On the binary self-dual $[96,48,20]$ codes with an automorphism of order $9{ }^{1}$

Nikolay Yankov
n. yankov@shu-bg.net
Faculty of Mathematics and Informatics, Shumen University, Shumen, BULGARIA

Dedicated to the memory of Professor Stefan Dodunekov

Abstract

In this paper we study the existence of binary self-dual [96, 48, 20] codes possessing an automorphism of order 9 . Using a method for classification of binary self-dual codes having an automorphism of order p^{2} for an odd prime p we prove the nonexistence of an optimal self-dual code of length 96 with an automorphism of order 9 with 10 cycles and 6 fixed points.

1 Introduction

A linear $[n, k]$ code C is a k-dimensional subspace of the vector space \mathbb{F}_{q}, where \mathbb{F}_{q} is the finite field of q elements. The elements of C are called codewords, and the (Hamming) weight of a codeword $v \in C$ is the number of the nonzero coordinates of v. We use $\operatorname{wt}(v)$ to denote the weight of a codeword. The minimum weight d of C is the smallest weight among all its non-zero codewords, and C is called an $[n, k, d]_{q}$ code. A matrix whose rows form a basis of C is called a generator matrix of this code. Every code satisfies the Singleton bound $d \leq n-k+1$. A code is maximum distance separable or MDS if $d=n-k+1$, and near MDS or NMDS if $d=n-k$.

For every $u=\left(u_{1}, \ldots, u_{n}\right)$ and $v=\left(v_{1}, \ldots, v_{n}\right)$ from \mathbb{F}_{2}^{n}, u.v $=\sum_{i=1}^{n} u_{i} v_{i}$ defines the inner product in \mathbb{F}_{2}^{n}. The dual code of C is $C^{\perp}=\left\{v \in \mathbb{F}_{2}^{n} \mid u . v=\right.$ $0, \forall u \in C\}$. If $C \subset C^{\perp}, C$ is called self-orthogonal, and if $C=C^{\perp}$, we say that C is self-dual.

A self-dual code is doubly-even if all codewords have weight divisible by four, and singly even if there is at least one nonzero codeword of weight $\equiv 2(\bmod 4)$. Self-dual doubly-even codes exist only if n is a multiple of eight.

The Hermitian inner product on \mathbb{F}_{4}^{n} is given by $u . v=\sum_{i=1}^{n} u_{i} v_{i}^{2}$ and we denote by $C^{\perp H}$ the dual of C under Hermitian inner product. C is Hermitian self-dual if $C=C^{\perp H}$.

The weight enumerator $W(y)$ of a code C is defined as $W(y)=\sum_{i=0}^{n} A_{i} y^{i}$, where A_{i} is the number of codewords of weight i in C. Following [5] we say that

[^0]two linear codes C and C^{\prime} are permutation equivalent if there is a permutation of coordinates which sends C to C^{\prime}. The set of coordinate permutations that maps a code C to itself forms a group denoted by PAut(C). Two codes C and C^{\prime} of the same length over \mathbb{F}_{q} are equivalent provided there is a monomial matrix M and an automorphism γ of the field such that $C=C^{\prime} M \gamma$.

An automorphism $\sigma \in \mathcal{S}_{n},|\sigma|=p^{2}$ is of type $p^{2}-(c, t, f)$ if when decomposed to independent cycles it has c cycles of length p^{2}, t cycles of length p, and f fixed points. Obviously, $n=c p^{2}+t p+f$.

The study of the existence of a doubly-even self-dual $[24 k, 12 k, 4 k+4]$ for $k \geq 3$ is a growing trend. Recent results include but are not limited to $k=4$ [4] and $k=5$ [2].

In [3] it was shown that only the primes 2,3 and 5 divide the order of the automorphism group of a $[96,48,20]$ code. Also in [3, Lemma2.1.8] the possible cycle structure for an automorphism of order p^{2} in $[96,48,20]$ code was narrowed to an automorphism of order 9 with $c=10$ and $t=0,1$ or 2 . Since 2 is a primitive root modulo 3 the number of 3 -cycles must be even [1]. Thus only two cases of a $[96,48,20]$ code with an automorphism of order 9 remain:

- 9 - ($10,0,6$);
- 9 - $(10,2,0)$.

