An analogue of the Pless symmetry codes

Gabriele Nebe nebe@math.rwth-aachen.de
Darwin Villar darwin.villar@rwth-aachen.de
Lehrstuhl D für Mathematik, RWTH Aachen University
52056 Aachen, Germany

Dedicated to the memory of Professor Stefan Dodunekov

Abstract. A series of monomial representations of $SL_2(p)$ is used to construct a new series of self-dual ternary codes of length 2(p+1) for all primes $p \equiv 5 \pmod 8$. In particular we find a new extremal self-dual ternary code of length 60.

1 Introduction

In 1969 Vera Pless [6] discovered a family of self-dual ternary codes $\mathcal{P}(p)$ of length 2(p+1) for primes p with $p \equiv -1 \pmod{6}$. Together with the extended quadratic residue codes $\mathrm{XQR}(q)$ of length q+1 (q prime, $q \equiv \pm 1 \pmod{12}$) they define a series of self-dual ternary codes of high minimum distance (see [3, Chapter 16, §8]). For p=5, the Pless code $\mathcal{P}(5)$ coincides with the Golay code \mathfrak{g}_{12} which is also the extended quadratic residue code $\mathrm{XQR}(11)$ of length 12.

Using invariant theory of finite groups, A. Gleason [2] has shown that the minimum distance of a self-dual ternary code of length 4n cannot exceed $3\lfloor \frac{n}{12} \rfloor + 3$. Self-dual codes that achieve equality are called *extremal*. Both constructions, the Pless symmetry codes and the extended quadratic residue codes yield extremal ternary self-dual codes for small values of p.

This short note gives an interpretation of the Pless codes using monomial representations of the group $\operatorname{SL}_2(p)$. This construction allows to read off a large subgroup of the automorphism group of the Pless codes (which was already described in [6]). A different but related series of monomial representations of $\operatorname{SL}_2(p)$ is investigated to construct a new series of self-dual ternary codes $\mathcal{V}(p)$ of length 2(p+1) for all primes $p \equiv 5 \pmod{8}$. The automorphism group of $\mathcal{V}(p)$ contains the group $\operatorname{SL}_2(p)$. For p=5 we again find $\mathcal{V}(5) \cong \mathfrak{g}_{12}$ the Golay code of length 12, but for larger primes these codes are new. In particular the code $\mathcal{V}(29)$ is an extremal ternary code of length 60, so we now know three extremal ternary codes of length 60: $\operatorname{XQR}(59)$, $\mathcal{P}(29)$ and $\mathcal{V}(29)$.

2 Codes and monomial groups

Let K be a field, $n \in \mathbb{N}$. Then the **monomial group** $\operatorname{Mon}_n(K^*) \leq \operatorname{GL}_n(K)$ is the group of monomial $n \times n$ -matrices over K, where a matrix is called

Nebe, Villar 159

monomial, if it contains exactly one non-zero entry in each row and each column. So $\operatorname{Mon}_n(K^*) \cong K^* \wr S_n \cong (K^*)^n : S_n$ is the semidirect product of the subgroup $(K^*)^n$ of diagonal matrices in $\operatorname{GL}_n(K)$ with the group of permutation matrices. For any subgroup $S \leq K^*$ we define $\operatorname{Mon}_n(S) := S^n \wr S_n$ to be the subgroup of monomial matrices having all non-zero entries in S. There is a natural epimorphism $\pi : \operatorname{Mon}_n(S) \to S_n$ mapping any monomial matrix to the associated permutation.

Definition 1. A K-code C of length n is a subspace of K^n . Two codes C and C' of length n are called **monomially equivalent**, if there is some $g \in \operatorname{Mon}_n(K^*)$ such that Cg = C'. The **monomial automorphism group** of C is $\operatorname{Aut}(C) := \{g \in \operatorname{Mon}_n(K^*) \mid Cg = C\}$.

