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Abstract. In this paper the problem of the sign of the binary Gauss sum is solved
by considering partitions mod p in unequal parts of size at most (p− 1)/2. Gener-
alizations of this technique are developed.

1 Introduction

Let p be an odd prime. The expression G(1) :=
∑p−1

n=1 e2πin/p = −1 can be con-
sidered as the sum of a finite geometric series. Less elementary is the summation
of G(2) :=

∑p−1
n=1

(
n
p

)
e2πin/p =

∑p−1
i=1 χ(n)e2πin/p, where

(
n
p

)
is the Legendre

symbol, being equal to 1 if n is a quadratic residue mod p and equal to −1
otherwise. This problem is known as the determination of the quadratic Gauss
sum. Gauss rather easily derived that G(2)2 =

(
−1
p

)
p, but it was only after

four more years that he determined the sign of G(2). Since then many proofs
have been found, linking the problem to other mathematical problems of various
nature (cf. [1]). In this contribution we shall present a proof in terms of binary
words representing special partitions mod p. More generally, one defines Gauss
sums with respect to a field GF (q), q an odd prime power, a s G(χ, ψ) :=

∑
c∈F

χ(c)ψ(c), where χ is a multiplicative character and ψ an additive character.

2 Determination of the Gauss sum G(2)

From now on we write the quadratic Gauss sum as G(2) =
∑p−1

n=1

(
n
p

)
ξn,

with ξ = e2πi/p. We introduce functions Sp(x) :=
∑p−1

n=1

(
n
p

)
xn and Pp(x) :=

∏(p−1)/2
n=1 (x2n − x−2n), x ∈ C. In [3] it is proved, by applying the orthogonality

relations for the additive and multiplicative group of GF (p), that for all b ∈
{1, 2, . . . , p− 1}

Sp(ξb)2 = Pp(ξb)2 =
(−1

p

)
p. (1)
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Let ξ = ζ2, where ζ denotes the primitive (2p)th root of unity e2πi/(2p). It
follows from (1) that the algebraic numbers ζa, a ∈ {0, 1, . . . , 2p−1}, all satisfy
the equation Sp(x)2 − Pp(x)2 = 0 mod xp + 1. From these properties one can
derive (cf. [3]) that we have the following polynomial identity in Q[x]

p−1
2∏

n=1

(x2n − 1) = µpx
2k

p−1∑

n=1

(
n

p

)
xn mod xp + 1, (2)

where 2k := (p2−1)/8 and with a uniquely determined constant µp ∈ {−1, +1}.
From (2) we know G(2) =

∑p−1
n=1

(
n
p

)
ξn = µpξ

−2k
∏ p−1

2
n=1(ξ

2n−1) = µp
∏ p−1

2
n=1(ξ

n−
ξ−n). From (1) we know GF (p)2 ∈ {−p, +p} , and so G(2) = eiϕ√p. To de-
termine ϕ, we remark that Re (ξn − ξ−n) = 0 and Im (ξn − ξ−n) > 0, for all
relevant values of n. If p = 1 mod 8, the product in the rhs contains 4k fac-
tors of the form ai with a > 0 for some positive integer k. Hence, ϕ = 0 and
G(2) = µp

√
p in this case. Similarly, we find G(2) = −µp

√
p for p = −3 mod 8,

G(2) = iµp
√

p for p = +3 mod 8, and G(2) = −iµp
√

p for p = −1 mod 8.
So, the problem of the sign of G(2) turns out to be equivalent to determining

µp in the polynomial identity (2). To accomplish this, we compare the coeffi-
cients c2i of some power x2i in both sides of (2). Since the polynomials have to
be taken modulo xp +1, we can interpret them as polynomials in x of degree at
most p−1. Since (p2−1)/8 is even if p = ±1 mod 8, and odd if p = ±3 mod 8,
we can write respectively 2k = 2κ+2lp and 2k = 2κ+(2l+1)p, with 0 ≤ κ < p.
Hence, x2k = x2κ

(
2
p

)
, and the coefficient of x2s in the rhs of (2) is equal to

µp

(
2
p

) (
s−κ

p

)
. By writing

∏(p−1)/2
n=1 (x2n − 1) = (−1)(p−1)/2

∏(p−1)/2
n=1 (1 − x2n)

for the lhs of (2), we see that for c2s at the left, we have to take into account
all N s partitions of s mod p into unequal parts of size at most (p− 1)/2. More
precisely, this coefficient equals (−1)(p−1)/2(Ns

e−Ns
o), where N s

e and N s
o denote

the number of such partitions into an even number of parts and into an odd
number of parts, respectively. We conclude that the remaining problem now is
to determine, for at least one value of s 6= κ, whether N s

e − N s
o equals +1 or

−1. Above we proved already implicitly that the absolute value equals 1.

