then V can be

split into ¢ — 1 trivial codes V;, i = 1,...,q — 1 with parameters (q, 2,4, q/2).

Let T'y(¢q) be the number of different partitions V) = {Vl(J), e %(1)1}7 j=
S Tv(q) of V.

Lemma 2. [7] The following equality is valid:
(¢—1)°
12

where ¢ = 2u and uw =1 or 2 (mod 3).

Iy (q) > exp{ (log(g — 1) = 5)},

We finally need constant weight codes W with parameters (2q,4, 4, ¢*(q —
1)/4), where the codewords can be split into blocks of length ¢ and each block
has weight 0 or 2. The different codes are W), j = 1,.... Ty, where I'yy =
'y (g) is the number of such different codes.

Lemma 3. We have the following equality:

Tw(g) = (¢—1)!-T%.

2 Main results

Suppose S, = S(v,4,3) is a Steiner quadruple system of order v = 2™ and of 2-
rank 7 < 2™ —m —1+s. That means that the dual code S;- contains a subcode
[v,m + 1 — s,v/2], denoted by A,, with minimum distance d* = v/2 = 2m~!
[6]. More precisely, A,, contains one word of weight v and the all other nonzero
words have the same weight 277! i.e. the code is a subcode of a well known
linear biorthogonal code and can be generated by the following matrix:

1 1 1 1 ... 1 1 1 1

1 1 1 1 ... 0 0 0 o
GAn) = |1 1 0 0 ... 1 1 0 0|, (1)

1 0 1 o ... 1 0 1 0

where 1 = (1,...,1) and 0 = (0,...,0) are binary words of length ¢ = 2%.
Every word ¢ € S, has the block srtucture: ¢ = (¢j, ca, .. .|, ¢,) with blocks of
length ¢, where u = v/q = 2™7*. Define the following subsets J; of size ¢ of the
coordinate set J, which correspond to the blocks of length ¢:

Ji={q(i—-1)+1,q(t —1)+2,...,qi}, i=1,2,...u.

Define the coordinate set J(u) = {1,2,...,u} of block indices. Since the code-
words of A, are orthogonal to our system S, its words can be divided naturally
into three subsets S5 §(22) apngd §4).
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o SWLLY — fee §: |supp(e)NJ;| € {0,1},i=1,...,u}.
e S22 = feceS: |supp(e)NJi| €{0,2},i=1,...,u}.
e S = {ce S: |supp(c)NJ;| €{0,4},i=1,...,u}..

For any ¢ € S(LLLY with support supp(e) = {i1,i2,13,i4} define its block
support supp,(c) as a set of indices of its nonzero blocks (i.e. if i € supp(c)

then j = [(i+¢ —1)/q] € supp,(c)).

Lemma 4. Let S, = S(v,4,3) be a Steiner system of order v = 2™ with 2-rank
re <v—m—1+s. Let SvL be a dual to S, code which contains a subcode Ay,
with parameters [v, s,v/2]. Suppose the system S, splits into subsets SALLLL),
S22 5@ Then we have

o SLLY) s 4 set of codes C(K;, ), where the set of indices
j17j27j3)j4 S J(U) = {172'7 o )u}7 u = 2m—s}
{j1,J2,J3,ja} = suppq(c(l)), forms a Steiner system S, = S(u,4,3) on
the coordinate set J(u) when ¥ runs over S(LLLD),

e The Steiner quadruple system S, has the minimal 2-rank: r, = u —
log(u) — 1, i.e. it is a Boolean system.

o The set S22 is q set of arbitrary codes W(j)(il,ig), where i1 and i9 take
all different values from {1,...,u} and j takes values from {1,2,..., Ty }.

o The set S™ is a set of arbitrary Steiner systems Sq(4) = S(q,4,3), where
supp(Sq(j)) = J;.

The structure of the Steiner quadruple systems SQS(v) of order v = uq and
2-rank v — m — 1 + s that we described above, induce the following recursive
construction of SQS(v) of order v for a given SQS(u) of an arbitrary order u
(ie. u=2or4 (mod 6)).

