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Abstract. Some generalized extension theorems for linear codes over Fy are pre-
sented.

1 Introduction

Let [y denote the vector space of n-tuples over [y, the field of ¢ elements. A g¢-
ary linear code of length n and dimension k or an [n, k|, code is a k-dimensional
subspace of Fy. An [n, k,d], code is an [n, k], code with minimum (Hamming)
distance d. The weight of a vector z € Fy, denoted by wt(x), is the number
of nonzero coordinate positions in @. The weight distribution of C is the list of
numbers A; which is the number of codewords of C with weight ¢. The weight
distribution with (Ag, Ag,...) = (1,0, ...) is expressed as 01'd®- - - in this paper.
A g-ary linear code C is w-weight (mod q) if C has exactly w kinds of weights
under modulo ¢ for codewords. We only consider linear codes over finite fields
having no coordinate which is identically zero. For an [n,k,d], code C with a
generator matrix G, C is called extendable (to C') if there exists a vector h € IF";
such that the extended matrix [G,h'] generates an [n + 1,k,d + 1], code C'.
Then (' is called an extension of C. The most well-known extension theorem is
the following by Hill and Lizak (1995), see also [5].

Theorem 1 ([6]). Every [n,k,d], code with gcd(d,q) = 1, whose weights (of
codewords) are congruent to 0 or d (mod q), is extendable.

For even ¢ > 8, we give a stronger result:

Theorem 2. For g =2", h >3, every [n,k,d), code with d odd whose weights
are congruent to 0 or d (mod ¢/2) is extendable.

Theorem 2 is the first extension theorem for 4-weight (mod ¢) linear codes.
As for the extension theorems for 3-weight (mod ¢) linear codes, see [12].
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Theorem 3. For q = 2", h >3, every [n, k,d], code with gcd(d,q) = 2 whose
weights are congruent to 0 or d (mod q) is extendable.

Simonis (2000) gave the following generalization of Theorem 1.

Theorem 4 ([13]). Every [n,k,d), code with gcd(d,q) = 1, ¢ = p", p prime, is

extendable if Zi;—éd (mod p) A =gkt

We give a generalization of Theorem 4:

Theorem 5. Let h,m,t be integers with 0 < m < t < h. For q = p" with
prime p, every [n, k,d]q code with gcd(d,q) = p™ is extendable if

> A>T —r(@d -, (1)
i=d (mod pt)

where g +1(q) + 1 is the smallest size of a non-trivial blocking set in PG(2,q).

It can be shown that (1) implies > ,_, (mod pt) A; = ¢ — ¢*1. Note that
Theorem 4 is the casem = 0,t =1land ) ,_, (mod pt) A; = ¢*—¢*! in Theorem
5.

To give another extension theorem, we introduce the diversity of a linear

code. For an [n, k,d], code C with ged(d,q) =1, let

‘I’o:izz‘h, (1’1:L >4,

qli,i>0 i#0,d (mod q)

where the notation ¢|i means that ¢ is a divisor of i. The pair of integers
(Pg, P1) is called the diversity of C ([9], [10]). Theorem 1 shows that C is
extendable if ®; = 0. We denote 0; = (¢ —1)/(q — 1) for F,. As for the
extendability of ternary linear codes (¢ = 3), it is known that an [n, k, d]3 code
with ged(3,d) = 1, k > 3, is extendable if

(‘bo, (I>1) € {(ek_g, 0)) (ek—3a 2- 3k_2)7 (‘9/6—27 2. 3k_2)7 (Gk—Q + 3k_2a 3k_2)}a

see [10]. For an [n,k,d], code C with ged(d,q) = 1, k > 3, it follows from
Theorem 1 that C is extendable if (®g, 1) = (0x_2,0). We generalize the case
(®g, ®1) = (Op—_ + 3572,3%=2) for ternary linear codes to g-ary linear codes.

Theorem 6. Let C be an [n,k,d], code with diversity (®o, 1), ged(d,q) = 1.
Then C is extendable if (®g, @1) = (O)_2,0) or (Or_1 — 2¢*72,¢"2).

