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Abstract. In the paper we investigate the eigenfunctions and perfect colorings on
the graph of n-dimensional q-ary Hamming space. First, we obtain the interdepen-
dence of local distributions of an eigenfunction in two orthogonal faces. Then, we
prove the analogous result for perfect colorings.

1 Introduction

We study eigenfunctions and perfect colorings of n-dimensional q-ary hyper-
cube. The aim of the paper is to provide an explicit formula of connection for
local distributions in two orthogonal faces. Earlier this question was considered
in [2,4–6] for 1-error correcting perfect codes and perfect colorings in binary case
(q = 2). In case q > 2 the question is investigated in [1] for 1-error-correcting
codes. On the other hand in [3] a more general case of direct product of graphs
is studied; however, the formula is not extended for classes of graphs.

Note that completely regular codes which are extensively investigated are
particular case of perfect colorings.

This paper was inspired by [1]. The paper is organised as follows. In Section
2 we give necessary notations and propositions. In Section 3 we establish the
formula for local weight enumerators of eigenfunctions in a pair of orthogonal
faces. Using this formula we obtain in Section 4 the formula for local weight
enumerator of perfect colorings in a pair of orthogonal faces. Remark that
derived formulas are symmetric under choice of the face from the pair.

2 Preliminaries

Consider the set Fq = {0, 1, . . . , q − 1} as the group by modulo q and the
hypercube Fn

q as the abelian group Fq× . . .×Fq. We investigate functions and
colorings on the graph Fn

q of n-dimensional q-ary hypercube, in this graph two
vertices are adjacent iff the Hamming distance between them equals 1.

Take a vertex α ∈ Fn
q . Here and elsewhere I denotes a subset of {1, . . . , n}

and I = {1, . . . , n}\I. Denote by s(α) the support of a vertex α, i.e. the set of
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nonzero positions of α; the cardinality of the support is equal to the Hamming
weight of α. Write Wi(α) for the set of all vertices that differ from α in i
positions. By definition, put

ΓI(α) = {β ∈ Fn
q : βi = αi ∀ i /∈ I},

then ΓI(α) is said to be a (n − |I|)-dimensional face, it has a structure of
Fn−|I|

q . Write simply Wi and ΓI instead of Wi(α) and ΓI(α) in case α is all-zero
vertex. We say that two faces ΓI(α) and ΓJ(β) are orthogonal if I

⋂
J = ∅

and I
⋃

J = {1, . . . , n}. It is easy to see that orthogonal faces have exactly one
common vertex.

For any α, β ∈ Fn
q define 〈α, β〉 = α1β1 + . . .+αnβn( mod q). Consider the

set of all functions f : Fn
q −→ C as vector space V over C. Let ξ = e2πi/q.

A function
ϕβ(α) = ξ〈α,β〉, α, β ∈ Fn

q ,

is called the character. The characters ϕβ, β ∈ Fn
q , forms the orthogonal basis

of the vector space V . Define Fourier transform f̂ of a function f as follows:

f̂(α) =
∑

β∈Fn
q

f(β)ϕβ(α) =
∑

β∈Fn
q

f(β)ξ〈α,β〉, α ∈ Fn
q . (1)

Here we state necessary technical lemmas.

Lemma 1. Let b ∈ {0, 1, . . . , q − 1}. Then

q−1∑

a=0

ξabt|s(a)| =
{

0, b 6= 0
1 + (q − 1)t, b = 0

Lemma 2. Let β ∈ Fn
q . Then

∑

α∈ΓI

ξ〈α,β〉t|s(α)| = (1− t)|I
⋂

s(β)|(1 + (q − 1)t)|I|−|I
⋂

s(β)|

Proof. By definition of character,

∑

α∈ΓI

ξ〈α,β〉t|s(α)| =
q−1∑

αi1
=0

. . .

q−1∑

αik
=0

k∏

j=1

ξαij
βij t|s(αij

)|

Change the order of summations and multiplication, then apply Lemma 1:

=
k∏

j=1

q−1∑

αij
=0

ξαij
βij t|s(αij

)| = (1− t)|I
⋂

s(β)|(1 + (q − 1)t)|I|−|I
⋂

s(β)|
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3 Eigenfunctions

The first object are eigenfunctions of the n-dimensional q-ary hypercube Fn
q . It

is known that the eigenvalues λ of the graph of n-dimensional q-ary hypercube
are equal to (q − 1)n − qi, i = 0, 1, . . . , n. The corresponding eigenfunctions
(we call them λ-functions) satisfy an equation

∑

β∈W1(α)

f(β) = ((q − 1)n− qi)f(α), α ∈ Fn
q . (2)

Rewrite this equations in a matrix form. Let D be the adjacency matrix of Fn
q .

Then
Df = λf,

here f is a vector of values of the function. It is easy to see that Fourier
coefficients of a λ-function f equal zero apart from the case where α has the
Hamming weight i = ((q − 1)n− λ)/q.

Now we introduce the concept of a local distribution. By definition, put

vI,f
j (α) =

∑

β∈ΓI(α)
⋂

Wj(α)

f(β),

the vector vI,f (α) = (vI,f
0 (α), . . . , vI,f

|I| (α)) is called the local distribution of the
function f in the face ΓI(α) with respect to the vertex α, or shortly (I, α)-local
distribution of f . We say that

gI,α
f (x, y) =

k∑

j=0

vI,f (α)jy
jxk−j =

∑

β∈ΓI(α)

f(β)y|s(β)|x|I|−|s(β)|

is a local weight enumerator. For simplicity of notation we omit α if it is the
all-zero vertex.

