On the binary self-dual [96, 48, 20] codes with an automorphism of order 9^{-1}

NIKOLAY YANKOV n.yankov@shu-bg.net Faculty of Mathematics and Informatics, Shumen University, Shumen, BULGARIA

Dedicated to the memory of Professor Stefan Dodunekov

Abstract. In this paper we study the existence of binary self-dual [96, 48, 20] codes possessing an automorphism of order 9. Using a method for classification of binary self-dual codes having an automorphism of order p^2 for an odd prime p we prove the nonexistence of an optimal self-dual code of length 96 with an automorphism of order 9 with 10 cycles and 6 fixed points.

1 Introduction

A linear [n, k] code C is a k-dimensional subspace of the vector space \mathbb{F}_q , where \mathbb{F}_q is the finite field of q elements. The elements of C are called *codewords*, and the (Hamming) weight of a codeword $v \in C$ is the number of the nonzero coordinates of v. We use wt(v) to denote the weight of a codeword. The minimum weight d of C is the smallest weight among all its non-zero codewords, and C is called an $[n, k, d]_q$ code. A matrix whose rows form a basis of C is called a generator matrix of this code. Every code satisfies the Singleton bound $d \leq n-k+1$. A code is maximum distance separable or MDS if d = n-k+1, and *near MDS* or *NMDS* if d = n - k.

For every $u = (u_1, \ldots, u_n)$ and $v = (v_1, \ldots, v_n)$ from \mathbb{F}_2^n , $u \cdot v = \sum_{i=1}^n u_i v_i$

defines the inner product in \mathbb{F}_2^n . The dual code of C is $C^{\perp} = \{v \in \mathbb{F}_2^n \mid u.v = v \in \mathbb{F}_2^n \mid u.v = v\}$ $0, \forall u \in C$. If $C \subset C^{\perp}, C$ is called *self-orthogonal*, and if $C = C^{\perp}$, we say that C is *self-dual*.

A self-dual code is *doubly-even* if all codewords have weight divisible by four, and singly even if there is at least one nonzero codeword of weight $\equiv 2 \pmod{4}$. Self-dual doubly-even codes exist only if n is a multiple of eight.

The Hermitian inner product on \mathbb{F}_4^n is given by $u.v = \sum_{i=1}^n u_i v_i^2$ and we denote by $C^{\perp H}$ the dual of C under Hermitian inner product. C is Hermitian self-dual if $C = C^{\perp H}$.

The weight enumerator W(y) of a code C is defined as $W(y) = \sum_{i=0}^{n} A_i y^i$, where A_i is the number of codewords of weight *i* in C. Following [5] we say that

¹This research is partially supported by Shumen University under Grant RD-08-245/13.03.2013.

two linear codes C and C' are permutation equivalent if there is a permutation of coordinates which sends C to C'. The set of coordinate permutations that maps a code C to itself forms a group denoted by PAut(C). Two codes Cand C' of the same length over \mathbb{F}_q are equivalent provided there is a monomial matrix M and an automorphism γ of the field such that $C = C'M\gamma$.

An automorphism $\sigma \in S_n$, $|\sigma| = p^2$ is of type $p^2 - (c, t, f)$ if when decomposed to independent cycles it has c cycles of length p^2 , t cycles of length p, and f fixed points. Obviously, $n = cp^2 + tp + f$.

The study of the existence of a doubly-even self-dual [24k, 12k, 4k + 4] for $k \ge 3$ is a growing trend. Recent results include but are not limited to k = 4 [4] and k = 5 [2].

In [3] it was shown that only the primes 2, 3 and 5 divide the order of the automorphism group of a [96, 48, 20] code. Also in [3, Lemma2.1.8] the possible cycle structure for an automorphism of order p^2 in [96, 48, 20] code was narrowed to an automorphism of order 9 with c = 10 and t = 0, 1 or 2. Since 2 is a primitive root modulo 3 the number of 3-cycles must be even [1]. Thus only two cases of a [96, 48, 20] code with an automorphism of order 9 remain:

- 9 (10, 0, 6);
- 9 (10, 2, 0).

In this paper, we investigate the case 9 - (10, 0, 6). The main result is the following.

Theorem 1. There does not exists a binary self-dual doubly-even [96, 48, 20] code with an automorphism of type 9 - (10, 0, 6).

2 Construction method

Assume that C is a doubly-even self-dual [96, 48, 20] code with an automorphism of type 9 - (10, 0, 6). We apply the method for constructing binary self-dual codes possessing an automorphism of order p^2 for a prime p from [1].

