An analogue of the Pless symmetry codes

Gabriele Nebe
nebe@math.rwth-aachen.de
Darwin Villar darwin.villar@rwth-aachen.de
Lehrstuhl D für Mathematik, RWTH Aachen University
52056 Aachen, Germany

Dedicated to the memory of Professor Stefan Dodunekov

Abstract. A series of monomial representations of $\mathrm{SL}_{2}(p)$ is used to construct a new series of self-dual ternary codes of length $2(p+1)$ for all primes $p \equiv 5(\bmod 8)$. In particular we find a new extremal self-dual ternary code of length 60 .

1 Introduction

In 1969 Vera Pless [6] discovered a family of self-dual ternary codes $\mathcal{P}(p)$ of length $2(p+1)$ for primes p with $p \equiv-1(\bmod 6)$. Together with the extended quadratic residue codes $\operatorname{XQR}(q)$ of length $q+1(q$ prime, $q \equiv \pm 1(\bmod 12))$ they define a series of self-dual ternary codes of high minimum distance (see [3, Chapter $16, \S 8]$). For $p=5$, the Pless code $\mathcal{P}(5)$ coincides with the Golay code \mathfrak{g}_{12} which is also the extended quadratic residue code $\operatorname{XQR}(11)$ of length 12.

Using invariant theory of finite groups, A. Gleason [2] has shown that the minimum distance of a self-dual ternary code of length $4 n$ cannot exceed $3\left\lfloor\frac{n}{12}\right\rfloor+3$. Self-dual codes that achieve equality are called extremal. Both constructions, the Pless symmetry codes and the extended quadratic residue codes yield extremal ternary self-dual codes for small values of p.

This short note gives an interpretation of the Pless codes using monomial representations of the group $\mathrm{SL}_{2}(p)$. This construction allows to read off a large subgroup of the automorphism group of the Pless codes (which was already described in [6]). A different but related series of monomial representations of $\mathrm{SL}_{2}(p)$ is investigated to construct a new series of self-dual ternary codes $\mathcal{V}(p)$ of length $2(p+1)$ for all primes $p \equiv 5(\bmod 8)$. The automorphism group of $\mathcal{V}(p)$ contains the group $\mathrm{SL}_{2}(p)$. For $p=5$ we again find $\mathcal{V}(5) \cong \mathfrak{g}_{12}$ the Golay code of length 12, but for larger primes these codes are new. In particular the code $\mathcal{V}(29)$ is an extremal ternary code of length 60 , so we now know three extremal ternary codes of length 60: $\mathrm{XQR}(59), \mathcal{P}(29)$ and $\mathcal{V}(29)$.

2 Codes and monomial groups

Let K be a field, $n \in \mathbb{N}$. Then the monomial group $\operatorname{Mon}_{n}\left(K^{*}\right) \leq \mathrm{GL}_{n}(K)$ is the group of monomial $n \times n$-matrices over K, where a matrix is called
monomial, if it contains exactly one non-zero entry in each row and each column. So $\operatorname{Mon}_{n}\left(K^{*}\right) \cong K^{*} 2 S_{n} \cong\left(K^{*}\right)^{n}: S_{n}$ is the semidirect product of the subgroup $\left(K^{*}\right)^{n}$ of diagonal matrices in $\mathrm{GL}_{n}(K)$ with the group of permutation matrices. For any subgroup $S \leq K^{*}$ we define $\operatorname{Mon}_{n}(S):=S^{n} \imath S_{n}$ to be the subgroup of monomial matrices having all non-zero entries in S. There is a natural epimorphism $\pi: \operatorname{Mon}_{n}(S) \rightarrow S_{n}$ mapping any monomial matrix to the associated permutation.

Definition 1. A K-code C of length n is a subspace of K^{n}. Two codes C and C^{\prime} of length n are called monomially equivalent, if there is some $g \in$ $\operatorname{Mon}_{n}\left(K^{*}\right)$ such that $C g=C^{\prime}$. The monomial automorphism group of C is $\operatorname{Aut}(C):=\left\{g \in \operatorname{Mon}_{n}\left(K^{*}\right) \mid C g=C\right\}$.