3 Partitions mod p in unequal parts

We introduce binary words of length (p − 1)/2 denoted by a = (a1,
a2, . . . , a(p−1)/2). The number of ones in such a word a is called the weight
of a , and is denoted by |a |. Furthermore, we define the value of a as val(a) :=∑(p−1)/2

j=1 jaj mod p. If s is the value of a vector a with weight k, we can say
that a corresponds to a partition mod p of s into k unequal parts of size at
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most (p − 1)/2. A part of size j occurs in this partition if and only if aj = 1.
We also define sets containing all words with value s, 0 ≤ s ≤ p− 1, as follows

As =
{
a ∈ {0, 1}(p−1)/2 | val(a) = s

}
. (3)

It follows from Section 2 that the function
∏(p−1)/2

n=1 (1−xn) mod xp−1 generates
the numbers N s

e − N s
o. Similarly, the function

∏(p−1)/2
n=1 (1 + xn) mod xp − 1

is the generator of the numbers N s := N s
e + N s

o, 0 ≤ s < p. If we define
α :=

∏(p−1)/2
n=1 (1 + ξn), then

∏p−1
n=1(1 + ξn) = ααc. On the other hand, we have∏p−1

n=1(1 + ξn) =
∏p−1

n=1(x− ξn)
∣∣∣
x=−1

= xn−1
x−1

∣∣∣
x=−1

= 1, and so |α| = 1.

For practical reasons, we shall from now on consider words over {−1, +1}
instead of over {0, 1}. Let b = (b1, b2, . . . , b(p−1)/2) be a word over {−1, +1}
of length (p − 1)/2. Then we define, similarly as in Section 2, val(b) :=∑(p−1)/2

j=1 jbj mod p, and we introduce sets of all words with value 2s,
0 ≤ s ≤ p− 1,

Bs =
{
b ∈ {−1, +1}(p−1)/2 | val(b) = 2s

}
. (4)

There is a one-one correspondence between the words a ∈ As and the words
b ∈ Bs−κ obtained by replacing each 0 in a by −1. This follows from val(1) =∑(p−1)/2

j=1 j = (p2 − 1)/8 = 2κ, and so val(b) = val(a) − (val(1) − val(a)) =
2(s − κ). We define for each λ ∈ GF (p)\{0} a map Tλ from {−1,+1}(p−1)/2

onto itself by

Tλ((b1, b2, . . . , b(p−1)/2)) = (d1, d2, . . . , d(p−1)/2), (5)

di = bi/λ, if i/λ < p/2, and di = −bp−i/λ, if i/λ > p/2. (6)

An equivalent rule is that in GF (p) we have idi = λ.jbj for all corresponding
indices i and j. From this relation it follows that Tλ defines a bijection between
Bs and Bλs for any s with 0 < s ≤ p − 1. An immediate consequence is that
all sets Bs, s 6= 0, have the same size. So, the same holds for all sets As,
s 6= κ, and we can write N := N i, i ∈ {0, 1, . . . , p− 1}\{κ}. These observations
enable us to determine the difference Nκ −Nκ+1 up to a sign, because of the
following series of equalities α =

∏(p−1)/2
n=1 (1+ ξn) =

∏p−1
n=1 Nnξn = (Nκ−N)ξκ

+N(1+ξ +ξ2 + · · ·+ξp−1) = (Nκ−N)ξκ. Hence, Nκ−Nκ+1 = Nκ−N = ±1.
Furthermore, we have Nκ+(p−1)N = 2(p−1)/2. Combining these relations gives
N = (2(p−1)/2−1)/p, Nκ = N +1 for p = ±1 mod 8, and N = (2(p−1)/2 +1)/p,
Nκ = N −1 for p = ±3 mod 8. In order to calculate the difference N s

e −N s
o for

at least one s 6= κ, say s = κ + 1, it is sufficient to determine the parity of the
total number of zeros in the words of Aκ+1, or equivalently, the parity of the
number of minus ones in the words of B1. We shall do this in the next proof.
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Theorem 1. For any odd prime p one has Nκ+1
e −Nκ+1

o = 1.