Let G be some group. A linear K-representation Δ of degree n is a group homomorphism $\Delta: G \to \operatorname{GL}_n(K)$. The representation is called **monomial**, if its image $\Delta(G)$ is conjugate in $\operatorname{GL}_n(K)$ to some subgroup of $\operatorname{Mon}_n(K^*)$. We call the monomial representation **transitive**, if $\pi(\Delta(G))$ is a transitive subgroup of S_n . In this case the set $\{h \in G \mid 1\pi(\Delta(h)) = 1\} =: H$ is a subgroup of index n in G and Δ is obtained by inducing up a degree 1 representation of H as follows:

Let H be a subgroup of G of index n := [G : H]. Choose $g_1, \ldots, g_m \in G$ such that

$$G = \dot{\cup}_{\ell=1}^m Hg_{\ell}H$$

and put $H_{\ell} := H \cap g_{\ell}^{-1} H g_{\ell}$. Choose some right transversal $h_{\ell,j}$ of H_{ℓ} in H, so that $h_{\ell,1} = 1$ and $H = \dot{\bigcup}_{j=1}^{k_{\ell}} H h_{\ell,j}$. Then

$$G = \dot{\cup}_{\ell=1}^m \dot{\cup}_{j=1}^{k_\ell} Hg_\ell h_{\ell,j}$$

and the right transversal $\{g_\ell h_{\ell,j} \mid \ell=1,\ldots,m, k=1,\ldots,k_\ell\}$ is a set of cardinality n which we will use as an index set of our $n \times n$ -matrices.

For a group homomorphism $\lambda: H \to K^*$ the associated **monomial representation** of G is $\Delta:=\lambda_H^G: G \to \mathrm{Mon}_n(\lambda(H))$ defined by

$$(\lambda_{H}^{G}(g))_{g_{\ell}h_{\ell j},g_{\ell'}h_{\ell',j'}} = \begin{cases} 0 & , \text{ if } g_{\ell}h_{\ell j}g(g_{\ell'}h_{\ell',j'})^{-1} \not\in H \\ \lambda(g_{\ell}h_{\ell j}g(g_{\ell'}h_{\ell',j'})^{-1}) & , \text{ if } g_{\ell}h_{\ell j}g(g_{\ell'}h_{\ell',j'})^{-1} \in H \end{cases}.$$

The representation λ restricts in two obvious ways to a representation of H_{ℓ} :

$$\lambda_{\ell}: H_{\ell} \to K^*, h \mapsto \lambda(h) \text{ and } \lambda_{\ell}^{g_{\ell}}: H_{\ell} \to K^*, h \mapsto \lambda(g_{\ell}hg_{\ell}^{-1}).$$

Let $\mathcal{I} := \{\ell \in \{1, \dots, m\} \mid \lambda_\ell = \lambda_\ell^{g_\ell}\}$ and reorder the double coset representatives so that $\mathcal{I} = \{1, \dots, d\}$.

160 OC2013

Remark 2. ([4, Section I (1)]) In the notation above the endomorphism ring

$$\operatorname{End}(\Delta) := \{ X \in K^{n \times n} \mid X\Delta(g) = \Delta(g)X \text{ for all } g \in G \}$$

has dimension d and the **Schur basis** of $\text{End}(\Delta)$ is $(B_1 = I_n, B_2, \dots, B_d)$ where $(B_\ell)_{1,g_\ell} = 1$ and $(B_\ell)_{1,g_k h_{k,i}} \neq 0$ if and only if $\ell = k$. More generally we get $(B_\ell)_{g_k h_{k,i},g_{k'} h_{k',i'}} = 0$ if $g_{k'} h_{k',i'} h_{k,i}^{-1} g_k^{-1} \notin Hg_\ell H$. Otherwise write $g_{k'} h_{k',i'} h_{k,i}^{-1} g_k^{-1} = hg_\ell h_{\ell,j}$ for some $h \in H$. Then $(B_\ell)_{g_k h_{k,i},g_{k'} h_{k',i'}} = \lambda(h)^{-1} \lambda(h_{\ell,j}^{-1})$.