Let G be some group. A linear K-representation Δ of degree n is a group homomorphism $\Delta: G \rightarrow \mathrm{GL}_{n}(K)$. The representation is called monomial, if its image $\Delta(G)$ is conjugate in $\mathrm{GL}_{n}(K)$ to some subgroup of $\operatorname{Mon}_{n}\left(K^{*}\right)$. We call the monomial representation transitive, if $\pi(\Delta(G))$ is a transitive subgroup of S_{n}. In this case the set $\{h \in G \mid 1 \pi(\Delta(h))=1\}=: H$ is a subgroup of index n in G and Δ is obtained by inducing up a degree 1 representation of H as follows:

Let H be a subgroup of G of index $n:=[G: H]$. Choose $g_{1}, \ldots, g_{m} \in G$ such that

$$
G=\dot{U}_{\ell=1}^{m} H g_{\ell} H
$$

and put $H_{\ell}:=H \cap g_{\ell}^{-1} H g_{\ell}$. Choose some right transversal $h_{\ell, j}$ of H_{ℓ} in H, so that $h_{\ell, 1}=1$ and $H=\dot{\cup_{j=1}} \dot{j}_{\ell} H h_{\ell, j}$. Then

$$
G=\dot{\cup}_{\ell=1}^{m} \dot{\cup}_{j=1}^{k_{\ell}} H g_{\ell} h_{\ell, j}
$$

and the right transversal $\left\{g_{\ell} h_{\ell, j} \mid \ell=1, \ldots, m, k=1, \ldots, k_{\ell}\right\}$ is a set of cardinality n which we will use as an index set of our $n \times n$-matrices.

For a group homomorphism $\lambda: H \rightarrow K^{*}$ the associated monomial representation of G is $\Delta:=\lambda_{H}^{G}: G \rightarrow \operatorname{Mon}_{n}(\lambda(H))$ defined by

$$
\left(\lambda_{H}^{G}(g)\right)_{g_{\ell} h_{\ell j}, g_{\ell^{\prime}} h_{\ell^{\prime}, j^{\prime}}}=\left\{\begin{array}{ll}
0 & \text { if } g_{\ell} h_{\ell j} g\left(g_{\ell^{\prime}} h_{\ell^{\prime}, j^{\prime}}\right)^{-1} \notin H \\
\lambda\left(g_{\ell} h_{\ell j} g\left(g_{\ell^{\prime}} h_{\ell^{\prime}, j^{\prime}}\right)^{-1}\right) & , \text { if } g_{\ell} h_{\ell j} g\left(g_{\ell^{\prime}} h_{\ell^{\prime}, j^{\prime}}\right)^{-1} \in H
\end{array} .\right.
$$

The representation λ restricts in two obvious ways to a representation of H_{ℓ} :

$$
\lambda_{\ell}: H_{\ell} \rightarrow K^{*}, h \mapsto \lambda(h) \text { and } \lambda_{\ell}^{g_{\ell}}: H_{\ell} \rightarrow K^{*}, h \mapsto \lambda\left(g_{\ell} h g_{\ell}^{-1}\right) .
$$

Let $\mathcal{I}:=\left\{\ell \in\{1, \ldots, m\} \mid \lambda_{\ell}=\lambda_{\ell}^{g_{\ell}}\right\}$ and reorder the double coset representatives so that $\mathcal{I}=\{1, \ldots, d\}$.

Remark 2. ([4, Section I (1)]) In the notation above the endomorphism ring

$$
\operatorname{End}(\Delta):=\left\{X \in K^{n \times n} \mid X \Delta(g)=\Delta(g) X \text { for all } g \in G\right\}
$$

has dimension d and the Schur basis of $\operatorname{End}(\Delta)$ is $\left(B_{1}=I_{n}, B_{2}, \ldots, B_{d}\right)$ where $\left(B_{\ell}\right)_{1, g_{\ell}}=1$ and $\left(B_{\ell}\right)_{1, g_{k} h_{k, i}} \neq 0$ if and only if $\ell=k$. More generally we get $\left(B_{\ell}\right)_{g_{k} h_{k, i}, g_{k^{\prime}} h_{k^{\prime}, i^{\prime}}}=0$ if $g_{k^{\prime}} h_{k^{\prime}, i^{\prime}} h_{k, i}^{-1} g_{k}^{-1} \notin H g_{\ell} H$. Otherwise write $g_{k^{\prime}} h_{k^{\prime}, i^{\prime}} h_{k, i}^{-1} g_{k}^{-1}=h g_{\ell} h_{\ell, j}$ for some $h \in H$. Then $\left(B_{\ell}\right)_{g_{k} h_{k, i}, g_{k^{\prime}} / h_{k^{\prime}, i^{\prime}}}=$ $\lambda(h)^{-1} \lambda\left(h_{\ell, j}^{-1}\right)$.