Proof. First we remark that together with any b ∈ B0 also −b occurs in B0.
Hence, the number of words in B0 starting with 1 is equal to Nκ/2 and so is the
number of words starting with −1. Changing this −1 into +1 gives us all words
in B1 starting with +1, since the words in B1 have value 2. Let p = ±3 mod 8.
Then, since B1 contains Nκ +1 words, the number of words starting with −1 is
equal to Nκ/2 + 1. More generally, if i is odd Bi contains Nκ/2 words starting
with +1 and Nκ/2 words starting with −1, while for even i these numbers must
be interchanged. Hence, depending on the parity of Nκ/2, either the sets Bi

with odd index or the sets Bi with even index contain an odd number of words
starting with −1. The same holds if p = ±1 mod 8. Now, we arrange the words
in any of these (p − 1)/2 sets in some order, yielding (p − 1)/2 blocks with N
rows and (p − 1)/2 columns. A map Tλ which maps the rows of such a block
Bi to the rows of B1, has the property that the columns of Bi are mapped
to plus or minus the columns of B1, as follows from (4). We require that the
first column of Bi is transformed into column j of B1. This is possible if and
only if λ and j satisfy λj = 1 in GF (p), with j ∈ {1, 2, . . . , (p − 1)/2}, and
λ even. An equivalent condition is 2(λ/2)j = 1, λ/2, j ∈ {1, 2, . . . , (p − 1)/2}.
Because of the symmetry between λ/2 and j, this equation has an odd number
of solutions if and only if 2 is a quadratic residue in GF (p). We conclude that
block B1 contains an odd number of entries −1, if and only if p = ±1 mod 8,
and consequently that Aκ+1 contains an odd number of words with an odd
number of zeros only for such p.

(i) Let p = 1 mod 4. Then the word length (p − 1)/2 is even. From the
above observations it follows that Aκ+1 contains an odd number of words with
even parity if p = 1 mod 8 and an even number if p = −3 mod 8. Since in this
case Nκ+1(= N) = 1 mod 4, it follows that Nκ+1

e −Nκ+1
o = 1.

(ii) Let p = 3 mod 4. Now we have (p− 1)/2 is odd and Nκ+1 = 3 mod 4.
By similar arguments as above we find again Nκ+1

e −Nκ+1
o = 1.

Corollary 1. (Gauss 1805) For an odd prime p one has G(2) = +
√

p if
p = 1 mod 4, and G(2) = +i

√
p if p = 3 mod 4.

This follows by substituting the result of Theorem 1 into

µp =
(

2
p

)
(−1)(p−1)/2(Nκ+1

e −Nκ+1
o ).

4 Generalization for q-ary words

Let σ ∈ GF (p)∗ be of order q with respect to p, i.e. ordp(σ) = q, with q a prime,
then q|p − 1. Define R := {1, σ, . . . , σq−1} and let w = (w1, w2, . . . , w(p−1)/q)
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be a word of length (p − 1)/q, where each wi is some representative of an
element of GF (p)∗/R. For any b ∈ R(p−1)/q we define its value in GF (p)
as val(b) :=

∑(p−1)/q
j=1 wjbj . Furthermore, we introduce sets Bs,q := {b ∈

R(p−1)/q | val(b) = s}. One can immediately verify that for q = 2, when
σ = p− 1(= −1) and R = {−1, +1}, the set B2s,2 is identical to the set in (4)
when we choose wj = j for 1 ≤ j ≤ (p − 1)/2. Similarly as in Section 2, we
define for any λ ∈ GF (p)∗, a map from R(p−1)/q onto itself

