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Dedicated to the memory of Professor Stefan Dodunekov
Abstract. A series of monomial representations of SL2(p) is used to construct a
new series of self-dual ternary codes of length 2(p+1) for all primes p ≡ 5 (mod 8).
In particular we find a new extremal self-dual ternary code of length 60.

1 Introduction

In 1969 Vera Pless [6] discovered a family of self-dual ternary codes P(p) of
length 2(p+1) for primes p with p ≡ −1 (mod 6). Together with the extended
quadratic residue codes XQR(q) of length q + 1 (q prime, q ≡ ±1 (mod 12))
they define a series of self-dual ternary codes of high minimum distance (see [3,
Chapter 16, §8]). For p = 5, the Pless code P(5) coincides with the Golay code
g12 which is also the extended quadratic residue code XQR(11) of length 12.

Using invariant theory of finite groups, A. Gleason [2] has shown that
the minimum distance of a self-dual ternary code of length 4n cannot exceed
3b n

12c+ 3. Self-dual codes that achieve equality are called extremal. Both con-
structions, the Pless symmetry codes and the extended quadratic residue codes
yield extremal ternary self-dual codes for small values of p.

This short note gives an interpretation of the Pless codes using monomial
representations of the group SL2(p). This construction allows to read off a large
subgroup of the automorphism group of the Pless codes (which was already
described in [6]). A different but related series of monomial representations of
SL2(p) is investigated to construct a new series of self-dual ternary codes V(p)
of length 2(p + 1) for all primes p ≡ 5 (mod 8). The automorphism group of
V(p) contains the group SL2(p). For p = 5 we again find V(5) ∼= g12 the Golay
code of length 12, but for larger primes these codes are new. In particular the
code V(29) is an extremal ternary code of length 60, so we now know three
extremal ternary codes of length 60: XQR(59), P(29) and V(29).

2 Codes and monomial groups

Let K be a field, n ∈ N. Then the monomial group Monn(K∗) ≤ GLn(K)
is the group of monomial n × n-matrices over K, where a matrix is called
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monomial, if it contains exactly one non-zero entry in each row and each
column. So Monn(K∗) ∼= K∗ o Sn

∼= (K∗)n : Sn is the semidirect product of the
subgroup (K∗)n of diagonal matrices in GLn(K) with the group of permutation
matrices. For any subgroup S ≤ K∗ we define Monn(S) := Sn o Sn to be the
subgroup of monomial matrices having all non-zero entries in S. There is a
natural epimorphism π : Monn(S) → Sn mapping any monomial matrix to the
associated permutation.

Definition 1. A K-code C of length n is a subspace of Kn. Two codes C
and C ′ of length n are called monomially equivalent, if there is some g ∈
Monn(K∗) such that Cg = C ′. The monomial automorphism group of C
is Aut(C) := {g ∈ Monn(K∗) | Cg = C}.

Let G be some group. A linear K-representation ∆ of degree n is a group
homomorphism ∆ : G → GLn(K). The representation is called monomial, if
its image ∆(G) is conjugate in GLn(K) to some subgroup of Monn(K∗). We call
the monomial representation transitive, if π(∆(G)) is a transitive subgroup of
Sn. In this case the set {h ∈ G | 1π(∆(h)) = 1} =: H is a subgroup of index
n in G and ∆ is obtained by inducing up a degree 1 representation of H as
follows:

Let H be a subgroup of G of index n := [G : H]. Choose g1, . . . , gm ∈ G
such that

G =
.∪m
`=1 Hg`H

and put H` := H ∩ g−1
` Hg`. Choose some right transversal h`,j of H` in H, so

that h`,1 = 1 and H =
.∪k`

j=1 Hh`,j . Then

G =
.∪m
`=1

.∪k`

j=1 Hg`h`,j

and the right transversal {g`h`,j | ` = 1, . . . , m, k = 1, . . . , k`} is a set of cardi-
nality n which we will use as an index set of our n× n-matrices.

For a group homomorphism λ : H → K∗ the associated monomial repre-
sentation of G is ∆ := λG

H : G → Monn(λ(H)) defined by

(λG
H(g))g`h`j ,g`′h`′,j′ =

{
0 , if g`h`jg(g`′h`′,j′)−1 6∈ H
λ(g`h`jg(g`′h`′,j′)−1) , if g`h`jg(g`′h`′,j′)−1 ∈ H

.