3 Generalized Pless codes.

In this section we reinterpret the construction of the famous Pless symmetry codes $\mathcal{P}(p)$ discovered by Vera Pless [6], [5]. Let p be an odd prime and

$$
\mathrm{SL}_{2}(p):=\left\{\left.\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \mathbb{F}_{p}^{2 \times 2} \right\rvert\, a d-b c=1\right\}
$$

the group of 2×2-matrices over the finite field \mathbb{F}_{p} with determinant 1 . Let

$$
B:=\left\{\left(\begin{array}{ll}
a & b \\
0 & d
\end{array}\right) \in \mathrm{SL}_{2}(p)\right\}=\left\langle h_{1}:=\left(\begin{array}{cc}
1 & 0 \\
1 & 1
\end{array}\right), \zeta:=\left(\begin{array}{cc}
\alpha & 0 \\
0 & \alpha^{-1}
\end{array}\right)\right\rangle .
$$

Then B is a subgroup of $\mathrm{SL}_{2}(p)$ or index $p+1$. Let

$$
\lambda: B \rightarrow K^{*},\left(\begin{array}{ll}
a & 0 \\
c & d
\end{array}\right) \mapsto\left(\frac{a}{p}\right)=\left\{\begin{array}{cc}
1 & , a \in\left(\mathbb{F}_{p}^{*}\right)^{2} \\
-1 & , a \notin\left(\mathbb{F}_{p}^{*}\right)^{2}
\end{array}\right.
$$

and $\Delta:=\lambda_{B}^{\mathrm{SL}_{2}(p)}: \mathrm{SL}_{2}(p) \rightarrow \operatorname{Mon}_{p+1}\left(K^{*}\right)$ be the monomial representation induced by λ. The following facts about this representation are well known, and easily computed from the general description in the previous section.
Remark 3. (1) $\mathrm{SL}_{2}(p)=B \dot{\cup} B w B$ where $w=\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)$.
(2) $B \cap w B w^{-1}=\langle\zeta\rangle$.
(3) A right transversal of B in $\mathrm{SL}_{2}(p)$ is $\left[1, w h_{x}: x \in \mathbb{F}_{p}\right]$ where $h_{x}:=h_{1}^{x}$.
(4) The Schur basis of $\operatorname{End}(\Delta)$ is $\left(I_{p+1}, P\right)$, where $P_{1,1}=0, P_{1, w h_{x}}=1$ for all x. Then $P_{w h_{x}, 1}=\left(\frac{-1}{p}\right)$ and

$$
P_{w h_{x}, w h_{y}}= \begin{cases}\left(\frac{x-y}{p}\right) & , x \neq y \\ 0 & , x=y\end{cases}
$$

(5) $P^{2}=\left(\frac{-1}{p}\right) p$ and $P P^{t r}=p$.

To construct monomial representations of degree $2(p+1)$ we consider the group
$\mathcal{G}(p):=\left\langle\left(\begin{array}{cc}\Delta(g) & 0 \\ 0 & \Delta(g)\end{array}\right), Z: \left.=\left(\begin{array}{cc}0 & I_{p+1} \\ j I_{p+1} & 0\end{array}\right) \right\rvert\, g \in \operatorname{SL}_{2}(p)\right\rangle \leq \operatorname{Mon}_{2(p+1)}\left(K^{*}\right)$
where $j=-\left(\frac{-1}{p}\right)= \begin{cases}1 & , p \equiv 3(\bmod 4) \\ -1 & , p \equiv 1(\bmod 4) .\end{cases}$
Remark 4. (1) $\mathcal{G}(p) \cong \begin{cases}C_{4} \times \operatorname{PSL}_{2}(p) & , p \equiv 1(\bmod 4) \\ C_{2} \times \operatorname{SL}_{2}(p) & , p \equiv 3(\bmod 4)\end{cases}$
(2) $\operatorname{End}(\mathcal{G}(p))=\left\{\left.\left(\begin{array}{cc}A & B \\ j B & A\end{array}\right) \right\rvert\, A, B \in \operatorname{End}(\Delta)\right\}$ is generated by

$$
I_{2(p+1)}, X:=\left(\begin{array}{cc}
P & 0 \\
0 & P
\end{array}\right), Y:=\left(\begin{array}{cc}
0 & I_{p+1} \\
j I_{p+1} & 0
\end{array}\right), X Y=\left(\begin{array}{cc}
0 & P \\
j P & 0
\end{array}\right)
$$

with $X^{2}=-j p, Y^{2}=j, X Y=Y X,(X Y)^{2}=-p$.
Definition 5. Let $K=\mathbb{F}_{q}$ be the finite field with q elements and assume that there is some $a \in K^{*}$ such that $a^{2}=-p$. Then we put $P_{q}(p):=a I_{2(p+1)}+X Y \in$ $\operatorname{End}(\mathcal{G}(p))$ and define the generalized Pless code $\mathcal{P}_{q}(p) \leq K^{2(p+1)}$ to be the code spanned by the rows of $P_{q}(p)$.