In this paper, we investigate the case $9-(10,0,6)$. The main result is the following.
Theorem 1. There does not exists a binary self-dual doubly-even $[96,48,20]$ code with an automorphism of type $9-(10,0,6)$.

2 Construction method

Assume that C is a doubly-even self-dual $[96,48,20]$ code with an automorphism of type $9-(10,0,6)$. We apply the method for constructing binary self-dual codes possessing an automorphism of order p^{2} for a prime p from [1].

Thus we can assume that

$$
\begin{equation*}
\sigma=(1,2, \ldots, 9)(10,11, \ldots, 18) \ldots(82,83, \ldots, 90) . \tag{1}
\end{equation*}
$$

Denote by $\Omega_{i}, i=1, \ldots, 10$ the cycles of length 9 in σ; for $i=11, \ldots, 16-$ the fixed points in σ. Define $F_{\sigma}(C)=\{v \in C \mid v \sigma=v\}, E_{\sigma}(C)=\{v \in$ $\left.C \mid \operatorname{wt}\left(v \mid \Omega_{i}\right) \equiv 0(\bmod 2)\right\}$, where $v \mid \Omega_{i}$ denotes the restriction of v to Ω_{i}. Clearly $v \in F_{\sigma}(C)$ iff $v \in C$ is constant on each cycle. Denote $\pi: \mathbb{F}_{\sigma}(C) \rightarrow \mathbb{F}_{2}^{16}$ the projection map where if $v \in F_{\sigma}(C),(\pi(v))_{i}=v_{j}$ for some $j \in \Omega_{i}, i=1, \ldots, 16$. Then the following lemma holds.
Lemma 1. [1] $C=F_{\sigma}(C) \oplus E_{\sigma}(C) . C_{\pi}=\pi\left(F_{\sigma}(C)\right)$ is a binary self-dual code of length 16 .

Denote by E^{*} the code E_{σ} with the last f coordinates deleted. For $v \in E^{*}$ we let $v \mid \Omega_{i}=\left(v_{0}, v_{1}, \cdots, v_{10}\right)$ correspond to the polynomial $v_{0}+v_{1} x+\cdots+v_{8} x^{10}$ from \mathcal{T}, where \mathcal{T} is the ring of even-weight polynomials in $\mathbb{F}_{2}[x]\left\langle x^{9}-1\right\rangle$. Thus we obtain the map $\varphi: E^{*} \rightarrow \mathcal{T}^{10}$. In our work [1] we have proved that in the case $p=3, \mathcal{T}=I_{1} \oplus I_{2}$. Denote $C_{\varphi}=\varphi\left(E^{*}\right)$.
Theorem 2. [8] $C_{\varphi}=\varphi\left(M_{1}\right) \oplus \varphi\left(M_{2}\right)$, where $M_{j}=\left\{u \in E_{\sigma}(C) \mid u_{i} \in I_{j}, i=\right.$ $1, \ldots, 10\}, j=1,2$. Moreover M_{1} and M_{2} are Hermitian self-dual codes over the fields I_{1} and I_{2}, respectively. If C is a binary self-dual code having an automorphism σ of type $9-(c, t, f)$ then $C=E_{1} \oplus E_{2} \oplus F_{\sigma}$ where $E_{1} \oplus E_{2}=E_{\sigma}$, $M_{i}=\varphi\left(E_{i}\right), i=1,2$.

This proves that C has a generator matrix of the form

$$
\mathcal{G}=\left(\begin{array}{c}
\varphi^{-1}\left(M_{2}\right) \tag{2}\\
\varphi^{-1}\left(M_{1}\right) \\
F_{\sigma}
\end{array}\right)
$$

Since the minimum distance of C is 20 the code M_{2} is a [10, 5] Hermitian self-dual code over \mathbb{F}_{64}, having minimal distance $d \geq 5$. Using the Singleton bound $d \leq n-k+1$ we have $d=6$ or $d=5$.

