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Abstract. Steiner systems S(2m, 4, 3) of rank 2m −m− 1 + s, s ≥ 0 is fixed, over
the field F2 are considered. We provide the construction of all such different systems
and derive the estimate of the number of all such different systems.

1 Introduction

A Steiner System S(v, k, t) is a pair (X, B) where X is a set of v elements and
B is a collection of k-subsets (blocks) of X such that every t-subset of X is
contained in exactly one block of B. A system S(v, 4, 3) is called a Steiner
quadruple system (briefly SQS(v)) (see [1-3] for more information).

Tonchev [5] enumerated all different Steiner quadruple systems SQS(2m)
with 2-rank (i.e. rank over the field F2), equal to 2m −m.

In [6], the authors enumerated all different Steiner quadruple systems SQS(2m)
with 2-rank r ≤ 2m −m + 1.

The goal of the present work is to enumerate all different Steiner quadruple
systems SQS(2m) of the 2-rank 2m − m − 1 + s, where s ≥ 0 is fixed. We
provide a recursive construction of such systems, which in particular, allows us
to construct all different systems of order v = 2m of 2-rank not greater than
2m−m−1+s over F2. Moreover, we estimate the total number of such different
systems.

Let Eq be an alphabet of size q: Eq = {0, 1, . . . , q − 1}, in particular,
E = {0, 1}. Denote a q-ary code C of length n with the minimum (Hamming)
distance d and cardinality N as an (n, d, N)q-code (or an (n, d, N)-code for
q = 2). Denote by wt(x) the Hamming weight of vector x over Eq, and by
d(x,y) the Hamming distance between the vectors x,y ∈ En

q . For a binary
code C denote by 〈C〉 the linear envelope of words of C over the Galois Field
F2. The dimension of space 〈C〉 is the rank of code C over F2 denoted by rk (C).

1This work has been partially supported by the Russian fund of fundamental researches
(under the project No. 12 - 01 - 00905).
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Denote by (n,w, d,N) a constant weight (n, d, N)-code, whose codewords have
the same fixed weight w.

Let J = {1, 2, . . . , n} be the set of coordinate positions En
q . Denote by

supp(v) ⊆ J the support of a vector v = (v1, . . . , vn) ∈ En, supp(v) =
{i : vi 6= 0}. For an arbitrary set X ⊆ En define

supp(X) =
⋃

x∈X

supp(x).

A binary (n, d, N)-code C, which is a linear k-dimensional space over F2, is
denoted as [n, k, d]-code. Let (x · y) = x1y1 + · · ·+ xnyn be the scalar product
over F2 of the binary vectors x = (x1, . . . , xn) and y = (y1, . . . , yn). For any
(linear, non-linear or constant weight) code C of length n let C⊥ be its dual
code: C⊥ = {v ∈ Fn

2 : (v · c) = 0, ∀ c ∈ C}. It is clear that C⊥ is a
[n, n− k, d⊥]-code with minimum distance d⊥, and where k = rk (C).

Denote by K a q-ary MDS (4, 2, q3)q-code and by ΓK denote the number of
different such codes K.

Lemma 1. [4] When q = 2s, we have the following estimates:

ΓK ≥ (2)(q/2)3 .

Define the mapping ϕ of En
q into Eqn setting for c = (c1, . . . , cn): ϕ(c) =

(ϕ(c1), . . . , ϕ(cn)), where ϕ(0) = (1, 0, . . . , 0), ϕ(1) = (0, 1, . . . , 0),..., ϕ(q−1) =
(0, 0, . . . , 1).

For a given code (4, 2, q3)q-code K, define the constant weight (4q, 4, 4, q3)-
code C(K):

C(K) = {ϕ(c) : c ∈ K}.
Every codeword c of the code C(K), is split into blocks of length q so that
c = (c1, c2, c3, c4) and wt(ci) = 1 for i = 1, 2, 3, 4. We say that C(K) has
the block structure. For a code C(K) and a vector x = (x1, . . . , xu) of weight
4 with support supp(x) = {i1, i2, i3, i4} define the following code C(K;x) =
C(K; i1, i2, i3, i4) of length qu with block structure:

{(c1, . . . , cu) : (ci1 , ci2 , ci3 , ci4) ∈ C(K), and cj = (0, 0, · · · , 0), if j 6= i1, i2, i3, i4}.
For a given set X of vectors of length u and weight 4, define

C(K;X) = {C(K; x) : x ∈ X}.
Define the mapping ψ(·) from Eu into Equ, so that for every vector x =
(x1, x2, . . . , xu) we have:

ψ(x) = (x1, . . . , x1, x2, . . . , x2, . . . , xu, . . . , xu).
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Let V be the set of all words of weight 2 and length q = 2s. Then V can be
split into q − 1 trivial codes Vi, i = 1, . . . , q − 1 with parameters (q, 2, 4, q/2).
Let ΓV (q) be the number of different partitions V (j) = {V (j)

1 , . . . , V
(j)
q−1}, j =

1, . . . , ΓV (q) of V .

