
Seventh International Workshop on Optimal Codes and Related Topics
September 6-12, 2013, Albena, Bulgaria pp. 164-169

On asymptotic behavior of entropy of
ellipsoids in a Hamming space 1

Viacheslav Prelov prelov@iitp.ru
Kharkevich Institute for Information Transmission Problems,
Russian Academy of Sciences, Moscow, RUSSIA

Dedicated to the memory of Professor Stefan Dodunekov

Abstract. Asymptotic behavior of the entropy of an ellipsoid in a Hamming space
of a growing dimension is investigated in the case where coefficients of the ellipsoid
are monotone sequences of real numbers.

1 Introduction

Recall that an ellipsoid En in the n-dimensional Hamming space En = {0, 1}n

is defined as the set of binary vectors x = (x1, . . . , xn) of length n that satisfy

the inequality
n∑

i=1
aixi ≤ r, i.e.,

En =
{

(x1, . . . , xn)
∣∣∣

n∑

i=1

aixi ≤ r

}
,

where r > 0, ai, i = 1, . . . , n, are some nonnegative real numbers; and xi,
i = 1, . . . , n, take values 0 or 1 . The term ellipsoid for En is explained by
the reason that in the considered case of a Hamming space the inequalities
n∑

i=1
aixi ≤ r and

n∑
i=1

aix
2
i ≤ r are equivalent. The entropy H(En) of an ellipsoid

En is defined as H(En) = log |En|, where |En| is the cardinality (the number
of elements) of the set En; here and in what follows, log denotes logarithm to
the base 2.

In [1], Pinsker showed that for an arbitrary sequence of ellipsoids En, n =
1, 2, . . . , in the case where coefficients ai = ai(n) and r = r(n) may depend on
n, the equality

H(En) = Hn(1 + o(1)), n →∞, (1)

1This research is partially supported by the Russian Foundation for Basic Research (project
no. 12-01-00905-a)
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holds if Hn

log n
→∞, n →∞, (2)

where

Hn = max
n∑

i=1

h(pi); (3)

h(p) = −p log p−(1−p) log(1−p) is the binary entropy function, and the maxi-
mum in (3) is over all collections P = (p1, . . . , pn) such that 0 ≤ p1, . . . , pn ≤ 1/2

and
n∑

i=1
aipi ≤ r(n).

In the general case, no explicit expressions (in terms of coefficients ai and r)
for Hn nor explicit conditions for fulfilment of (2) have been obtained from (3).
Our main goal is to obtain some explicit expressions for the principal term of
the asymptotics for the entropy of ellipsoids as n →∞ for various behaviors of
their coefficients in a special case where coefficients of ellipsoids are some fixed
infinite sequences of real numbers.

2 Main results

We consider sequences of ellipsoids

En
a,r =

{
(x1, . . . , xn)

∣∣∣
n∑

i=1

aixi ≤ rn

}
, n = 1, 2, . . . , (4)

where a = (a1, a2, . . .) and r = (r1, r2, . . .) are some fixed sequences of positive
real numbers. Moreover, we always assume that the sequence r = {rn} does
not decrease, i.e., 0 < r1 ≤ r2 ≤ . . . , and the sequence a = {an} is monotone:
it either does not increase or does not decrease.

First note that in the special case where lim
n→∞ an = a, 0 ≤ a < ∞, the

coefficients an become equalized as n →∞, and the ellipsoids (4) become more
and more similar to balls in the Hamming space; therefore, the entropy of an
ellipsoid En

a,r becomes approximately equal to the entropy of a ball of radius
rn

an
. In some cases, this simple reasoning allows us to exactly write out the

principal term of the asymptotics for the entropy of ellipsoids En
a,r. However,

in other cases, and in particular in the cases where an polynomially decreases to
0 as n →∞, this reasoning is rather rough, and the asymptotics for the entropy
of ellipsoids En

a,r does not coincide with that of balls of radii
rn

an
. Moreover,

this reasoning does not apply to the case where an →∞ as n →∞. Our aim is
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to find some conditions on the behavior of the coefficients {an} and {rn} under
which either the first or second of the above situation appears and to investigate
the asymptotics for the entropy of ellipsoids if the second case occurs.

In the first theorem, some conditions are given for relation (2) to be fulfilled
or not.

Theorem 1. (i) If the sequence {an} does not increase and the sequence {rn}
does not decrease, then Pinsker’s condition (2) is fulfilled if and only if the
equality

lim
n→∞

an

rn
= 0. (5)

holds.

(ii) If the sequences {an} and {rn} do not decrease, then (2) is fulfilled if
at least one of the following conditions is valid:

a) There exists γ, 0 < γ ≤ 1, such that 2 lim
n→∞

anγ

rn
= 0;

b) There exist some constants c1 > 0, c2 > 0, s > 1, and t > 1 such that
an ≤ c1 logs n and rn ≥ c2 logt n for all sufficiently large n.

(iii) If the sequences {an} and {rn} do not decrease, then (2) is not fulfilled
(i.e., Hn ≤ C log n, where C is a positive constant) if lim inf

n→∞
an

rn
> 0 and at

least one of the following conditions is valid:
a) lim

n→∞ an < ∞;

b) an ∼ logs n, n →∞, where 0 < s ≤ 1;
c) an ∼ log log . . . log︸ ︷︷ ︸

k

n, n →∞, where k ≥ 1 is an arbitrary integer.