We look for Hermitian MDS or NMDS codes M_{2} over $I_{2} \cong \mathbb{F}_{64}$ under the inner product $(u, v)=\sum_{i=1}^{10} u_{i} v_{i}^{8}$. Consider the element $\delta=\alpha^{9}=x^{2}+x^{4}+x^{5}+x^{7}$ of multiplicative order 7 in I_{2}. We have that $I_{2}=\left\{0, x^{s} \delta^{l} \mid 0 \leq s \leq 8,0 \leq l \leq 6\right\}$.

2.1 MDS codes over \mathbb{F}_{64}

Theorem 3. There are exactly 3144 inequivalent $M D S$ codes M_{2} over \mathbb{F}_{64} such that $\varphi^{-1}\left(M_{2}\right)$ have minimum weight 20.
Proof. Let $G=\left(E_{5} \mid A\right)$ be a generator matrix for the code M_{2} for

$$
A=\left(\begin{array}{ccccc}
\delta^{a_{11}} & \delta^{a_{12}} & \delta^{a_{13}} & \delta^{a_{14}} & \delta^{a_{15}} \tag{3}\\
\delta^{a_{21}} & \gamma_{22} & \gamma_{23} & \gamma_{24} & \gamma_{25} \\
\delta^{a_{31}} & \gamma_{32} & \gamma_{33} & \gamma_{34} & \gamma_{35} \\
\delta^{a_{41}} & \gamma_{42} & \gamma_{43} & \gamma_{44} & \gamma_{45} \\
\delta^{a_{51}} & \gamma_{52} & \gamma_{53} & \gamma_{54} & \gamma_{55}
\end{array}\right)
$$

where $0 \leq a_{11} \leq a_{12} \leq a_{13} \leq a_{14} \leq a_{15} \leq 6,0 \leq a_{21} \leq a_{31} \leq a_{41} \leq a_{51} \leq 6$, $\gamma_{i j} \in I_{2}^{*}, i=2, \ldots, 5, j=2, \ldots, 5$. Using the orthogonality condition, it turns out that there are exactly 7 permutational inequivalent possibilities for the vector $v=\left(a_{11}, a_{12}, a_{13}, a_{14}, a_{15}\right):(0,0,0,3,3),(0,0,1,2,5),(0,0,3,5,6)$, $(0,1,1,2,2),(0,1,1,3,3),(0,1,1,5,5),(0,1,2,3,6)$. Using a computer program that constructs all 5 rows of A in each of these 7 cases we have found exactly 3144 inequivalent codes.

2.2 NMDS codes over \mathbb{F}_{64}

Theorem 4. There are exactly 6703 inequivalent NMDS codes M_{2} over \mathbb{F}_{64} such that $\varphi^{-1}\left(M_{2}\right)$ have minimum weight 20.

Proof. We have considered all possibilities for the first row in $G=\left(E_{5} \mid A\right)$ for

$$
A=\left(\begin{array}{ccccc}
0 & \delta^{a_{12}} & \delta^{a_{13}} & \delta^{a_{14}} & \delta^{a_{15}} \tag{4}\\
\delta^{a_{21}} & \gamma_{22} & \gamma_{23} & \gamma_{24} & \gamma_{25} \\
\delta^{a_{31}} & \gamma_{32} & \gamma_{33} & \gamma_{34} & \gamma_{35} \\
\delta^{a_{41}} & \gamma_{42} & \gamma_{43} & \gamma_{44} & \gamma_{45} \\
\delta^{a_{51}} & \gamma_{52} & \gamma_{53} & \gamma_{54} & \gamma_{55}
\end{array}\right)
$$

where $0 \leq a_{12} \leq a_{13} \leq a_{14} \leq a_{15} \leq 6,0 \leq a_{21} \leq a_{31} \leq a_{41} \leq a_{51} \leq 6$ (or we have zeros in column 6), $\gamma_{i j} \in I_{2}, i=2, \ldots, 5, j=2, \ldots, 5$. It turns out that there is a unique possibility for the vector $w=\left(a_{12}, a_{13}, a_{14}, a_{15}\right)=(0,1,5,6)$.

