Steiner quadruple systems $S(n, 4,3)$ of a fixed corank ${ }^{1}$

D. V. Zinoviev
dzinov@iitp.ru
V. A. Zinoviev
zinov@iitp.ru

A.A. Kharkevich Institute for Problems of Information Transmission, Russian Academy of Sciences, Moscow, RUSSIA

Dedicated to the memory of Professor Stefan Dodunekov

Abstract

Steiner systems $S\left(2^{m}, 4,3\right)$ of rank $2^{m}-m-1+s, s \geq 0$ is fixed, over the field \mathbb{F}_{2} are considered. We provide the construction of all such different systems and derive the estimate of the number of all such different systems.

1 Introduction

A Steiner System $S(v, k, t)$ is a pair (X, B) where X is a set of v elements and B is a collection of k-subsets (blocks) of X such that every t-subset of X is contained in exactly one block of B. A system $S(v, 4,3)$ is called a Steiner quadruple system (briefly $\operatorname{SQS}(v)$) (see [1-3] for more information).

Tonchev [5] enumerated all different Steiner quadruple systems $\operatorname{SQS}\left(2^{m}\right)$ with 2 -rank (i.e. rank over the field \mathbb{F}_{2}), equal to $2^{m}-m$.

In [6], the authors enumerated all different Steiner quadruple systems $\operatorname{SQS}\left(2^{m}\right)$ with 2 -rank $r \leq 2^{m}-m+1$.

The goal of the present work is to enumerate all different Steiner quadruple systems $\operatorname{SQS}\left(2^{m}\right)$ of the 2 -rank $2^{m}-m-1+s$, where $s \geq 0$ is fixed. We provide a recursive construction of such systems, which in particular, allows us to construct all different systems of order $v=2^{m}$ of 2-rank not greater than $2^{m}-m-1+s$ over \mathbb{F}_{2}. Moreover, we estimate the total number of such different systems.

Let E_{q} be an alphabet of size $q: E_{q}=\{0,1, \ldots, q-1\}$, in particular, $E=\{0,1\}$. Denote a q-ary code C of length n with the minimum (Hamming) distance d and cardinality N as an ($n, d, N)_{q}$-code (or an (n, d, N)-code for $q=2$). Denote by $\operatorname{wt}(\boldsymbol{x})$ the Hamming weight of vector \boldsymbol{x} over E_{q}, and by $d(\boldsymbol{x}, \boldsymbol{y})$ the Hamming distance between the vectors $\boldsymbol{x}, \boldsymbol{y} \in E_{q}^{n}$. For a binary code C denote by $\langle C\rangle$ the linear envelope of words of C over the Galois Field \mathbb{F}_{2}. The dimension of space $\langle C\rangle$ is the rank of code C over \mathbb{F}_{2} denoted by $\operatorname{rk}(C)$.

[^0]Denote by (n, w, d, N) a constant weight (n, d, N)-code, whose codewords have the same fixed weight w.

Let $J=\{1,2, \ldots, n\}$ be the set of coordinate positions E_{q}^{n}. Denote by $\operatorname{supp}(\boldsymbol{v}) \subseteq J$ the support of a vector $\boldsymbol{v}=\left(v_{1}, \ldots, v_{n}\right) \in E^{n}, \quad \operatorname{supp}(\boldsymbol{v})=$ $\left\{i: v_{i} \neq 0\right\}$. For an arbitrary set $X \subseteq E^{n}$ define

$$
\operatorname{supp}(X)=\bigcup_{\boldsymbol{x} \in X} \operatorname{supp}(\boldsymbol{x})
$$