Lemma 3. Let f be an arbitrary function. Then

gI
f (x, y) = q−n

∑

β∈Fn
q

f̂(β)(x + (q − 1)y)|I|−|I
⋂

s(β)|(x− y)|I
⋂

s(β)|

Proof. follows from Lemma 2.

Now we are ready to derive the relationship between local weight enumera-
tors in two orthogonal faces.

Theorem 1. Let λ be an eigenvalue of Fn
q , f be a λ-function, h = (q−1)n−λ

q

and α ∈ Fn
q . Then

(x + (q − 1)y)h−|I|gI,α
f (x, y) = (x′ + (q − 1)y′)h−|I|gI,α

f (x′, y′),

where x′ = x + (q − 2)y, y′ = −y.
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Proof. First note that the faces ΓI(α) and ΓI(α) are orthogonal. Without loss
of generality assume that α is all-zero vertex. Using lemma 3 write the local
weight enumerator gI

f (x, y) of an arbitrary function f in the orthogonal face ΓI :

q−n
∑

β∈Fn
q

f̂(β)(x + (q − 1)y)n−|I|−|s(β)|+|I ⋂
s(β)|(x− y)|s(β)|−|I ⋂

s(β)| (3)

Since f̂(β) = 0 for any β /∈ Wh, then the summation in (3) is taken over all
vertices of weight h (instead of all vertices of Fn

q ). This implies that

gI
f (x, y) = q−n(x + (q − 1)y)n−|I|−h(x− y)h−|I| ×

×
∑

β∈Wh

f̂(β)(x + (q − 1)y)|I
⋂

s(β)|(x− y)|I|−|I
⋂

s(β)|.

Choose new variables x′ and y′ such that

x′ + (q − 1)y′ = x− y, x′ − y′ = x + (q − 1)y.

Hence,

gI
f (x, y) = q−n(x + (q − 1)y)n−|I|−h(x− y)h−|I| ×

×
∑

β∈Wh

f̂(β)(x′ − y′)|I
⋂

s(β)|(x′ + (q − 1)y′)|I|−|I
⋂

s(β)|

Comparing with Lemma 3, finally get

gI
f (x, y) = (x + (q − 1)y)n−|I|−h(x− y)h−|I|gI

f (x′, y′)

4 Perfect colorings

In this section we prove an analog of Theorem 1 for perfect colorings. The par-
tition C = (C1, . . . , Cr) of Fn

q is called a perfect coloring (or an equitable par-
tition) with the parameter matrix S = (sij)i,j=1,...,r if for any i, j ∈ {1, . . . , r}
and any vertex α ∈ Ci the number of vertices β ∈ Cj at distance 1 from α is
equal to sij . First present a perfect r-coloring by (0, 1)-matrix C of size qn × r
that defined as follows: each row has only one nonzero position that marks the
color of the corresponding vertex. Then the coloring is perfect iff

DC = CS, (4)
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where D is the adjacency matrix of Fn
q .

Define a local distribution of a coloring as local distribution of characteristic
functions of the colors. More precisely, a local distribution of the coloring C in
the face ΓI(α) with respect to the vertex α is (r × |I|)-matrix

vI,C(α) =




vI,C1
0 (α) . . . vI,C1

|I| (α)
...

...
vI,Cr
0 (α) . . . vI,Cr

|I| (α)


 ,

where vI,Ci
j (α) = |Ci

⋂
Wj(α)

⋂
ΓI(α)|, i = 1, . . . , r, j = 0, . . . , |I|. A vector-

function
gI,α
C (x, y) = (gI,α

C1
(x, y), . . . , gI,α

Cr
(x, y))

is called the local weight enumerator of the coloring C in the face ΓI(α) with
respect to the vertex α.

Now we claim an analog of Theorem 1 for perfect colorings.

Theorem 2. Let C = (C1, . . . , Cr) be a perfect coloring of Fn
q with parameter

matrix S and α ∈ Fn
q . Put h(S) = (q−1)nE−S

q . Then

gI,α
C (x, y)(x + (q − 1)y)h(S)−|I|E = gI,α

C (x′, y′)(x′ + (q − 1)y′)h(S)−|I|E . (5)

Proof. Without loss of generality put α = (0, . . . , 0).
Perfect colorings are closely related with eigenfunctions. Indeed, let µ1, . . . , µr

be eigenvalues and T 1, . . . , T r be eigenvectors of the parameter matrix S, i.e.

ST i = µiT
i, i = 1, . . . , r.

Thus, it holds
ST = TM

for the matrices T := [T 1, . . . , T r] and M = diag{µ1, . . . , µr}. Multiplying both
sides of (4) by T and applying the last equation, we get

DCT = CST = CTM.

It means that columns of F = CT are eigenfunctions of D, denote them by
F 1, . . . , F r. Then

DF = FM,

where F = (F 1, . . . , F r). By Theorem 2,

(x+(q− 1)y)hi−|I|gI
F i(x, y) = (x′+(q− 1)y′)hi−|I|gI

F i(x′, y′), i = 1, . . . , r. (6)
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Put gF = (gF 1 , . . . , gF r) and

MI(x, y) = diag

{
(x + (q − 1)y)

(q−1)n−µ1
q

−|I|
, . . . , (x + (q − 1)y)

(q−1)n−µr
q

−|I|
}

.

Rewrite the equation (6) in terms of these matrix:

gI
F (x, y)MI(x, y) = gI

F (x′, y′)MI(x′, y′).

Note that
gF i =

∑

j

T i
jgCj , gF = gCT.

Therefore we obtain

gI
C(x, y)TMI(x, y) = gI

C(x′, y′)TMI(x′, y′). (7)

By definition of a matrix function

TMI(x, y)T−1 = (x + (q − 1)y)
(q−1)nE−S

q
−|I|E

.

To conclude the proof it remains multiply both sides of (7) by T−1.
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