Lemma 2. [7] The following equality is valid:

ΓV (q) ≥ exp{(q − 1)2

12
(log(q − 1)− 5)},

where q = 2u and u ≡ 1 or 2 (mod 3).

We finally need constant weight codes W with parameters (2q, 4, 4, q2(q −
1)/4), where the codewords can be split into blocks of length q and each block
has weight 0 or 2. The different codes are W (j), j = 1, . . . , ΓW , where ΓW =
ΓW (q) is the number of such different codes.

Lemma 3. We have the following equality:

ΓW (q) = (q − 1)! · Γ2
V .

2 Main results

Suppose Sv = S(v, 4, 3) is a Steiner quadruple system of order v = 2m and of 2-
rank r ≤ 2m−m−1+s. That means that the dual code S⊥v contains a subcode
[v, m + 1 − s, v/2], denoted by Am with minimum distance d⊥ = v/2 = 2m−1

[6]. More precisely, Am contains one word of weight v and the all other nonzero
words have the same weight 2m−1, i.e. the code is a subcode of a well known
linear biorthogonal code and can be generated by the following matrix:

G(Am) =




1 1 1 1 . . . 1 1 1 1
1 1 1 1 . . . 0 0 0 0
1 1 0 0 . . . 1 1 0 0
. . . . . . . . . . . . . . . . . . . . . . . . . . .
1 0 1 0 . . . 1 0 1 0




, (1)

where 1 = (1, . . . , 1) and 0 = (0, . . . , 0) are binary words of length q = 2s.
Every word c ∈ Sv has the block srtucture: c = (c1, c2, . . . |, cu) with blocks of
length q, where u = v/q = 2m−s. Define the following subsets Ji of size q of the
coordinate set J , which correspond to the blocks of length q:

Ji = {q(i− 1) + 1, q(i− 1) + 2, . . . , q i}, i = 1, 2, . . . u.

Define the coordinate set J(u) = {1, 2, . . . , u} of block indices. Since the code-
words of Am are orthogonal to our system Sv, its words can be divided naturally
into three subsets S(1,1,1,1), S(2,2) and S(4):
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• S(1,1,1,1) = {c ∈ S : |supp(c) ∩ Ji| ∈ {0, 1}, i = 1, . . . , u}.
• S(2,2) = {c ∈ S : |supp(c) ∩ Ji| ∈ {0, 2}, i = 1, . . . , u}.
• S(4) = {c ∈ S : |supp(c) ∩ Ji| ∈ {0, 4}, i = 1, . . . , u}..

For any c ∈ S(1,1,1,1) with support supp(c) = {i1, i2, i3, i4} define its block
support suppq(c) as a set of indices of its nonzero blocks (i.e. if i ∈ supp(c)
then j = b(i + q − 1)/qc ∈ suppq(c)).

Lemma 4. Let Sv = S(v, 4, 3) be a Steiner system of order v = 2m with 2-rank
rv ≤ v −m− 1 + s. Let S⊥v be a dual to Sv code which contains a subcode Am

with parameters [v, s, v/2]. Suppose the system Sv splits into subsets S(1,1,1,1),
S(2,2), S(4). Then we have

• S(1,1,1,1) is a set of codes C(Ki, c
(i)), where the set of indices

j1, j2, j3, j4 ∈ J(u) = {1, 2, . . . , u}, u = 2m−s,
{j1, j2, j3, j4} = suppq(c(i)), forms a Steiner system Su = S(u, 4, 3) on
the coordinate set J(u) when c(i) runs over S(1,1,1,1).

• The Steiner quadruple system Su has the minimal 2-rank: ru = u −
log(u)− 1, i.e. it is a Boolean system.

• The set S(2,2) is a set of arbitrary codes W (j)(i1, i2), where i1 and i2 take
all different values from {1, . . . , u} and j takes values from {1, 2, . . . ,ΓW }.

• The set S(4) is a set of arbitrary Steiner systems Sq(j) = S(q, 4, 3), where
supp(Sq(j)) = Jj.

The structure of the Steiner quadruple systems SQS(v) of order v = uq and
2-rank v −m − 1 + s that we described above, induce the following recursive
construction of SQS(v) of order v for a given SQS(u) of an arbitrary order u
(i.e. u ≡ 2 or 4 (mod 6)).