A binary (n, d, N)-code C, which is a linear k-dimensional space over \mathbb{F}_{2}, is denoted as $[n, k, d]$-code. Let $(\boldsymbol{x} \cdot \boldsymbol{y})=x_{1} y_{1}+\cdots+x_{n} y_{n}$ be the scalar product over \mathbb{F}_{2} of the binary vectors $\boldsymbol{x}=\left(x_{1}, \ldots, x_{n}\right)$ and $\boldsymbol{y}=\left(y_{1}, \ldots, y_{n}\right)$. For any (linear, non-linear or constant weight) code C of length n let C^{\perp} be its dual code: $C^{\perp}=\left\{\boldsymbol{v} \in \mathbb{F}_{2}^{n}:(\boldsymbol{v} \cdot \boldsymbol{c})=0, \forall \boldsymbol{c} \in C\right\}$. It is clear that C^{\perp} is a $\left[n, n-k, d^{\perp}\right]$-code with minimum distance d^{\perp}, and where $k=\operatorname{rk}(C)$.

Denote by K a q-ary $\operatorname{MDS}\left(4,2, q^{3}\right)_{q}$-code and by Γ_{K} denote the number of different such codes K.

Lemma 1. [4] When $q=2^{s}$, we have the following estimates:

$$
\Gamma_{K} \geq(2)^{(q / 2)^{3}}
$$

Define the mapping φ of E_{q}^{n} into $E^{q n}$ setting for $\boldsymbol{c}=\left(c_{1}, \ldots, c_{n}\right): \quad \varphi(\boldsymbol{c})=$ $\left(\varphi\left(c_{1}\right), \ldots, \varphi\left(c_{n}\right)\right)$, where $\varphi(0)=(1,0, \ldots, 0), \varphi(1)=(0,1, \ldots, 0), \ldots, \varphi(q-1)=$ $(0,0, \ldots, 1)$.

For a given code $\left(4,2, q^{3}\right)_{q}$-code K, define the constant weight $\left(4 q, 4,4, q^{3}\right)$ code $C(K)$:

$$
C(K)=\{\varphi(\boldsymbol{c}): \boldsymbol{c} \in K\}
$$

Every codeword \boldsymbol{c} of the code $C(K)$, is split into blocks of length q so that $\boldsymbol{c}=\left(\boldsymbol{c}_{1}, \boldsymbol{c}_{2}, \boldsymbol{c}_{3}, \boldsymbol{c}_{4}\right)$ and $\operatorname{wt}\left(\boldsymbol{c}_{i}\right)=1$ for $i=1,2,3,4$. We say that $C(K)$ has the block structure. For a code $C(K)$ and a vector $\boldsymbol{x}=\left(x_{1}, \ldots, x_{u}\right)$ of weight 4 with $\operatorname{support} \operatorname{supp}(\boldsymbol{x})=\left\{i_{1}, i_{2}, i_{3}, i_{4}\right\}$ define the following code $C(K ; \boldsymbol{x})=$ $C\left(K ; i_{1}, i_{2}, i_{3}, i_{4}\right)$ of length $q u$ with block structure:

$$
\left\{\left(\boldsymbol{c}_{1}, \ldots, \boldsymbol{c}_{u}\right):\left(\boldsymbol{c}_{i_{1}}, \boldsymbol{c}_{i_{2}}, \boldsymbol{c}_{i_{3}}, \boldsymbol{c}_{i_{4}}\right) \in C(K), \text { and } \boldsymbol{c}_{j}=(0,0, \cdots, 0), \text { if } j \neq i_{1}, i_{2}, i_{3}, i_{4}\right\}
$$

For a given set X of vectors of length u and weight 4, define

$$
C(K ; X)=\{C(K ; \boldsymbol{x}): \boldsymbol{x} \in X\}
$$

Define the mapping $\psi(\cdot)$ from E^{u} into $E^{q u}$, so that for every vector $\boldsymbol{x}=$ $\left(x_{1}, x_{2}, \ldots, x_{u}\right)$ we have:

$$
\psi(\boldsymbol{x})=\left(x_{1}, \ldots, x_{1}, x_{2}, \ldots, x_{2}, \ldots, x_{u}, \ldots, x_{u}\right)
$$