A computer program computing all codes with generator matrix G turn out exactly 6703 inequivalent NMDS codes.

The orders of the automorphism groups of the constructed MDS and NMDS codes are displayed in Table 1. Denote the generator matrices of $\varphi^{-1}\left(M_{2}\right)$ for the 9847 constructed codes by $H_{i}, i=1, \ldots, 9847$. All codes have the following weight enumerator

$$
W(y)=1+3249 y^{20}+86265 y^{24}+1297215 y^{28}+11648745 y^{30}+\ldots
$$

2.3 The fixed subcode F_{σ}

Theorem 5. Let C be an $[96,48,20]$ binary self-dual code with an automorphism (1). Up to equivalence, there is an unique possible generator matrix

$$
B=\left(\begin{array}{c|c}
1000000001 & 000101 \\
0100000011 & 111110 \\
0010000010 & 111111 \\
0001000001 & 010001 \\
0000100001 & 100001 \\
0000010011 & 000001 \\
0000001001 & 001001 \\
0000000101 & 000011
\end{array}\right)
$$

for the the code $C_{\pi}=\pi\left(F_{\sigma}(C)\right)$.
Proof. The code C_{π} is a binary self-dual $[16,8, \geq 4]$ code. There exist exactly three such codes: the singly-even d_{8}^{2+}, and two doubly-even: d_{16}^{+}, and $e_{8}^{2}[7]$. We have to choose two disjoint sets $X_{c}, X_{f} \subset\{1, \ldots, 16\},\left|X_{c}\right|=10,\left|X_{f}\right|=6$
for cycle and the fixed coordinates, respectively. Since C is doubly-even so is $C_{\pi}[8]$.

Let w be a word or weight 6 in C_{π}. If $\left|\operatorname{Supp}(w) \cap X_{c}\right|=l$, then $\mid \operatorname{Supp}(w) \cap$ $X_{f} \mid=6-l$ and $\operatorname{wt}\left(\pi^{-1}(w)\right)=9 l+6-l=8 l+6 \equiv 2(\bmod 4)$ will always lead to a singly-even code contrary to the above statement. Thus the case d_{8}^{2+} is rejected.

We have calculated all possible disjoint sets X_{c} and X_{f} for the remaining two codes. It turns out that there is a unique possible doubly-even code F_{σ} from d_{16}^{+}with generator matrix $\pi^{-1}(B)$.

Table 1: The orders of the automorphism group of the codes M_{2}

type	total	$\operatorname{Aut}\left(M_{2}\right)$		
		9	18	27
MDS	3144	2965	170	9
NMDS	6703	6590	108	5

2.4 Hermitian self-dual codes M_{1} over \mathbb{F}_{4}

We have that M_{1} is a hermitian self-dual $[10,5, \geq 4]$ code over $\mathbb{F}_{4} \cong I_{1}=$ $\left\{0, x^{s} e_{1}, s=0,1,2\right\}$, where $e_{1}=x^{8}+x^{7}+x^{5}+x^{4}+x^{2}+x$. There are two $[10,5,4]$ hermitian self-dual codes over \mathbb{F}_{4} (see [6]) with generator matrices in the form $T_{k}=\left(E_{5} \mid X_{i}\right), i=1,2$, where

$$
X_{1}=\left(\begin{array}{ccccc}
1 & 1 & 1 & w & w^{2} \\
1 & 1 & 1 & w^{2} & w \\
1 & 0 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 & 1 \\
0 & 0 & 1 & 1 & 1
\end{array}\right), X_{2}=\left(\begin{array}{ccccc}
1 & 1 & 1 & 1 & 1 \\
1 & w & w^{2} & w^{2} & w^{2} \\
1 & w^{2} & w & w & w \\
0 & 0 & w & w^{2} & 1 \\
0 & 0 & w^{2} & w & 1
\end{array}\right)
$$

3 Results

Let C be an $[96,48,20]$ binary self-dual code with an automorphism (1). We consider the generator matrix of C in the form (2) and fix the first block as $\varphi^{-1}\left(H_{i}\right), i=1, \ldots, 9847$.