Construction II(s). Let ¢ = 2° and S, = S(u,4,3) be a Steiner system
of rank 7, whose words ¢®) are ordered by a fixed enumeration s = 1,2,..., h,
where h = u(u — 1)(u — 2)/24. Suppose, we have a family of arbitrary g-ary
codes K1, Ko, ..., K, with parameters (4, 2, q3)q. Suppose we have u arbitrary
Steiner systems S, (j) = S(¢,4,3), j =1,...,u. Assume that for any pair i1, io,
where i1 < ig, run through all possible values from {1,2,...,u}, there is an
arbitrary (2¢,4,4,q¢*(q — 1)/4)-code W (i1,42). Let J(u) be the coordinate set
of the system S,,. Define the new coordinate set J(v) of size v = u - ¢, obtained
from J(u) as follows: every index j € J(u) is associated with the set J;, of ¢
elements, namely J; = {q(j —1) + 1,...,¢j}. Define the coordinate set J(v)
as the union:

Jw)=J1U---UJy,.
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Every word ¢ of S, with support supp(c®) = {j1, jo, j3, 74} and a code K
define the constant weight code C(K;;c)) = C(Kj; j1,j2,j3, ja). Define the
following three sets:

h

SWELD = | C(Ki; ju, G2 g3, 3a), - supp(e™) = {41, ja, js, ja},
=1

i.e. the supports of all words of C'(Kj; ji1, jo, j3, ja) belong to the set J; U Jj, U
Jjz U Jjy
5(2’2) = U W(il, 12);
i1#i2€{1,2,...,u}

i.e. the supports of all vectors of W (iy,i9) is always contained in two blocks
with numbers i1 and is;

SO = e e 5,0}, sup(S,(7)) = .

=1

Theorem 1. Let S, = S(u,4,3) be a Steiner system, let ¢ = 2° > 4, and let
c®, i=1,2,... h be the words of this system, where h = u(u—1)(u—2)/24.
Let SGLLY 822 and S@ be the sets, obtained by construction I11(s), based
on the families of the (4,2,¢%),-codes K1, Ko, ..., Ky, the family of u(u —1)/2
constant weight (2q,4,4,q%(q — 1)/4)-codes W (i1,i2), where i1 and iz, i # ia
run through all possible values from {1,2,...,u} and u Steiner systems Sq(j) =
S(q,4,3). Let

S = sWLLY g2y W), (2)

Then, for any choice of Sy, the codes Ki,Ko,...,Kp, codes W(iy,i2) and
systems Sq(j):
o The set S is the Steiner system S, = S(v,4,3), v=1u-q.

e The rank of the new system S, satisfies

u(g — 1) +rk(Sy) —s < rk(S,) < u(g—1)+rk(Sy).

From this bound it follows, in particular, that if the original system S(u, 4, 3)
has the full rank r, = v — 1, then according to Theorem 1, the resulting system
S(v,4,3) of order v = u - 2%, in general, can also be of the full rank r, = v — 1.

Theorem 2. Suppose S, = S(v,4,3) is a Steiner system of order v = 2™.
Suppose that its 2-rank satisfies rk(Sy) < 2™ —m —1+s. Then the system S, is
obtained from the Boolean (i.e. of the minimal rank) Steiner quadruple system
Su = S(u,4,3) of order u=2""% using construction 11(s), described above.
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So, we know the structure of all quadruple Steiner systems S, = S(v,4, 3)
of order v = 2™ and of 2-rank not greater than v — 1 — m + s. Now we can
estimate the number of all such different systems, which we denote by I'g(v, s).

Theorem 3. The number I's(v, s) of different Steiner systems S, = S(v,4,3)
of order v = 2™ of rank not greater than v — 1 — m + s satisfies the following
equality:

Ps(v,s) = Tg(u,0) (Dg) D022y )yule=D2 (P (g, 5)

3
> (2)7,
where ¢ < 1/8 and ¢ — 1/8 when q is fized and u — co.

Here I'g(u,0) is the number of different Boolean quadruple systems S, =
S(u,4,3), and I's(q, s) is the number of different quadruple systems of order g,
where ¢ = 25, u = 2¢, and £ = m — s. Recall that the best lower bound for the
number I'g(v) (i. e. of arbitrary ranks) looks as [8]:

3

Ts(v) > (2)% .
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