Let V be the set of all words of weight 2 and length $q=2^{s}$. Then V can be split into $q-1$ trivial codes $V_{i}, i=1, \ldots, q-1$ with parameters ($q, 2,4, q / 2$). Let $\Gamma_{V}(q)$ be the number of different partitions $V^{(j)}=\left\{V_{1}^{(j)}, \ldots, V_{q-1}^{(j)}\right\}, j=$ $1, \ldots, \Gamma_{V}(q)$ of V.
Lemma 2. [7] The following equality is valid:

$$
\Gamma_{V}(q) \geq \exp \left\{\frac{(q-1)^{2}}{12}(\log (q-1)-5)\right\}
$$

where $q=2 u$ and $u \equiv 1$ or $2(\bmod 3)$.
We finally need constant weight codes W with parameters $\left(2 q, 4,4, q^{2}(q-\right.$ 1)/4), where the codewords can be split into blocks of length q and each block has weight 0 or 2 . The different codes are $W^{(j)}, j=1, \ldots, \Gamma_{W}$, where $\Gamma_{W}=$ $\Gamma_{W}(q)$ is the number of such different codes.

Lemma 3. We have the following equality:

$$
\Gamma_{W}(q)=(q-1)!\cdot \Gamma_{V}^{2}
$$

2 Main results

Suppose $S_{v}=S(v, 4,3)$ is a Steiner quadruple system of order $v=2^{m}$ and of 2rank $r \leq 2^{m}-m-1+s$. That means that the dual code S_{v}^{\perp} contains a subcode $[v, m+1-s, v / 2]$, denoted by \mathcal{A}_{m} with minimum distance $d^{\perp}=v / 2=2^{m-1}$ [6]. More precisely, \mathcal{A}_{m} contains one word of weight v and the all other nonzero words have the same weight 2^{m-1}, i.e. the code is a subcode of a well known linear biorthogonal code and can be generated by the following matrix:

$$
G\left(\mathcal{A}_{m}\right)=\left[\begin{array}{ccccccccc}
1 & 1 & 1 & 1 & \ldots & 1 & 1 & 1 & 1 \tag{1}\\
1 & 1 & 1 & 1 & \ldots & 0 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & \ldots & 1 & 1 & 0 & 0 \\
\ldots & \ldots \\
1 & 0 & 1 & 0 & \ldots & 1 & 0 & 1 & 0
\end{array}\right],
$$

where $\mathbf{1}=(1, \ldots, 1)$ and $\mathbf{0}=(0, \ldots, 0)$ are binary words of length $q=2^{s}$. Every word $\boldsymbol{c} \in S_{v}$ has the block srtucture: $\boldsymbol{c}=\left(\boldsymbol{c}_{1}, \boldsymbol{c}_{2}, \ldots \mid, \boldsymbol{c}_{u}\right)$ with blocks of length q, where $u=v / q=2^{m-s}$. Define the following subsets J_{i} of size q of the coordinate set J, which correspond to the blocks of length q :

$$
J_{i}=\{q(i-1)+1, q(i-1)+2, \ldots, q i\}, \quad i=1,2, \ldots u .
$$

Define the coordinate set $J(u)=\{1,2, \ldots, u\}$ of block indices. Since the codewords of \mathcal{A}_{m} are orthogonal to our system S_{v}, its words can be divided naturally into three subsets $S^{(1,1,1,1)}, S^{(2,2)}$ and $S^{(4)}$:

- $S^{(1,1,1,1)}=\left\{\boldsymbol{c} \in S:\left|\operatorname{supp}(\boldsymbol{c}) \cap J_{i}\right| \in\{0,1\}, i=1, \ldots, u\right\}$.
- $S^{(2,2)}=\left\{\boldsymbol{c} \in S:\left|\operatorname{supp}(\boldsymbol{c}) \cap J_{i}\right| \in\{0,2\}, i=1, \ldots, u\right\}$.
- $S^{(4)} \quad=\left\{\boldsymbol{c} \in S:\left|\operatorname{supp}(\boldsymbol{c}) \cap J_{i}\right| \in\{0,4\}, i=1, \ldots, u\right\}$.