3 Generalized Pless codes.

In this section we reinterpret the construction of the famous Pless symmetry codes $\mathcal{P}(p)$ discovered by Vera Pless [6], [5]. Let p be an odd prime and

$$\operatorname{SL}_2(p) := \left\{ \left(\begin{array}{cc} a & b \\ c & d \end{array} \right) \in \mathbb{F}_p^{2 \times 2} \mid ad - bc = 1 \right\}$$

the group of 2×2 -matrices over the finite field \mathbb{F}_p with determinant 1. Let

$$B := \left\{ \left(\begin{array}{cc} a & b \\ 0 & d \end{array} \right) \in \operatorname{SL}_2(p) \right\} = \left\langle h_1 := \left(\begin{array}{cc} 1 & 0 \\ 1 & 1 \end{array} \right), \zeta := \left(\begin{array}{cc} \alpha & 0 \\ 0 & \alpha^{-1} \end{array} \right) \right\rangle.$$

Then B is a subgroup of $SL_2(p)$ or index p + 1. Let

$$\lambda: B \to K^*, \left(\begin{array}{cc} a & 0 \\ c & d \end{array}\right) \mapsto \left(\frac{a}{p}\right) = \left\{\begin{array}{cc} 1 & , a \in (\mathbb{F}_p^*)^2 \\ -1 & , a \notin (\mathbb{F}_p^*)^2 \end{array}\right.$$

and $\Delta := \lambda_B^{\mathrm{SL}_2(p)} : \mathrm{SL}_2(p) \to \mathrm{Mon}_{p+1}(K^*)$ be the monomial representation induced by λ . The following facts about this representation are well known, and easily computed from the general description in the previous section.

Remark 3. (1)
$$SL_2(p) = B \dot{\cup} BwB \text{ where } w = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$
.

- (2) $B \cap wBw^{-1} = \langle \zeta \rangle$.
- (3) A right transversal of B in $SL_2(p)$ is $[1, wh_x : x \in \mathbb{F}_p]$ where $h_x := h_1^x$.
- (4) The Schur basis of End(Δ) is (I_{p+1}, P) , where $P_{1,1} = 0$, $P_{1,wh_x} = 1$ for all x. Then $P_{wh_x,1} = \left(\frac{-1}{p}\right)$ and

$$P_{wh_x,wh_y} = \begin{cases} \left(\frac{x-y}{p}\right) &, \ x \neq y \\ 0 &, \ x = y. \end{cases}$$

Nebe, Villar

(5)
$$P^2 = \left(\frac{-1}{p}\right) p$$
 and $PP^{tr} = p$.

To construct monomial representations of degree 2(p+1) we consider the group

$$\mathcal{G}(p) := \left\langle \left(\begin{array}{cc} \Delta(g) & 0 \\ 0 & \Delta(g) \end{array} \right), Z := \left(\begin{array}{cc} 0 & I_{p+1} \\ jI_{p+1} & 0 \end{array} \right) \middle| g \in \mathrm{SL}_2(p) \right\rangle \leq \mathrm{Mon}_{2(p+1)}(K^*)$$

where
$$j = -\left(\frac{-1}{p}\right) = \begin{cases} 1 & , p \equiv 3 \pmod{4} \\ -1 & , p \equiv 1 \pmod{4}. \end{cases}$$

Remark 4. (1)
$$\mathcal{G}(p) \cong \left\{ \begin{array}{ll} C_4 \times \mathrm{PSL}_2(p) & , \ p \equiv 1 \pmod{4} \\ C_2 \times \mathrm{SL}_2(p) & , \ p \equiv 3 \pmod{4} \end{array} \right.$$

(2)
$$\operatorname{End}(\mathcal{G}(p)) = \left\{ \begin{pmatrix} A & B \\ jB & A \end{pmatrix} \middle| A, B \in \operatorname{End}(\Delta) \right\} \text{ is generated by }$$

$$I_{2(p+1)}, X := \left(\begin{array}{cc} P & 0 \\ 0 & P \end{array}\right), Y := \left(\begin{array}{cc} 0 & I_{p+1} \\ jI_{p+1} & 0 \end{array}\right), XY = \left(\begin{array}{cc} 0 & P \\ jP & 0 \end{array}\right)$$

with
$$X^2 = -jp$$
, $Y^2 = j$, $XY = YX$, $(XY)^2 = -p$.

Definition 5. Let $K = \mathbb{F}_q$ be the finite field with q elements and assume that there is some $a \in K^*$ such that $a^2 = -p$. Then we put $P_q(p) := aI_{2(p+1)} + XY \in \operatorname{End}(\mathcal{G}(p))$ and define the **generalized Pless code** $\mathcal{P}_q(p) \leq K^{2(p+1)}$ to be the code spanned by the rows of $P_q(p)$.