Thus we can assume that

$$\sigma = (1, 2, \dots, 9)(10, 11, \dots, 18) \dots (82, 83, \dots, 90). \tag{1}$$

Denote by Ω_i , i = 1, ..., 10 the cycles of length 9 in σ ; for i = 11, ..., 16 – the fixed points in σ . Define $F_{\sigma}(C) = \{v \in C \mid v\sigma = v\}, E_{\sigma}(C) = \{v \in C \mid wt(v|\Omega_i) \equiv 0 \pmod{2}\}$, where $v|\Omega_i$ denotes the restriction of v to Ω_i . Clearly $v \in F_{\sigma}(C)$ iff $v \in C$ is constant on each cycle. Denote $\pi : \mathbb{F}_{\sigma}(C) \to \mathbb{F}_2^{16}$ the projection map where if $v \in F_{\sigma}(C)$, $(\pi(v))_i = v_j$ for some $j \in \Omega_i$, i = 1, ..., 16. Then the following lemma holds.

Lemma 1. [1] $C = F_{\sigma}(C) \oplus E_{\sigma}(C)$. $C_{\pi} = \pi(F_{\sigma}(C))$ is a binary self-dual code of length 16.

Yankov

Denote by E^* the code E_{σ} with the last f coordinates deleted. For $v \in E^*$ we let $v | \Omega_i = (v_0, v_1, \cdots, v_{10})$ correspond to the polynomial $v_0 + v_1 x + \cdots + v_8 x^{10}$ from \mathcal{T} , where \mathcal{T} is the ring of even-weight polynomials in $\mathbb{F}_2[x]\langle x^9 - 1 \rangle$. Thus we obtain the map $\varphi : E^* \to \mathcal{T}^{10}$. In our work [1] we have proved that in the case p = 3, $\mathcal{T} = I_1 \oplus I_2$. Denote $C_{\varphi} = \varphi(E^*)$.

Theorem 2. [8] $C_{\varphi} = \varphi(M_1) \oplus \varphi(M_2)$, where $M_j = \{u \in E_{\sigma}(C) | u_i \in I_j, i = 1, \ldots, 10\}$, j = 1, 2. Moreover M_1 and M_2 are Hermitian self-dual codes over the fields I_1 and I_2 , respectively. If C is a binary self-dual code having an automorphism σ of type 9 - (c, t, f) then $C = E_1 \oplus E_2 \oplus F_{\sigma}$ where $E_1 \oplus E_2 = E_{\sigma}$, $M_i = \varphi(E_i), i = 1, 2$.

This proves that C has a generator matrix of the form

$$\mathcal{G} = \begin{pmatrix} \varphi^{-1}(M_2) \\ \varphi^{-1}(M_1) \\ F_{\sigma} \end{pmatrix}.$$
 (2)

Since the minimum distance of C is 20 the code M_2 is a [10,5] Hermitian self-dual code over \mathbb{F}_{64} , having minimal distance $d \geq 5$. Using the Singleton bound $d \leq n - k + 1$ we have d = 6 or d = 5.

We look for Hermitian MDS or NMDS codes M_2 over $I_2 \cong \mathbb{F}_{64}$ under the inner product $(u, v) = \sum_{i=1}^{10} u_i v_i^8$. Consider the element $\delta = \alpha^9 = x^2 + x^4 + x^5 + x^7$ of multiplicative order 7 in I_2 . We have that $I_2 = \{0, x^s \delta^l | 0 \le s \le 8, 0 \le l \le 6\}$.

2.1 MDS codes over \mathbb{F}_{64}

Theorem 3. There are exactly 3144 inequivalent MDS codes M_2 over \mathbb{F}_{64} such that $\varphi^{-1}(M_2)$ have minimum weight 20.

Proof. Let $G = (E_5|A)$ be a generator matrix for the code M_2 for

$$A = \begin{pmatrix} \delta^{a_{11}} & \delta^{a_{12}} & \delta^{a_{13}} & \delta^{a_{14}} & \delta^{a_{15}} \\ \delta^{a_{21}} & \gamma_{22} & \gamma_{23} & \gamma_{24} & \gamma_{25} \\ \delta^{a_{31}} & \gamma_{32} & \gamma_{33} & \gamma_{34} & \gamma_{35} \\ \delta^{a_{41}} & \gamma_{42} & \gamma_{43} & \gamma_{44} & \gamma_{45} \\ \delta^{a_{51}} & \gamma_{52} & \gamma_{53} & \gamma_{54} & \gamma_{55} \end{pmatrix},$$
(3)