As can be seen from Theorem 1, in the case where the sequence {an} does
not decrease, a necessary and sufficient condition for validity Pinsker’s condition
(2) cannot be obtained without extra assumptions. The case of a nondecreasing
sequence {an} is rather difficult for investigation. If follows from the second
claim of Theorem 1 that the entropy of an ellipsoid can increase faster than
log n even in the case where the sequence rn increases substantially slower than
an: for example, an can increase as ns and rn as nt, where s > t > 0; or an can
increase as logs n and rn as logt n where s > t > 1. Moreover, if an = 2n and
rn = 2n− 1, then this ellipsoid coincides with the whole space En−1 in spite of
the fact that rn < an for all n. On the other hand, it follows from third claim of

2If nγ is not an integer, then by definition we set anγ = abnγc where bxc is the maximum
integer smaller or equal to x. A similar agreement relates to other subsequences of integers
which occur below.
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Theorem 1 that Pinsker’s condition is not fulfilled ( i.e., Hn ≤ C log n) in many
cases where the sequence {an} increases no faster than log n and lim inf

n→∞
an

rn
> 0.

Now note that in the case where the sequence {an} does not decrease and
an

rn
→ 0 as n →∞, the following statement is valid.

Proposition 1. Assume that a sequence {an} does not decrease, lim
n→∞ an =

a < ∞, and rn →∞ as n →∞.

• If lim
n→∞

rn

n
= t > 0, where t can also be equal to infinity, then

H(En
a,r) = nh(t/a)(1 + o(1)), n →∞, (6)

where

h(x) =

{
h(x) if 0 ≤ x ≤ 1/2,

1 if x ≥ 1/2.
(7)

• If lim
n→∞

rn

n
= 0, then

H(En
a,r) =

(
rn

a
log

n

rn

)
(1 + o(1)), n →∞. (8)

The proof of this proposition is based on the fact that the ellipsoid En
a,r

contains a ball of radius
rn

an
and

En
a,r ⊆ Ek ×Bn−k

(
rn

an

)
,

where Ek is a k-dimensional Hamming space and Bn−k

(
rn

an

)
is a ball of radius

rn

an
in a Hamming space of dimension (n− k), where k = k(n) →∞ sufficiently

slowly so that
k

n
→ 0 and k = o

(
rn log

n

rn

)
.

To state the next proposition, we need some definitions.
A sequence {xn} is said to be regular if for any monotone increasing sequence

{δn}, δn → 1 as n →∞, there exists a finite or infinite limit lim
n→∞

xn

xnδ(n)
.

Recall also that a sequence {`n} is said to be slowly varying if lim
n→∞

`n

`λn
= 1

for any λ > 0; and a sequence {yn} is said to be tame-varying if yn =
`n

nα
where

α > 0 and {`n} is a slowly varying sequence.
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Proposition 2. Assume that a sequence {an} does not increase and condition
(5) is fulfilled. Then the following statements are valid:

• If lim
n→∞

nan

rn
= 0, then

H(En
a,r) = n(1 + o(1)), n →∞; (9)

• If lim
n→∞

nan

rn
= ∞ and {δ(n)} is any monotone sequence such that δ(n) →

1 and log(1− δ(n)) = o

(
log

nan

rn

)
as n →∞, then

(
rn

anδ(n)
log

nan

rn

)
(1+o(1)) ≤ H(En

a,r) ≤
(

rn

an
log

nan

rn

)
(1+o(1)), n →∞.

(10)
Moreover, if the sequence {an} is regular, then

H(En
a,r) =

(
rn

an
log

nan

rn

)
(1 + o(1)), n →∞, (11)

and if the sequence {an} is irregular, then equality (11) holds for some
subsequence nk →∞ as k →∞;

• If lim
n→∞

rn

nan
= c, 0 < c < ∞, then the following inequalities are valid:

2c

1 + 2c
n(1 + o(1)) ≤ H(En

a,r) ≤ h(c)n(1 + o(1)), n →∞. (12)

Moreover, if {an} is a slowly varying monotone sequence, then

H(En
a,r) = h(c)n(1 + o(1)), n →∞, (13)

and if {an} is a monotone tame-varying sequence such that an =
`n

nα
, 0 <

α ≤ 1, where {`n} is a slowly varying sequence, then

H(En
a,r) ≥ max

γ

[
γh

(
(1− γ)αc

γ

)]
n(1+ o(1)) ≥ γ0n(1+ o(1)), n →∞,

(14)
where γ0 is defined by the equation

γ0 = 2c(1− γ0)α. (15)
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To find the principal term of the asymptotics for H(En
a,r) as n →∞ in the

case where an →∞ as well as in the case where {an} does not increase (but is
not slowly varying) and lim

n→∞
rn

nan
= c, 0 < c < ∞, we consider the most typical

special case where the coefficients of an ellipsoid are polynomial functions of
n. The corresponding statement is formulated in Theorem 2 below. A similar
statement can be proved in some other cases of behavior of ellipsoid coefficients.

Theorem 2. (i) Assume that lim
n→∞

an

nγ
= 1 and lim

n→∞
rn

nα
= c, where γ > 0, α >

0 and c > 0 are some constants and α < γ + 1. Then

H(En
a,r) = c1/(1+γ)(γ + 1)

(
I

γ

)γ/(1+γ)

nα/(1+γ)(1 + o(1)), n →∞, (16)

where

I =

∞∫

0

t1/γ dt

1 + 2t
; (17)

(ii) Assume that lim
n→∞

(
ann1−σ

)
= 1 and lim

n→∞
rn

nan
= c, where 0 ≤ σ <

1, c > 0 and 2cσ < 1. Then

H(En
a,r) =

[
cσµ + log

(
1 + 2−µ

)]
n(1 + o(1)), n →∞, (18)

where µ is a solution of the equation

µσ/(1−σ)

∞∫

µ

dt

t1/(1−σ)(1 + 2t)
= c(1− σ). (19)

Proofs of these and some other statements can be found in [2].
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