The representation λ restricts in two obvious ways to a representation of H`:

λ` : H` → K∗, h 7→ λ(h) and λg`
` : H` → K∗, h 7→ λ(g`hg−1

` ).

Let I := {` ∈ {1, . . . , m} | λ` = λg`
` } and reorder the double coset representa-

tives so that I = {1, . . . , d}.
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Remark 2. ( [4, Section I (1)]) In the notation above the endomorphism
ring

End(∆) := {X ∈ Kn×n | X∆(g) = ∆(g)X for all g ∈ G}
has dimension d and the Schur basis of End(∆) is (B1 = In, B2, . . . , Bd)
where (B`)1,g`

= 1 and (B`)1,gkhk,i
6= 0 if and only if ` = k. More gen-

erally we get (B`)gkhk,i,gk′hk′,i′ = 0 if gk′hk′,i′h
−1
k,ig

−1
k 6∈ Hg`H. Otherwise

write gk′hk′,i′h
−1
k,ig

−1
k = hg`h`,j for some h ∈ H. Then (B`)gkhk,i,gk′hk′,i′ =

λ(h)−1λ(h−1
`,j ).

3 Generalized Pless codes.

In this section we reinterpret the construction of the famous Pless symmetry
codes P(p) discovered by Vera Pless [6], [5]. Let p be an odd prime and

SL2(p) :=
{(

a b
c d

)
∈ F2×2

p | ad− bc = 1
}

the group of 2× 2-matrices over the finite field Fp with determinant 1. Let

B :=
{(

a b
0 d

)
∈ SL2(p)

}
=

〈
h1 :=

(
1 0
1 1

)
, ζ :=

(
α 0
0 α−1

)〉
.

Then B is a subgroup of SL2(p) or index p + 1. Let

λ : B → K∗,
(

a 0
c d

)
7→

(
a

p

)
=

{
1 , a ∈ (F∗p)2
−1 , a 6∈ (F∗p)2

and ∆ := λ
SL2(p)
B : SL2(p) → Monp+1(K∗) be the monomial representation

induced by λ. The following facts about this representation are well known,
and easily computed from the general description in the previous section.

Remark 3. (1) SL2(p) = B
.∪ BwB where w =

(
0 1
−1 0

)
.

(2) B ∩ wBw−1 = 〈ζ〉.
(3) A right transversal of B in SL2(p) is [1, whx : x ∈ Fp] where hx := hx

1 .

(4) The Schur basis of End(∆) is (Ip+1, P ), where P1,1 = 0, P1,whx = 1 for

all x. Then Pwhx,1 =
(
−1
p

)
and

Pwhx,why =

{ (
x−y

p

)
, x 6= y

0 , x = y.
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(5) P 2 =
(
−1
p

)
p and PP tr = p.

To construct monomial representations of degree 2(p + 1) we consider the
group

G(p) :=
〈(

∆(g) 0
0 ∆(g)

)
, Z :=

(
0 Ip+1

jIp+1 0

) ∣∣∣∣g ∈ SL2(p)
〉
≤ Mon2(p+1)(K

∗)

where j = −
(
−1
p

)
=

{
1 , p ≡ 3 (mod 4)
−1 , p ≡ 1 (mod 4).

Remark 4. (1) G(p) ∼=
{

C4 × PSL2(p) , p ≡ 1 (mod 4)
C2 × SL2(p) , p ≡ 3 (mod 4)

(2) End(G(p)) =
{(

A B
jB A

) ∣∣∣∣A,B ∈ End(∆)
}

is generated by

I2(p+1), X :=
(

P 0
0 P

)
, Y :=

(
0 Ip+1

jIp+1 0

)
, XY =

(
0 P

jP 0

)

with X2 = −jp, Y 2 = j, XY = Y X, (XY )2 = −p.

Definition 5. Let K = Fq be the finite field with q elements and assume that
there is some a ∈ K∗ such that a2 = −p. Then we put Pq(p) := aI2(p+1)+XY ∈
End(G(p)) and define the generalized Pless code Pq(p) ≤ K2(p+1) to be the
code spanned by the rows of Pq(p).

As PP tr = pIp+1 = −a2Ip+1 the code Pq(p) is self-dual with respect to the
standard inner product. So we have the following theorem.