where $0 \le a_{11} \le a_{12} \le a_{13} \le a_{14} \le a_{15} \le 6$, $0 \le a_{21} \le a_{31} \le a_{41} \le a_{51} \le 6$, $\gamma_{ij} \in I_2^*$, $i = 2, \ldots, 5$, $j = 2, \ldots, 5$. Using the orthogonality condition, it turns out that there are exactly 7 permutational inequivalent possibilities for the vector $v = (a_{11}, a_{12}, a_{13}, a_{14}, a_{15})$: (0, 0, 0, 3, 3), (0, 0, 1, 2, 5), (0, 0, 3, 5, 6), (0, 1, 1, 2, 2), (0, 1, 1, 3, 3), (0, 1, 1, 5, 5), (0, 1, 2, 3, 6). Using a computer program that constructs all 5 rows of A in each of these 7 cases we have found exactly 3144 inequivalent codes.

2.2 NMDS codes over \mathbb{F}_{64}

Theorem 4. There are exactly 6703 inequivalent NMDS codes M_2 over \mathbb{F}_{64} such that $\varphi^{-1}(M_2)$ have minimum weight 20.

Proof. We have considered all possibilities for the first row in $G = (E_5|A)$ for

$$A = \begin{pmatrix} 0 & \delta^{a_{12}} & \delta^{a_{13}} & \delta^{a_{14}} & \delta^{a_{15}} \\ \delta^{a_{21}} & \gamma_{22} & \gamma_{23} & \gamma_{24} & \gamma_{25} \\ \delta^{a_{31}} & \gamma_{32} & \gamma_{33} & \gamma_{34} & \gamma_{35} \\ \delta^{a_{41}} & \gamma_{42} & \gamma_{43} & \gamma_{44} & \gamma_{45} \\ \delta^{a_{51}} & \gamma_{52} & \gamma_{53} & \gamma_{54} & \gamma_{55} \end{pmatrix},$$
(4)

where $0 \le a_{12} \le a_{13} \le a_{14} \le a_{15} \le 6$, $0 \le a_{21} \le a_{31} \le a_{41} \le a_{51} \le 6$ (or we have zeros in column 6), $\gamma_{ij} \in I_2$, i = 2, ..., 5, j = 2, ..., 5. It turns out that there is a unique possibility for the vector $w = (a_{12}, a_{13}, a_{14}, a_{15}) = (0, 1, 5, 6)$.

A computer program computing all codes with generator matrix G turn out exactly 6703 inequivalent NMDS codes.

The orders of the automorphism groups of the constructed MDS and NMDS codes are displayed in Table 1. Denote the generator matrices of $\varphi^{-1}(M_2)$ for the 9847 constructed codes by H_i , $i = 1, \ldots, 9847$. All codes have the following weight enumerator

$$W(y) = 1 + 3249y^{20} + 86265y^{24} + 1297215y^{28} + 11648745y^{30} + \dots$$

2.3 The fixed subcode F_{σ}

Theorem 5. Let C be an [96, 48, 20] binary self-dual code with an automorphism (1). Up to equivalence, there is an unique possible generator matrix

for the the code $C_{\pi} = \pi(F_{\sigma}(C))$.

Proof. The code C_{π} is a binary self-dual $[16, 8, \ge 4]$ code. There exist exactly three such codes: the singly-even d_8^{2+} , and two doubly-even: d_{16}^+ , and e_8^2 [7]. We have to choose two disjoint sets $X_c, X_f \subset \{1, \ldots, 16\}, |X_c| = 10, |X_f| = 6$

for cycle and the fixed coordinates, respectively. Since C is doubly-even so is C_{π} [8].

Let w be a word or weight 6 in C_{π} . If $|\text{Supp}(w) \cap X_c| = l$, then $|\text{Supp}(w) \cap$ $X_{f} = 6 - l$ and wt $(\pi^{-1}(w)) = 9l + 6 - l = 8l + 6 \equiv 2 \pmod{4}$ will always lead to a singly-even code contrary to the above statement. Thus the case d_8^{2+} is rejected.

We have calculated all possible disjoint sets X_c and X_f for the remaining two codes. It turns out that there is a unique possible doubly-even code F_{σ} from d_{16}^+ with generator matrix $\pi^{-1}(B)$.