Example 1. (a) Let Cy be a [100,3,87|s code. It can be proved that all possible
weights of C1 are 87,88,91,92,95,96. Hence Cy is extendable by Theorem 2.
(b) There exists a [30,3,22]s code Co with weight distribution 012252415303,
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see [3]. Cq is extendable by Theorem 5 withm =1,t=2, p=2.
(c) Let C3 be a [15,3,11]4 code with generator matrix

1 001 01 10 1011100
01011 &® @ 1 wlwwll1l1]/],
0011000 wl1lO01U 0U90wl1

where Fy = {0,1,w,0}. The weight distribution of Cs is 017383931191236137

with diversity (13,4). So, Cs is extendable by Theorem 6.

Problem. (i) Can the conditions “g = 2"” and “ (mod ¢/2)” in Theorem 2 be
generalized to “qg = p"” and “ (mod ¢/p)” for an odd prime p?

(ii) Is Theorem 6 valid for the case ged(d, q) > 27

(iii) Find more diversities such that every code over Fy is extendable.

2 Proof of the new extension theorems

We first give the geometric method to investigate linear codes over F, through
the projective geometry. A j-flat of PG(r, q) is a projective subspace of dimen-
sion j in PG(r, q). The 0-flats, 1-flats, 2-flats and (r — 1)-flats are called points,
lines, planes and hyperplanes, respectively. The number of points in a j-flat is
IPG(j,q)| = 0; = (¢ —1)/(¢ — 1), where |T| denotes the number of elements
in the set T. We refer to [7] for geometric terminologies.

We assume k& > 3. Let C be an [n, k,d], code with diversity (®g, ®1) and
a generator matrix G = [g;;] with no all-zero column. Let g; be the i-th row
of G for 1 < ¢ < k. We consider the mapping wg from ¥ :=PG(k — 1,q) to
{i | A; > 0}, the set of non-zero weights of C. For P = P(p1,...,px) € X, the
weight of P with respect to G, denoted by wg(P), is defined as

k k
wa(P) = {5 | Y gijpi # 0} = wt(d_ pigi)-
=1 i=1

Let Fy = {P € ¥ | wg(P) = d}. Recall that a hyperplane H of ¥ is
defined by a non-zero vector h = (hy,...,hx) € ]F’; as H = {P(p1,...,px) €
Y | hipr + -+ + hgpr = 0}. The vector h is called a defining vector of H.

Lemma 7 ([11]). C is extendable if and only if there exists a hyperplane H
of ¥ such that Fy N H = (). Moreover, the extended matriz of G by adding a
defining vector of H as a column generates an extension of C.

Now, let
R = {Pes|ua(P)
I {PeX | wg(P)
F, = {PeX|wg(P)

0 (mod q)},
0,d (mod q)},
d (mod q)} D Fy.

(I
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Note that (®g, ®1) = (|Fol, |F1]). Since (Fo U Fy) N Fy = 0 if ged(d, q) < ¢, we
get the following.

Lemma 8. C is extendable if gcd(d,q) < q and if there exists a hyperplane H
of ¥ such that H C Fy U F}.

A set B in PG(r,q) is called a blocking set with respect to s-flats if every
s-flat in PG(r, ¢) meets B in at least one point. A blocking set in PG(r, ¢) with
respect to s-flats is called non-trivial if it contains no (r — s)-flat.

Theorem 9 ([1],[2],[4]). Let B be a blocking set with respect to s-flats in
PG(r,q).
(a) |B| > 0,_s, where the equality holds if and only if B is an (r — s)-flat.
(b) |B| > 0,_s + q"~*"1r(q) if B is non-trivial, where q +7(q) + 1 is the
smallest size of a non-trivial blocking set in PG(2,q).

Considering the (¢ + 1) x n matrix whose rows are the vectors in the set
{a1 + Xa2 | A € F;} U{az}, and counting the number of non-zero entries via
rows and via columns, gives the following.

Lemma 10 ([5]). For two linearly independent vectors a1, a2 € Fy, it holds
that

Z wt(ay + Aag) + wt(az) =0 (mod q).
AeFy,

As a consequence of Lemma 10, we get the following.

Lemma 11. For a line L ={Py, P1,--- ,P,;} in X, it holds that
wa(L) =Y wa(P;) =0 (mod g). (2)

Lemma 12 ([14]). Let K be a set in ¥ = PG(k —1,q), k >3, ¢ =2", h > 3,
meeting every line in exactly 1, q/2+ 1, or ¢+ 1 points. Then, K contains a
hyperplane of 3.

Now, we are ready to prove our results.