Construction II(s). Let q = 2s and Su = S(u, 4, 3) be a Steiner system
of rank ru, whose words c(s) are ordered by a fixed enumeration s = 1, 2, . . . , h,
where h = u(u − 1)(u − 2)/24. Suppose, we have a family of arbitrary q-ary
codes K1,K2, . . . , Kh with parameters (4, 2, q3)q. Suppose we have u arbitrary
Steiner systems Sq(j) = S(q, 4, 3), j = 1, . . . , u. Assume that for any pair i1, i2,
where i1 < i2, run through all possible values from {1, 2, . . . , u}, there is an
arbitrary (2q, 4, 4, q2(q − 1)/4)-code W (i1, i2). Let J(u) be the coordinate set
of the system Su. Define the new coordinate set J(v) of size v = u · q, obtained
from J(u) as follows: every index j ∈ J(u) is associated with the set Jj , of q
elements, namely Jj = {q(j − 1) + 1, . . . , q j}. Define the coordinate set J(v)
as the union:

J(v) = J1 ∪ · · · ∪ Ju.
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Every word c(i) of Su with support supp(c(i)) = {j1, j2, j3, j4} and a code Ki

define the constant weight code C(Ki; c(i)) = C(Ki; j1, j2, j3, j4). Define the
following three sets:

S(1,1,1,1) =
h⋃

i=1

C(Ki; j1, j2, j3, j4), supp(c(i)) = {j1, j2, j3, j4},

i.e. the supports of all words of C(Ki; j1, j2, j3, j4) belong to the set Jj1 ∪ Jj2 ∪
Jj3 ∪ Jj4 ;

S(2,2) =
⋃

i1 6=i2∈{1,2,...,u}
W (i1, i2);

i.e. the supports of all vectors of W (i1, i2) is always contained in two blocks
with numbers i1 and i2;

S(4) =
u⋃

j=1

{c ∈ Sq(j)}, supp(Sq(j)) = Jj .

Theorem 1. Let Su = S(u, 4, 3) be a Steiner system, let q = 2s ≥ 4, and let
c(i), i = 1, 2, . . . , h be the words of this system, where h = u(u− 1)(u− 2)/24.
Let S(1,1,1,1), S(2,2) and S(4) be the sets, obtained by construction II(s), based
on the families of the (4, 2, q3)q-codes K1,K2, . . . ,Kh, the family of u(u− 1)/2
constant weight (2q, 4, 4, q2(q − 1)/4)-codes W (i1, i2), where i1 and i2, i1 6= i2
run through all possible values from {1, 2, . . . , u} and u Steiner systems Sq(j) =
S(q, 4, 3). Let

S = S(1,1,1,1) ∪ S(2,2) ∪ S(4). (2)

Then, for any choice of Su, the codes K1,K2, . . . , Kh, codes W (i1, i2) and
systems Sq(j):

• The set S is the Steiner system Sv = S(v, 4, 3), v = u · q.
• The rank of the new system Sv satisfies

u(q − 1) + rk(Su)− s ≤ rk(Sv) ≤ u(q − 1) + rk(Su).

From this bound it follows, in particular, that if the original system S(u, 4, 3)
has the full rank ru = u−1, then according to Theorem 1, the resulting system
S(v, 4, 3) of order v = u · 2s, in general, can also be of the full rank rv = v − 1.

Theorem 2. Suppose Sv = S(v, 4, 3) is a Steiner system of order v = 2m.
Suppose that its 2-rank satisfies rk(Sv) ≤ 2m−m−1+s. Then the system Sv is
obtained from the Boolean (i.e. of the minimal rank) Steiner quadruple system
Su = S(u, 4, 3) of order u = 2m−s using construction II(s), described above.
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So, we know the structure of all quadruple Steiner systems Sv = S(v, 4, 3)
of order v = 2m and of 2-rank not greater than v − 1 − m + s. Now we can
estimate the number of all such different systems, which we denote by ΓS(v, s).
Theorem 3. The number ΓS(v, s) of different Steiner systems Sv = S(v, 4, 3)
of order v = 2m of rank not greater than v − 1 −m + s satisfies the following
equality:

ΓS(v, s) = ΓS(u, 0) · (ΓK)u(u−1)(u−2)/24 · (ΓW )u(u−1)/2 · (ΓS(q, s))u

> (2)c· v3

24 ,

where c < 1/8 and c → 1/8 when q is fixed and u →∞.
Here ΓS(u, 0) is the number of different Boolean quadruple systems Su =

S(u, 4, 3), and ΓS(q, s) is the number of different quadruple systems of order q,
where q = 2s, u = 2`, and ` = m− s. Recall that the best lower bound for the
number ΓS(v) (i. e. of arbitrary ranks) looks as [8]:

ΓS(v) > (2)
v3

24 .
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