As $P P^{t r}=p I_{p+1}=-a^{2} I_{p+1}$ the code $\mathcal{P}_{q}(p)$ is self-dual with respect to the standard inner product. So we have the following theorem.

Theorem 6. Let $a \in \mathbb{F}_{q}^{*}$ such that $a^{2}=-p$. The code $\mathcal{P}_{q}(p)$ has generator matrix $\left(a I_{p+1} \mid P\right)$ and is a self-dual code in $\mathbb{F}_{q}^{2(p+1)}$. The sum of the first two rows of this matrix has weight $(p+7) / 2$ if q is odd and 4 if q is even. The group $\mathcal{G}(p)$ is a subgroup of $\operatorname{Aut}\left(\mathcal{P}_{q}(p)\right) . \mathcal{P}_{3}(p)$ is the Pless symmetry code $\mathcal{P}(p)$ as given in [6].

Minimum distance of the Pless codes computed with Magma [1].

p	5	11	17	23	29	41	47
$2(p+1)$	12	24	36	48	60	84	96
$d\left(\mathcal{P}_{3}(p)\right)$	6	9	12	15	18	21	24
$\operatorname{Aut}\left(\mathcal{P}_{3}(p)\right)$	$2 . M_{12}$	$\mathcal{G}(11) .2$	$\mathcal{G}(17) .2$	$\mathcal{G}(23) .2$	$\mathcal{G}(29) .2$	$\geq \mathcal{G}(41)$	$\geq \mathcal{G}(47)$

4 A new series of self-dual codes invariant under $\mathrm{SL}_{2}(p)$.

Applying the same strategy as in the previous section we now construct a monomial representation of $\mathrm{SL}_{2}(p)$ of degree $2(p+1)$ where p is a prime so that $p-1 \equiv 4(\bmod 8)$. We assume that $\operatorname{char}(K) \neq 2$. Then the subgroup $B^{(2)}:=\left\{\left.\left(\begin{array}{cc}a^{2} & 0 \\ b & a^{-2}\end{array}\right) \right\rvert\, a \in \mathbb{F}_{p}^{*}, b \in \mathbb{F}_{p}\right\} \leq \mathrm{SL}_{2}(p)$ of index $2(p+1)$ in $\mathrm{SL}_{2}(p)$ has a unique linear representation $\gamma: B^{(2)} \rightarrow K^{*}$ with $\gamma\left(B^{(2)}\right)=\{ \pm 1\}$, so $\gamma\left(\left(\begin{array}{cc}a^{2} & 0 \\ b & a^{-2}\end{array}\right)\right)=\left(\frac{a}{p}\right)$. Then $\Delta^{\prime}:=\gamma_{B^{(2)}}^{\mathrm{SL}_{2}(p)}$ is a faithful monomial representation of degree $2(p+1)$. To obtain explicit matrices we choose $w:=\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)$ as above. By assumption $2 \in \mathbb{F}_{p}^{*} \backslash\left(\mathbb{F}_{p}^{*}\right)^{2}$. Put $\epsilon:=\operatorname{diag}\left(2,2^{-1}\right)$. Then $B=B^{(2)} \dot{\cup} B^{(2)} \epsilon$ and

$$
\mathrm{SL}_{2}(p)=B \dot{\cup} B w B=B^{(2)} \dot{\cup} B^{(2)} w B^{(2)} \dot{\cup} B^{(2)} \epsilon \dot{\cup} B^{(2)} \epsilon w B^{(2)}
$$

and a right transversal is given by $\left[1, w h_{x}, \epsilon, \epsilon w h_{x}: x \in \mathbb{F}_{p}\right]$. From Remark 2 we find.

Lemma 7. End $\left(\Delta^{\prime}\right)$ has a Schur basis $\left(B_{1}, B_{w}, B_{\epsilon}, B_{\epsilon w}=B_{\epsilon} B_{w}\right)$ where $B_{\epsilon}=$ $\left(\begin{array}{cc}0 & I \\ -I & 0\end{array}\right)$ and $B_{w}=\left(\begin{array}{cc}X & Y \\ -Y^{t r} & X^{t r}\end{array}\right)$ with

$$
X=\left(\begin{array}{cccc}
0 & 1 & \ldots & 1 \\
-1 & & & \\
\vdots & & R_{X} & \\
-1 & & &
\end{array}\right), Y=\left(\begin{array}{cccc}
0 & 0 & \ldots & 0 \\
0 & & & \\
\vdots & & R_{Y} & \\
0 & & &
\end{array}\right)
$$