Theorem 6. Let a ∈ F∗q such that a2 = −p. The code Pq(p) has generator

matrix (aIp+1|P ) and is a self-dual code in F2(p+1)
q . The sum of the first two

rows of this matrix has weight (p+7)/2 if q is odd and 4 if q is even. The group
G(p) is a subgroup of Aut(Pq(p)). P3(p) is the Pless symmetry code P(p) as
given in [6].

Minimum distance of the Pless codes computed with Magma [1].

p 5 11 17 23 29 41 47
2(p + 1) 12 24 36 48 60 84 96
d(P3(p)) 6 9 12 15 18 21 24

Aut(P3(p)) 2.M12 G(11).2 G(17).2 G(23).2 G(29).2 ≥ G(41) ≥ G(47)
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4 A new series of self-dual codes invariant under
SL2(p).

Applying the same strategy as in the previous section we now construct a
monomial representation of SL2(p) of degree 2(p + 1) where p is a prime so
that p − 1 ≡ 4 (mod 8). We assume that char(K) 6= 2. Then the subgroup

B(2) :=
{(

a2 0
b a−2

) ∣∣∣∣a ∈ F∗p, b ∈ Fp

}
≤ SL2(p) of index 2(p + 1) in SL2(p)

has a unique linear representation γ : B(2) → K∗ with γ(B(2)) = {±1}, so

γ

((
a2 0
b a−2

))
=

(
a
p

)
. Then ∆′ := γ

SL2(p)

B(2) is a faithful monomial represen-

tation of degree 2(p+1). To obtain explicit matrices we choose w :=
(

0 1
−1 0

)

as above. By assumption 2 ∈ F∗p \ (F∗p)2. Put ε := diag(2, 2−1). Then
B = B(2)

.∪ B(2)ε and

SL2(p) = B
.∪ BwB = B(2) .∪ B(2)wB(2) .∪ B(2)ε

.∪ B(2)εwB(2)

and a right transversal is given by [1, whx, ε, εwhx : x ∈ Fp]. From Remark 2
we find.

Lemma 7. End(∆′) has a Schur basis (B1, Bw, Bε, Bεw = BεBw) where Bε =(
0 I
−I 0

)
and Bw =

(
X Y
−Y tr Xtr

)
with

X =




0 1 . . . 1
−1
... RX

−1


 , Y =




0 0 . . . 0
0
... RY

0




where rows and columns of RX and RY are indexed by the elements {0, . . . , p−1}
of Fp and

(RX)a,b =

{
0 , b− a 6∈ (F∗p)2(

c
p

)
, b− a = c2 ∈ (F∗p)2

, (RY )a,b =

{
0 , 2(b− a) 6∈ (F∗p)2(

c
p

)
, 2(b− a) = c2 ∈ (F∗p)2

Remark 8. Note that (−1) = c2 is a square but not a 4th power, so
(

c
p

)
= −1

and hence X is skew symmetric and Btr
w = −Bw, Btr

εw = −Bεw. We compute
that B2

w = B2
εw = −p and B2

ε = −1 so End(∆′) ∼=
(
−p,−1

K

)
is isomorphic to a

quaternion algebra over K. We also compute that (Bw + Bεw)2 = −2p.
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Definition 9. Let p be a prime p ≡8 4, K = Fq so that there is some a ∈ K∗

such that a2 = −tp for t = 1 or t = 2. We then put

Vt(p) :=
{

aI2(p+1) + Bw , t = 1
aI2(p+1) + Bw + Bεw , t = 2

and let Vq(p) be the linear code spanned by the rows of Vt(p).

We compute V1(p)V1(p)tr = V2(p)V2(p)tr = 0 and get the following theorem.

Theorem 10. Vq(p) is a self-dual code in F2(p+1)
q . Its monomial automorphism

group contains the group SL2(p).

Remark 11. The matrices of rank p+1 in End(∆′) yield q+1 different self-dual
codes invariant under ∆′(SL2(p)). In general these fall into different equivalence
classes. For instance for q = 7, where 2 is a square mod 7, the codes spanned
by the rows of V1(p) and V2(p) are inequivalent for p = 5 and p = 13 but have
the same minimum distance.

Minimum distance of V3(p) computed with Magma [1]:

p 5 13 29 37 53
2(p + 1) 12 28 60 76 108
d(V3(p)) 6 9 18 18 24

Aut(V3(p)) 2.M12 SL2(13) SL2(29) ≥ SL2(37) ≥ SL2(53)
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