As $PP^{tr} = pI_{p+1} = -a^2I_{p+1}$ the code $\mathcal{P}_q(p)$ is self-dual with respect to the standard inner product. So we have the following theorem.

Theorem 6. Let $a \in \mathbb{F}_q^*$ such that $a^2 = -p$. The code $\mathcal{P}_q(p)$ has generator matrix $(aI_{p+1}|P)$ and is a self-dual code in $\mathbb{F}_q^{2(p+1)}$. The sum of the first two rows of this matrix has weight (p+7)/2 if q is odd and 4 if q is even. The group $\mathcal{G}(p)$ is a subgroup of $\operatorname{Aut}(\mathcal{P}_q(p))$. $\mathcal{P}_3(p)$ is the Pless symmetry code $\mathcal{P}(p)$ as given in [6].

Minimum distance of the Pless codes computed with Magma [1].

p	5	11	17	23	29	41	47
2(p+1)	12	24	36	48	60	84	96
$d(\mathcal{P}_3(p))$	6	9	12	15	18	21	24
$\operatorname{Aut}(\mathcal{P}_3(p))$	$2.M_{12}$	G(11).2	G(17).2	G(23).2	G(29).2	$\geq \mathcal{G}(41)$	$\geq \mathcal{G}(47)$

162 OC2013

4 A new series of self-dual codes invariant under $SL_2(p)$.

Applying the same strategy as in the previous section we now construct a monomial representation of $\operatorname{SL}_2(p)$ of degree 2(p+1) where p is a prime so that $p-1\equiv 4\pmod 8$. We assume that $\operatorname{char}(K)\neq 2$. Then the subgroup $B^{(2)}:=\left\{\begin{pmatrix} a^2 & 0 \\ b & a^{-2} \end{pmatrix} \middle| a\in \mathbb{F}_p^*, b\in \mathbb{F}_p \right\} \leq \operatorname{SL}_2(p)$ of index 2(p+1) in $\operatorname{SL}_2(p)$ has a unique linear representation $\gamma:B^{(2)}\to K^*$ with $\gamma(B^{(2)})=\{\pm 1\}$, so $\gamma\left(\begin{pmatrix} a^2 & 0 \\ b & a^{-2} \end{pmatrix}\right)=\begin{pmatrix} \frac{a}{p} \end{pmatrix}$. Then $\Delta':=\gamma_{B^{(2)}}^{\operatorname{SL}_2(p)}$ is a faithful monomial representation of degree 2(p+1). To obtain explicit matrices we choose $w:=\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$ as above. By assumption $2\in \mathbb{F}_p^*\setminus (\mathbb{F}_p^*)^2$. Put $\epsilon:=\operatorname{diag}(2,2^{-1})$. Then $B=B^{(2)}\ \dot\cup\ B^{(2)}\epsilon$ and

$$SL_2(p) = B \dot{\cup} BwB = B^{(2)} \dot{\cup} B^{(2)}wB^{(2)} \dot{\cup} B^{(2)}\epsilon \dot{\cup} B^{(2)}\epsilon wB^{(2)}$$

and a right transversal is given by $[1, wh_x, \epsilon, \epsilon wh_x : x \in \mathbb{F}_p]$. From Remark 2 we find.

Lemma 7. End(Δ') has a Schur basis $(B_1, B_w, B_\epsilon, B_{\epsilon w} = B_\epsilon B_w)$ where $B_\epsilon = \begin{pmatrix} 0 & I \\ -I & 0 \end{pmatrix}$ and $B_w = \begin{pmatrix} X & Y \\ -Y^{tr} & X^{tr} \end{pmatrix}$ with

$$X = \begin{pmatrix} 0 & 1 & \dots & 1 \\ -1 & & & \\ \vdots & & R_X & \\ -1 & & & \end{pmatrix}, Y = \begin{pmatrix} 0 & 0 & \dots & 0 \\ 0 & & & \\ \vdots & & R_Y & \\ 0 & & & \end{pmatrix}$$