Tλ((b1, b2, . . . , b(p−1)/2)) = (d1, d2, . . . , d(p−1)/q), (7)

by wibi = λwjdj . In the same way as in Section 3 we can prove that all sets
Bs,q, s 6= 0, have the same size. Therefore, if N s,q := |Bs,q|, s 6= 0, we can define
N q := N s,q, s 6= 0. Just like for q = 2 there is a one-to-one map from words
b = (a, b2, . . . , b(p−1)/q) ∈ Bs,q to words b’ = (1, b2, . . . , b(p−1)/q) ∈ Bs+(1−a)w1,q,
where a = σi, 0 ≤ i ≤ q − 1. From now on we take w1 = 1. Let N s,a,q denote
the number of words in Bs,q starting with some a ∈ R, then it is clear that we
have for all s ∈ {0, 1, . . . , p− 1}∑

a∈GF (p)

N s+1−a,1,q = N s,q (8)

We interpret (8) as a set of p linear equations for the p− 1 unknown numbers
N s+1−a,1,q. The coefficient matrix A of this set is a circulant matrix defined by
its first row, (s = 0), a0, a1, . . . , ap−1, with ai = 1 if i ∈ {0, σ− 1, . . . , σq−1 − 1}
and ai = 0 otherwise.

Lemma 1. If detA is even, then N0,q −N1,q is even and N1,q is odd.

Proof. Assume that N0,q − N1,q is odd. Since N0,q + (p − 1)N1,q = q(p−1)/q,
being the total number of words of length (p − 1)/q over R, and since both p
and q are odd, N0,q is odd and N1,q is even. Let b = (b0, b1, . . . , bp−1) be a
binary vector such that bi = 1 if and only if N i,1,q is odd. If we consider A as a
matrix over GF (2), it follows that Ab = (1, 0, . . . , 0)T . Applying the fact that
A is a circulant, we can show that all rows of the identity matrix are obtained
as linear combinations of the rows of A. Hence, det(A) 6= 0 in GF (2) However,
this contradicts the assumption in the Lemma. So, N0,q − N1,q must be even
and N1,q must be odd.

Lemma 2. If f(x) := xs2+s+1 and g(x) := xs+1 + x + 1, with s := 2k, k ≥ 0,
are polynomials over GF (2), then g(x) is a divisor of f(x).

A proof can be given by induction and by making use of a Pascal triangle
modulo 2. We omit the details.

Theorem 2. Let q = 3. If p is a prime of the form 4n + 2n + 1, n > 0, then
N0,q −N1,q is even.
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Proof. First we transform A by a similarity transformation to a circulant B
such that the three ones in the first row are on positions 0, 1 and σ + 1. From
the rule for computing the determinant of circulants, we have

detB =
p−1∏

j=0

(1 + ωj + ωσ+1
j ) =

p−1∏

j=0

(1 + ωj + ωj(σ+1)), ω = e2πi/p (9)

We take σ = 2n, n > 0. In GF (p) we then have σ2+σ+1 = 4n+2n+1 = 0 mod p
and hence σ3−1 = (σ−1)(σ2+σ+1) = 0, so q = 3. Another consequence of this
choice is xσ2+σ+1 − 1|xp − 1. Let F be an extension field of GF (2) containing
all pth roots ωj of unity. From Lemma 2 it now follows that xσ+1 + x + 1 is a
divisor of xp + 1 in F and that at least one of the ωj is a zero of xσ+1 + x + 1.
We conclude that det(B) = det(A) = 0 in F , and hence also in GF (2). Lemma
1 now provides the result.

Remarks. 1. In [4] it is shown that the integer 4n +2n +1 n > 0, can only
be a prime if n is a power of 3. The three smallest primes of this type are 7,
73 and 262657.

2. Theorem 2 shows that under the required conditions 2 is a divisor of
N0,q −N1,q. Similar techniques can be applied to prove the existence of prime
divisors larger than 3 in some cases. The case of a prime divisor 3 must be
dealt with separately. As a result we found that 3 is a divisor of N0,q −N1,q,
if p = 91 + 31 + 1 and if p = 93 + 33 + 1.

3. As a byproduct of the investigations mentioned above, we were able to
construct a cyclic self-orthogonal binary code of order p, if p is of the form 6k+1
and if the corresponding number N1,q is even (this last condition is satisfied for
almost all primes 6k + 1).
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