For any $\boldsymbol{c} \in S^{(1,1,1,1)}$ with support $\operatorname{supp}(\boldsymbol{c})=\left\{i_{1}, i_{2}, i_{3}, i_{4}\right\}$ define its block $\operatorname{support}_{\operatorname{supp}}^{q}(\boldsymbol{c})$ as a set of indices of its nonzero blocks (i.e. if $i \in \operatorname{supp}(\boldsymbol{c})$ then $\left.j=\lfloor(i+q-1) / q\rfloor \in \operatorname{supp}_{q}(\boldsymbol{c})\right)$.

Lemma 4. Let $S_{v}=S(v, 4,3)$ be a Steiner system of order $v=2^{m}$ with 2-rank $r_{v} \leq v-m-1+s$. Let S_{v}^{\perp} be a dual to S_{v} code which contains a subcode \mathcal{A}_{m} with parameters $[v, s, v / 2]$. Suppose the system S_{v} splits into subsets $S^{(1,1,1,1)}$, $S^{(2,2)}, S^{(4)}$. Then we have

- $S^{(1,1,1,1)}$ is a set of codes $C\left(K_{i}, \boldsymbol{c}^{(i)}\right)$, where the set of indices $j_{1}, j_{2}, j_{3}, j_{4} \in J(u)=\{1,2, \ldots, u\}, u=2^{m-s}$,
$\left\{j_{1}, j_{2}, j_{3}, j_{4}\right\}=\operatorname{supp}_{q}\left(\boldsymbol{c}^{(i)}\right)$, forms a Steiner system $S_{u}=S(u, 4,3)$ on the coordinate set $J(u)$ when $\boldsymbol{c}^{(i)}$ runs over $S^{(1,1,1,1)}$.
- The Steiner quadruple system S_{u} has the minimal 2-rank: $r_{u}=u-$ $\log (u)-1$, i.e. it is a Boolean system.
- The set $S^{(2,2)}$ is a set of arbitrary codes $W^{(j)}\left(i_{1}, i_{2}\right)$, where i_{1} and i_{2} take all different values from $\{1, \ldots, u\}$ and j takes values from $\left\{1,2, \ldots, \Gamma_{W}\right\}$.
- The set $S^{(4)}$ is a set of arbitrary Steiner systems $S_{q}(j)=S(q, 4,3)$, where $\operatorname{supp}\left(S_{q}(j)\right)=J_{j}$.

The structure of the Steiner quadruple systems $\operatorname{SQS}(v)$ of order $v=u q$ and 2-rank $v-m-1+s$ that we described above, induce the following recursive construction of $\operatorname{SQS}(v)$ of order v for a given $\operatorname{SQS}(u)$ of an arbitrary order u (i.e. $u \equiv 2$ or $4(\bmod 6))$.

Construction $I I(s)$. Let $q=2^{s}$ and $S_{u}=S(u, 4,3)$ be a Steiner system of rank r_{u}, whose words $\boldsymbol{c}^{(s)}$ are ordered by a fixed enumeration $s=1,2, \ldots, h$, where $h=u(u-1)(u-2) / 24$. Suppose, we have a family of arbitrary q-ary codes $K_{1}, K_{2}, \ldots, K_{h}$ with parameters $\left(4,2, q^{3}\right)_{q}$. Suppose we have u arbitrary Steiner systems $S_{q}(j)=S(q, 4,3), j=1, \ldots, u$. Assume that for any pair i_{1}, i_{2}, where $i_{1}<i_{2}$, run through all possible values from $\{1,2, \ldots, u\}$, there is an arbitrary $\left(2 q, 4,4, q^{2}(q-1) / 4\right)$-code $W\left(i_{1}, i_{2}\right)$. Let $J(u)$ be the coordinate set of the system S_{u}. Define the new coordinate set $J(v)$ of size $v=u \cdot q$, obtained from $J(u)$ as follows: every index $j \in J(u)$ is associated with the set J_{j}, of q elements, namely $J_{j}=\{q(j-1)+1, \ldots, q j\}$. Define the coordinate set $J(v)$ as the union:

$$
J(v)=J_{1} \cup \cdots \cup J_{u}
$$

Every word $\boldsymbol{c}^{(i)}$ of S_{u} with support $\operatorname{supp}\left(\boldsymbol{c}^{(i)}\right)=\left\{j_{1}, j_{2}, j_{3}, j_{4}\right\}$ and a code K_{i} define the constant weight code $C\left(K_{i} ; \boldsymbol{c}^{(i)}\right)=C\left(K_{i} ; j_{1}, j_{2}, j_{3}, j_{4}\right)$. Define the following three sets:

$$
S^{(1,1,1,1)}=\bigcup_{i=1}^{h} C\left(K_{i} ; j_{1}, j_{2}, j_{3}, j_{4}\right), \quad \operatorname{supp}\left(\boldsymbol{c}^{(i)}\right)=\left\{j_{1}, j_{2}, j_{3}, j_{4}\right\}
$$

i.e. the supports of all words of $C\left(K_{i} ; j_{1}, j_{2}, j_{3}, j_{4}\right)$ belong to the set $J_{j_{1}} \cup J_{j_{2}} \cup$ $J_{j_{3}} \cup J_{j_{4}}$;

$$
S^{(2,2)}=\bigcup_{i_{1} \neq i_{2} \in\{1,2, \ldots, u\}} W\left(i_{1}, i_{2}\right) ;
$$

i.e. the supports of all vectors of $W\left(i_{1}, i_{2}\right)$ is always contained in two blocks with numbers i_{1} and i_{2};

$$
S^{(4)}=\bigcup_{j=1}^{u}\left\{\boldsymbol{c} \in S_{q}(j)\right\}, \quad \operatorname{supp}\left(S_{q}(j)\right)=J_{j} .
$$

Theorem 1. Let $S_{u}=S(u, 4,3)$ be a Steiner system, let $q=2^{s} \geq 4$, and let $\boldsymbol{c}^{(i)}, i=1,2, \ldots, h$ be the words of this system, where $h=u(u-1)(u-2) / 24$. Let $S^{(1,1,1,1)}, S^{(2,2)}$ and $S^{(4)}$ be the sets, obtained by construction II(s), based on the families of the $\left(4,2, q^{3}\right)_{q}$-codes $K_{1}, K_{2}, \ldots, K_{h}$, the family of $u(u-1) / 2$ constant weight $\left(2 q, 4,4, q^{2}(q-1) / 4\right)$-codes $W\left(i_{1}, i_{2}\right)$, where i_{1} and $i_{2}, i_{1} \neq i_{2}$ run through all possible values from $\{1,2, \ldots, u\}$ and u Steiner systems $S_{q}(j)=$ $S(q, 4,3)$. Let

$$
\begin{equation*}
S=S^{(1,1,1,1)} \cup S^{(2,2)} \cup S^{(4)} \tag{2}
\end{equation*}
$$

Then, for any choice of S_{u}, the codes $K_{1}, K_{2}, \ldots, K_{h}$, codes $W\left(i_{1}, i_{2}\right)$ and systems $S_{q}(j)$:

- The set S is the Steiner system $S_{v}=S(v, 4,3), v=u \cdot q$.
- The rank of the new system S_{v} satisfies

$$
u(q-1)+\operatorname{rk}\left(S_{u}\right)-s \leq \operatorname{rk}\left(S_{v}\right) \leq u(q-1)+\operatorname{rk}\left(S_{u}\right) .
$$

From this bound it follows, in particular, that if the original system $S(u, 4,3)$ has the full rank $r_{u}=u-1$, then according to Theorem 1 , the resulting system $S(v, 4,3)$ of order $v=u \cdot 2^{s}$, in general, can also be of the full rank $r_{v}=v-1$.
Theorem 2. Suppose $S_{v}=S(v, 4,3)$ is a Steiner system of order $v=2^{m}$. Suppose that its 2 -rank satisfies $\operatorname{rk}\left(S_{v}\right) \leq 2^{m}-m-1+s$. Then the system S_{v} is obtained from the Boolean (i.e. of the minimal rank) Steiner quadruple system $S_{u}=S(u, 4,3)$ of order $u=2^{m-s}$ using construction $I I(s)$, described above.