where rows and columns of R_X and R_Y are indexed by the elements $\{0, \dots, p-1\}$ of \mathbb{F}_p and

$$(R_X)_{a,b} = \left\{ \begin{array}{l} 0 & , \ b-a \not\in (\mathbb{F}_p^*)^2 \\ \left(\frac{c}{p}\right) & , \ b-a = c^2 \in (\mathbb{F}_p^*)^2 \end{array} \right., \ (R_Y)_{a,b} = \left\{ \begin{array}{l} 0 & , \ 2(b-a) \not\in (\mathbb{F}_p^*)^2 \\ \left(\frac{c}{p}\right) & , \ 2(b-a) = c^2 \in (\mathbb{F}_p^*)^2 \end{array} \right.$$

Remark 8. Note that $(-1) = c^2$ is a square but not a 4th power, so $\left(\frac{c}{p}\right) = -1$ and hence X is skew symmetric and $B_w^{tr} = -B_w$, $B_{\epsilon w}^{tr} = -B_{\epsilon w}$. We compute that $B_w^2 = B_{\epsilon w}^2 = -p$ and $B_{\epsilon}^2 = -1$ so $\operatorname{End}(\Delta') \cong \left(\frac{-p,-1}{K}\right)$ is isomorphic to a quaternion algebra over K. We also compute that $(B_w + B_{\epsilon w})^2 = -2p$.

Nebe, Villar

Definition 9. Let p be a prime $p \equiv_8 4$, $K = \mathbb{F}_q$ so that there is some $a \in K^*$ such that $a^2 = -tp$ for t = 1 or t = 2. We then put

$$V_t(p) := \begin{cases} aI_{2(p+1)} + B_w &, t = 1\\ aI_{2(p+1)} + B_w + B_{\epsilon w} &, t = 2 \end{cases}$$

and let $\mathcal{V}_q(p)$ be the linear code spanned by the rows of $V_t(p)$.

We compute $V_1(p)V_1(p)^{tr} = V_2(p)V_2(p)^{tr} = 0$ and get the following theorem.

Theorem 10. $V_q(p)$ is a self-dual code in $\mathbb{F}_q^{2(p+1)}$. Its monomial automorphism group contains the group $\mathrm{SL}_2(p)$.

Remark 11. The matrices of rank p+1 in $\operatorname{End}(\Delta')$ yield q+1 different self-dual codes invariant under $\Delta'(\operatorname{SL}_2(p))$. In general these fall into different equivalence classes. For instance for q=7, where 2 is a square mod 7, the codes spanned by the rows of $V_1(p)$ and $V_2(p)$ are inequivalent for p=5 and p=13 but have the same minimum distance.

Minimum distance of $V_3(p)$ computed with MAGMA [1]:

p	5	13	29	37	53
2(p+1)	12	28	60	76	108
$d(\mathcal{V}_3(p))$	6	9	18	18	24
$\operatorname{Aut}(\mathcal{V}_3(p))$	$2.M_{12}$	$SL_2(13)$	$SL_2(29)$	$\geq \operatorname{SL}_2(37)$	$\geq \operatorname{SL}_2(53)$

References

- [1] W. Bosma, J. Cannon, C. Playoust, The Magma algebra system. I. The user language, *J. Symbolic Comput.* 24, 1997, 235-265.
- [2] Andrew M. Gleason, Weight polynomials of self-dual codes and the MacWilliams identities, *Actes du Congrès International des Mathématiciens* (Nice, 1970), Tome 3, Gauthier-Villars, Paris, 1971, 211-215.
- [3] F. J. MacWilliams, N. J. A. Sloane, *The theory of error-correcting codes*, North-Holland Mathematical Library, Vol. 16. North-Holland Publishing Co., Amsterdam-New York-Oxford, 1977.
- [4] Jürgen Müller, On endomorphism rings and character tables, Habilitation-sschrift, RWTH Aachen, 2003.
- [5] V. Pless, Symmetry codes over GF(3) and new five-designs, *J. Combinatorial Theory* Ser. A 12, 1972, 119-142.
- [6] V. Pless, On a new family of symmetry codes and related new five-designs, Bull. Amer. Math. Soc. 75, 1969, 1339-1342.