Table 1: The orders of the automorphism group of the codes M_2

type	total	$\operatorname{Aut}(M_2)$		
		9	18	27
MDS	3144	2965	170	9
NMDS	6703	6590	108	5

$\mathbf{2.4}$ Hermitian self-dual codes M_1 over \mathbb{F}_4

We have that M_1 is a hermitian self-dual $[10, 5, \ge 4]$ code over $\mathbb{F}_4 \cong I_1 = \{0, x^s e_1, s = 0, 1, 2\}$, where $e_1 = x^8 + x^7 + x^5 + x^4 + x^2 + x$. There are two [10, 5, 4] hermitian self-dual codes over \mathbb{F}_4 (see [6]) with generator matrices in the form $T_k = (E_5|X_i), i = 1, 2$, where

$$X_{1} = \begin{pmatrix} 1 & 1 & 1 & w & w^{2} \\ 1 & 1 & 1 & w^{2} & w \\ 1 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 \end{pmatrix}, X_{2} = \begin{pmatrix} 1 & 1 & 1 & 1 & 1 \\ 1 & w & w^{2} & w^{2} & w^{2} \\ 1 & w^{2} & w & w & w \\ 0 & 0 & w & w^{2} & 1 \\ 0 & 0 & w^{2} & w & 1 \end{pmatrix}.$$

3 Results

Let C be an [96, 48, 20] binary self-dual code with an automorphism (1). We consider the generator matrix of C in the form (2) and fix the first block as $\varphi^{-1}(H_i), i = 1, \dots, 9847.$

For a matrix G and permutation τ , denote by G^{τ} the matrix G with columns

permuted by τ . Denote by F_{σ}^{τ} the code with generator matrix $\pi^{-1}(B^{\tau})$. Let $I \subseteq \{1, \ldots, 9847\}$ is the set of indices such that a subcode C' of C with minimum distance $d \ge 20$ with generator matrix $G_{1,i,\tau} = \begin{pmatrix} \varphi^{-1}(H_i) \\ F_{\sigma}^{\tau} \end{pmatrix}$ exists. A computer program for calculating the minimum weight of the the code with generator matrix $G_{1,i,\tau}$, $i = 1, \ldots, 9847$, $\tau \in S_{10}$ give that |I| = 390.

For k = 1, 2 we consider all images $\gamma(T_k)$ of T_k , k = 1, 2 using compositions of the following maps: (i) a permutation $\tau \in S_{10}$ acting on the set of columns; (ii) a multiplication of each column by a nonzero element e_1, ω or $\overline{\omega}$ in I_1 ; (iii) a Galois automorphism γ which interchanges ω and $\overline{\omega}$. Next, we check the set of indices $J \subseteq I$ such that a subcode C'' of C with minimum distance $d \ge 20$ with generator matrix $G_{2,j,k} = \begin{pmatrix} \varphi^{-1}(H_j) \\ \varphi^{-1}(\gamma(T_k)) \end{pmatrix}$, k = 1, 2 exists. For k = 1, 2 and $j \in I$ we have calculate all codes using only compositions

For k = 1, 2 and $j \in I$ we have calculate all codes using only compositions of the maps (iii), (ii); and (i) for all permutations $\mu \in S_{10}$ from the right transversal R_k , of S_{10} with respect to $PAut(T_k)$. The result was that all such codes have minimum distance d < 20 which proves Theorem 1.

References

- S. Bouyuklieva, R. Russeva, N. Yankov, On the structure of binary self-Dual codes having an automorphism of order a square of an odd prime, *IEEE Trans. Inform. Theory*, 51(10), 2005, 3678-3686.
- [2] St. Bouyuklieva, J. De la Cruz, W. Willems, On the automorphism group of a binary self-dual [120, 60, 24] code, to appear in Applicable Algebra in Engineering, Communication and Computing, 2013.
- [3] J. De la Cruz, Uber die Automorphismengruppe extremaler Codes der Langen 96 und 120, Otto-von-Guericke-Universitat Magdeburg, PhD Thesis, 2012.
- [4] J. De la Cruz, W. Willems, On extremal self-dual codes of length 96, IEEE Trans. Inform. Theory, 57(10), 2011, 6820-6823.
- [5] W.C. Huffman, V. Pless, Fundamentals of Error Correcting Codes, Cambridge University Press, 2003.
- [6] J. H. Conway, V. Pless, N. J. A. Sloane, Self-dual codes over GF(3) and GF(4) of length not exceeding 16, IEEE Trans. Inform. Theory 25, 1979, 312-322.
- [7] V. Pless, N. J. A. Sloane, A classification and enumeration of self-dual codes, J. Combin. Theory 18(3), 1975, 313-335.
- [8] N. Yankov, A putative doubly even [72, 36, 16] code does not have an automorphism of order 9, *IEEE Trans. Inform. Theory* 58(1), 2012, 159-163.

198