So, we know the structure of all quadruple Steiner systems $S_{v}=S(v, 4,3)$ of order $v=2^{m}$ and of 2 -rank not greater than $v-1-m+s$. Now we can estimate the number of all such different systems, which we denote by $\Gamma_{S}(v, s)$.
Theorem 3. The number $\Gamma_{S}(v, s)$ of different Steiner systems $S_{v}=S(v, 4,3)$ of order $v=2^{m}$ of rank not greater than $v-1-m+s$ satisfies the following equality:

$$
\begin{aligned}
\Gamma_{S}(v, s) & =\Gamma_{S}(u, 0) \cdot\left(\Gamma_{K}\right)^{u(u-1)(u-2) / 24} \cdot\left(\Gamma_{W}\right)^{u(u-1) / 2} \cdot\left(\Gamma_{S}(q, s)\right)^{u} \\
& >(2)^{c \cdot \frac{3^{3}}{24}},
\end{aligned}
$$

where $c<1 / 8$ and $c \rightarrow 1 / 8$ when q is fixed and $u \rightarrow \infty$.
Here $\Gamma_{S}(u, 0)$ is the number of different Boolean quadruple systems $S_{u}=$ $S(u, 4,3)$, and $\Gamma_{S}(q, s)$ is the number of different quadruple systems of order q, where $q=2^{s}, u=2^{\ell}$, and $\ell=m-s$. Recall that the best lower bound for the number $\Gamma_{S}(v)$ (i. e. of arbitrary ranks) looks as [8]:

$$
\Gamma_{S}(v)>(2)^{\frac{v^{3}}{24}} .
$$

References

[1] J. Doyen, X. Hubaut, M. Vandensavel, Ranks of incidence matrices of Steiner triple systems, Mathem. Zeitschr. 163, 1978, 251-259.
[2] E. F. Assmus, Jr., On 2-ranks of Steiner triple systems, The Electr. J. Combin. 1995, V. 2. Paper R9.
[3] A. Hartman, K. T. Phelps, Steiner quadruple systems, In: Contemporary Design Theory: A Collection of Surveys. Dinitz J.H., Stinson D.R., Eds. John Wiley \& Sons. 1992. Ch. 6. P. 205-240.
[4] V. N. Potapov, D. S. Krotov, P. V. Sokolova, On reconstructing reducible n-ary quasigroups and switching subquasigroups, Quasigroups Relat. Syst. 16, 2008, 55-67.
[5] V. D. Tonchev, A formula for the number of Steiner quadruple system on 2^{n} points of 2-rank $2^{n}-n$, J. Combin. Designs 11, 2003, 260-274.
[6] V. A. Zinoviev, D. V. Zinoviev, On resolvability of Steiner systems $S\left(2^{m}, 4,3\right)$ of rank $r \leq 2^{m}-m+1$ over F_{2}, Probl. Inform. Transmission 43, No. 1, 2007, 39-55.
[7] C. C. Lindner, E. Mendelsohn, A. Rosa, On the number of 1-factorizations of the complete graph, J. Combin. Theory (B) 20, 1976, 265-282.
[8] J. Doyen, M. Vandensavel, Nonisomorphic Steiner quadruple systems, Bull. Soc. Math. Belg. 23, 1971, 393-410.

[^0]: ${ }^{1}$ This work has been partially supported by the Russian fund of fundamental researches (under the project No. 12-01-00905).