Proof of Theorem 2. For ¢ = 2", h > 3, let C be an [n, k, d], code with d odd
whose weights are congruent to 0 or d (mod ¢/2). For a generator matrix G of C
and a line L in ¥ = PG(k —1,¢), we have wg(L) = > pc; wa(P) =0 (mod q)
by Lemma 11. Let Fyy := {Q € ¥ | wg(Q) is even}. Then, FyNFy = (). Assume
that the t points on L have odd weights and that the other have even weights.
Then, from the condition, we have td =0 (mod ¢/2), so, t =0 (mod ¢/2), for
d is odd. Hence t = 0,q/2 or q. Thus, |F0 NLl=1,q/2+1or qg+1, and Fy
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contains a hyperplane of ¥ by Lemma 12. Hence our assertion follows from
Lemma 7. ]

Proof of Theorem 3. For ¢ = 2", h > 3, let C be an [n,k,d], code with
ged(d, q) = 2 whose weights are congruent to 0 or d (mod ¢). For a gener-
ator matrix G of C and a line L in ¥ = PG(k — 1,q), we have wg(L) =
Y per, WG(P) =0 (mod ¢g) by Lemma 11. Note that X = Fy U Fp, Fo N Fy = .
Assume |L N Fy| = t. Then, from the condition, we have td = 0 (mod gq), so,
t =0 (mod ¢/2), for ged(d,q) = 2. Hence t = 0,¢/2 or ¢q. Thus, |[FoNL| =
1,q/2+ 1 or ¢+ 1, and Fy contains a hyperplane of ¥ by Lemma 12. Hence C
is extendable by Lemma 8. O

Proof of Theorem 5. For integers h,m,t with 0 < m < ¢t < h and for
q = p"* with prime p, let C be an [n, k, d], code with ged(d, q) = p™ and assume
Y ied (mod pt) A; > ¢ — "1 —r(q)¢*3(q — 1). For a generator matrix G of C
and a line L in ¥ = PG(k —1,q), we have wg(L) = > pc wa(P) =0 (mod q)
by Lemma 11. Let [y = {Q € ¥ | wg(Q) # d (mod p')} and Fy = {Q €
Y | we(Q) = d (mod p')}. Then, Fy N Fy = 0 and |Fy| < Ok + r(q)g" 3.
Suppose L C F,. Then, we have d = 0 (mod p'), a contradiction. Thus Fj
forms a blocking set w.r.t. lines in 3. Hence Fj contains a hyperplane of X by
Theorem 9, and C is extendable by Lemma 7. O

Lemma 13 ([8]). Let K be a proper subset of a t-flat 11y in PG(k — 1,q). If
every line meets K in either one or ¢+ 1 points, then K is a hyperplane of 11;.

A t-flat II of ¥ with |[IIN Fy| =4, [IIN Fy| = j is called an (4, ) flat. An (3,5)1
flat is called an (i, j)-line. An (i, j)-hyperplane is an (i,j),—2 flat. Note that a
(1,1)-line and a (0, 1)-line do not exist by Lemma 11.

Proof of Theorem 6. It suffices to prove for the case (®g, ®1) = (Op—1 —
2¢"72,¢*7%). Let C be an [n,k,d], code with diversity (®o,®1) = (01 —
2¢"72,¢"*2), ged(d,q) = 1, k > 3. Then, we have |Fy| = |Fy| = ¢*~2. For
R € F5, there exist at least 6;_3 lines through R containing no point of F,
for |Fy| = ¢*~2. Such lines are (1,0)-lines, for ged(d,q) = 1. Let Iy, -- o,

be such lines and let H = Ufi‘f’ l;. Since [FoNH| = (q—1)0k_3+ 1 = |Fy|,
we have Fo C H. Hence, every line through two points of F» is a (1,0)-line.
For R; € l; and R; € [; with i # j and R;, R; # R, the line | = (R;, R;) is
a (1,0)-line. Let P be the point of F on [. If there exists a point of F; on
the line [p = (R, P), then there exists a (1,1)-line or a (0, 1)-line on the plane
(l;,1;), a contradiction. Hence [p is also a (1,0)-line, and [ is contained in H.
It follows that H forms a hyperplane of ¥ = PG(k — 1,¢). Since H contains
only (1,0)-lines or (¢+ 1,0)-lines, Hy = FyN H is a hyperplane of H by Lemma
13. Now, take a hyperplane H; through Hg with H; # H. Then, it holds that
H, C Fy U Fy since F» = H \ Hp. Hence C is extendable by Lemma 8. ]
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