where rows and columns of R_{X} and R_{Y} are indexed by the elements $\{0, \ldots, p-1\}$ of \mathbb{F}_{p} and
$\left(R_{X}\right)_{a, b}=\left\{\begin{array}{ll}0 & , b-a \notin\left(\mathbb{F}_{p}^{*}\right)^{2} \\ \left(\frac{c}{p}\right) & , b-a=c^{2} \in\left(\mathbb{F}_{p}^{*}\right)^{2}\end{array},\left(R_{Y}\right)_{a, b}= \begin{cases}0 & , 2(b-a) \notin\left(\mathbb{F}_{p}^{*}\right)^{2} \\ \left(\frac{c}{p}\right) & , 2(b-a)=c^{2} \in\left(\mathbb{F}_{p}^{*}\right)^{2}\end{cases}\right.$
Remark 8. Note that $(-1)=c^{2}$ is a square but not a 4th power, so $\left(\frac{c}{p}\right)=-1$ and hence X is skew symmetric and $B_{w}^{t r}=-B_{w}, B_{\epsilon w}^{t r}=-B_{\epsilon w}$. We compute that $B_{w}^{2}=B_{\epsilon w}^{2}=-p$ and $B_{\epsilon}^{2}=-1$ so $\operatorname{End}\left(\Delta^{\prime}\right) \cong\left(\frac{-p,-1}{K}\right)$ is isomorphic to a quaternion algebra over K. We also compute that $\left(B_{w}+B_{\epsilon w}\right)^{2}=-2 p$.

Definition 9. Let p be a prime $p \equiv_{8} 4, K=\mathbb{F}_{q}$ so that there is some $a \in K^{*}$ such that $a^{2}=-$ tp for $t=1$ or $t=2$. We then put

$$
V_{t}(p):= \begin{cases}a I_{2(p+1)}+B_{w} & , t=1 \\ a I_{2(p+1)}+B_{w}+B_{\epsilon w} & , t=2\end{cases}
$$

and let $\mathcal{V}_{q}(p)$ be the linear code spanned by the rows of $V_{t}(p)$.
We compute $V_{1}(p) V_{1}(p)^{t r}=V_{2}(p) V_{2}(p)^{t r}=0$ and get the following theorem.
Theorem 10. $\mathcal{V}_{q}(p)$ is a self-dual code in $\mathbb{F}_{q}^{2(p+1)}$. Its monomial automorphism group contains the group $\mathrm{SL}_{2}(p)$.
Remark 11. The matrices of rank $p+1$ in $\operatorname{End}\left(\Delta^{\prime}\right)$ yield $q+1$ different self-dual codes invariant under $\Delta^{\prime}\left(\operatorname{SL}_{2}(p)\right)$. In general these fall into different equivalence classes. For instance for $q=7$, where 2 is a square mod 7, the codes spanned by the rows of $V_{1}(p)$ and $V_{2}(p)$ are inequivalent for $p=5$ and $p=13$ but have the same minimum distance.

Minimum distance of $\mathcal{V}_{3}(p)$ computed with Magma [1]:

p	5	13	29	37	53
$2(p+1)$	12	28	60	76	108
$d\left(\mathcal{V}_{3}(p)\right)$	6	9	18	18	24
$\operatorname{Aut}\left(\mathcal{V}_{3}(p)\right)$	$2 . M_{12}$	$\mathrm{SL}_{2}(13)$	$\mathrm{SL}_{2}(29)$	$\geq \mathrm{SL}_{2}(37)$	$\geq \mathrm{SL}_{2}(53)$

References

[1] W. Bosma, J. Cannon, C. Playoust, The Magma algebra system. I. The user language, J. Symbolic Comput. 24, 1997, 235-265.
[2] Andrew M. Gleason, Weight polynomials of self-dual codes and the MacWilliams identities, Actes du Congrès International des Mathématiciens (Nice, 1970), Tome 3, Gauthier-Villars, Paris, 1971, 211215.
[3] F. J. MacWilliams, N. J. A. Sloane, The theory of error-correcting codes, North-Holland Mathematical Library, Vol. 16. North-Holland Publishing Co., Amsterdam-New York-Oxford, 1977.
[4] Jürgen Müller, On endomorphism rings and character tables, Habilitationsschrift, RWTH Aachen, 2003.
[5] V. Pless, Symmetry codes over GF(3) and new five-designs, J. Combinatorial Theory Ser. A 12, 1972, 119-142.
[6] V. Pless, On a new family of symmetry codes and related new five-designs, Bull. Amer. Math. Soc. 75, 1969, 1339-1342.