For a matrix G and permutation τ, denote by G^{τ} the matrix G with columns permuted by τ. Denote by F_{σ}^{τ} the code with generator matrix $\pi^{-1}\left(B^{\tau}\right)$.

Let $I \subseteq\{1, \ldots, 9847\}$ is the set of indices such that a subcode C^{\prime} of C with minimum distance $d \geq 20$ with generator matrix $G_{1, i, \tau}=\binom{\varphi^{-1}\left(H_{i}\right)}{F_{\sigma}^{\tau}}$ exists.

A computer program for calculating the minimum weight of the the code with generator matrix $G_{1, i, \tau}, i=1, \ldots, 9847, \tau \in S_{10}$ give that $|I|=390$.

For $k=1,2$ we consider all images $\gamma\left(T_{k}\right)$ of $T_{k}, k=1,2$ using compositions of the following maps: (i) a permutation $\tau \in S_{10}$ acting on the set of columns; (ii) a multiplication of each column by a nonzero element e_{1}, ω or $\bar{\omega}$ in I_{1}; (iii) a Galois automorphism γ which interchanges ω and $\bar{\omega}$. Next, we check the set of indices $J \subseteq I$ such that a subcode $C^{\prime \prime}$ of C with minimum distance $d \geq 20$ with generator matrix $G_{2, j, k}=\binom{\varphi^{-1}\left(H_{j}\right)}{\varphi^{-1}\left(\gamma\left(T_{k}\right)\right)}, k=1,2$ exists.

For $k=1,2$ and $j \in I$ we have calculate all codes using only compositions of the maps (iii), (ii); and (i) for all permutations $\mu \in S_{10}$ from the right transversal R_{k}, of S_{10} with respect to $\operatorname{PAut}\left(T_{k}\right)$. The result was that all such codes have minimum distance $d<20$ which proves Theorem 1.

References

[1] S. Bouyuklieva, R. Russeva, N. Yankov, On the structure of binary selfDual codes having an automorphism of order a square of an odd prime, IEEE Trans. Inform. Theory, 51(10), 2005, 3678-3686.
[2] St. Bouyuklieva, J. De la Cruz, W. Willems, On the automorphism group of a binary self-dual $[120,60,24]$ code, to appear in Applicable Algebra in Engineering, Communication and Computing, 2013.
[3] J. De la Cruz, Über die Automorphismengruppe extremaler Codes der Langen 96 und 120, Otto-von-Guericke-Universitat Magdeburg, PhD Thesis, 2012.
[4] J. De la Cruz, W. Willems, On extremal self-dual codes of length 96, IEEE Trans. Inform. Theory, 57(10), 2011, 6820-6823.
[5] W.C. Huffman, V. Pless, Fundamentals of Error Correcting Codes, Cambridge University Press, 2003.
[6] J. H. Conway, V. Pless, N. J. A. Sloane, Self-dual codes over $G F(3)$ and $G F(4)$ of length not exceeding 16, IEEE Trans. Inform. Theory 25, 1979, 312-322.
[7] V. Pless, N. J. A. Sloane, A classification and enumeration of self-dual codes, J. Combin. Theory 18(3), 1975, 313-335.
[8] N. Yankov, A putative doubly even $[72,36,16]$ code does not have an automorphism of order 9, IEEE Trans. Inform. Theory $\mathbf{5 8 (1) , ~ 2 0 1 2 , ~ 1 5 9 - 1 6 3 . ~}$

[^0]: ${ }^{1}$ This research is partially supported by Shumen University under Grant RD-08245/13.03.2013.

