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Abstract. Some generalized extension theorems for linear codes over Fq are pre-
sented.

1 Introduction

Let Fn
q denote the vector space of n-tuples over Fq, the field of q elements. A q-

ary linear code of length n and dimension k or an [n, k]q code is a k-dimensional
subspace of Fn

q . An [n, k, d]q code is an [n, k]q code with minimum (Hamming)
distance d. The weight of a vector x ∈ Fn

q , denoted by wt(x), is the number
of nonzero coordinate positions in x. The weight distribution of C is the list of
numbers Ai which is the number of codewords of C with weight i. The weight
distribution with (A0, Ad, ...) = (1, α, ...) is expressed as 01dα · · · in this paper.
A q-ary linear code C is w-weight (mod q) if C has exactly w kinds of weights
under modulo q for codewords. We only consider linear codes over finite fields
having no coordinate which is identically zero. For an [n, k, d]q code C with a
generator matrix G, C is called extendable (to C′) if there exists a vector h ∈ Fk

q

such that the extended matrix [G,hT] generates an [n + 1, k, d + 1]q code C′.
Then C′ is called an extension of C. The most well-known extension theorem is
the following by Hill and Lizak (1995), see also [5].

Theorem 1 ([6]). Every [n, k, d]q code with gcd(d, q) = 1, whose weights (of
codewords) are congruent to 0 or d (mod q), is extendable.

For even q ≥ 8, we give a stronger result:

Theorem 2. For q = 2h, h ≥ 3, every [n, k, d]q code with d odd whose weights
are congruent to 0 or d (mod q/2) is extendable.

Theorem 2 is the first extension theorem for 4-weight (mod q) linear codes.
As for the extension theorems for 3-weight (mod q) linear codes, see [12].
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Theorem 3. For q = 2h, h ≥ 3, every [n, k, d]q code with gcd(d, q) = 2 whose
weights are congruent to 0 or d (mod q) is extendable.

Simonis (2000) gave the following generalization of Theorem 1.

Theorem 4 ([13]). Every [n, k, d]q code with gcd(d, q) = 1, q = ph, p prime, is
extendable if

∑
i6≡d (mod p) Ai = qk−1.

We give a generalization of Theorem 4:

Theorem 5. Let h,m, t be integers with 0 ≤ m < t ≤ h. For q = ph with
prime p, every [n, k, d]q code with gcd(d, q) = pm is extendable if

∑

i≡d (mod pt)

Ai > qk − qk−1 − r(q)qk−3(q − 1), (1)

where q + r(q) + 1 is the smallest size of a non-trivial blocking set in PG(2, q).

It can be shown that (1) implies
∑

i≡d (mod pt) Ai = qk − qk−1. Note that
Theorem 4 is the case m = 0, t = 1 and

∑
i≡d (mod pt) Ai = qk−qk−1 in Theorem

5.
To give another extension theorem, we introduce the diversity of a linear

code. For an [n, k, d]q code C with gcd(d, q) = 1, let

Φ0 =
1

q − 1

∑

q|i,i>0

Ai, Φ1 =
1

q − 1

∑

i6≡0,d (mod q)

Ai,

where the notation q|i means that q is a divisor of i. The pair of integers
(Φ0, Φ1) is called the diversity of C ([9], [10]). Theorem 1 shows that C is
extendable if Φ1 = 0. We denote θj = (qj+1 − 1)/(q − 1) for Fq. As for the
extendability of ternary linear codes (q = 3), it is known that an [n, k, d]3 code
with gcd(3, d) = 1, k ≥ 3, is extendable if

(Φ0, Φ1) ∈ {(θk−2, 0), (θk−3, 2 · 3k−2), (θk−2, 2 · 3k−2), (θk−2 + 3k−2, 3k−2)},
see [10]. For an [n, k, d]q code C with gcd(d, q) = 1, k ≥ 3, it follows from
Theorem 1 that C is extendable if (Φ0,Φ1) = (θk−2, 0). We generalize the case
(Φ0, Φ1) = (θk−2 + 3k−2, 3k−2) for ternary linear codes to q-ary linear codes.

Theorem 6. Let C be an [n, k, d]q code with diversity (Φ0,Φ1), gcd(d, q) = 1.
Then C is extendable if (Φ0, Φ1) = (θk−2, 0) or (θk−1 − 2qk−2, qk−2).

Example 1. (a) Let C1 be a [100, 3, 87]8 code. It can be proved that all possible
weights of C1 are 87, 88, 91, 92, 95, 96. Hence C1 is extendable by Theorem 2.
(b) There exists a [30, 3, 22]4 code C2 with weight distribution 0122452415303,
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see [3]. C2 is extendable by Theorem 5 with m = 1, t = 2, p = 2.
(c) Let C3 be a [15, 3, 11]4 code with generator matrix




1 0 0 1 0 1 1 0 1 0 1 1 1 0 0
0 1 0 1 1 ω̄ ω̄ 1 ω 1 ω̄ ω 1 1 1
0 0 1 1 0 0 0 ω 1 0 1 0 0 ω̄ 1


 ,

where F4 = {0, 1, ω, ω̄}. The weight distribution of C3 is 017383931191236139

with diversity (13, 4). So, C3 is extendable by Theorem 6.

Problem. (i) Can the conditions “q = 2h” and “ (mod q/2)” in Theorem 2 be
generalized to “q = ph” and “ (mod q/p)” for an odd prime p?
(ii) Is Theorem 6 valid for the case gcd(d, q) ≥ 2?
(iii) Find more diversities such that every code over Fq is extendable.

2 Proof of the new extension theorems

We first give the geometric method to investigate linear codes over Fq through
the projective geometry. A j-flat of PG(r, q) is a projective subspace of dimen-
sion j in PG(r, q). The 0-flats, 1-flats, 2-flats and (r− 1)-flats are called points,
lines, planes and hyperplanes, respectively. The number of points in a j-flat is
|PG(j, q)| = θj = (qj+1 − 1)/(q− 1), where |T | denotes the number of elements
in the set T . We refer to [7] for geometric terminologies.

We assume k ≥ 3. Let C be an [n, k, d]q code with diversity (Φ0, Φ1) and
a generator matrix G = [gij ] with no all-zero column. Let gi be the i-th row
of G for 1 ≤ i ≤ k. We consider the mapping wG from Σ :=PG(k − 1, q) to
{i | Ai > 0}, the set of non-zero weights of C. For P = P(p1, . . . , pk) ∈ Σ, the
weight of P with respect to G, denoted by wG(P ), is defined as

wG(P ) = |{j |
k∑

i=1

gijpi 6= 0}| = wt(
k∑

i=1

pigi).

Let Fd = {P ∈ Σ | wG(P ) = d}. Recall that a hyperplane H of Σ is
defined by a non-zero vector h = (h1, . . . , hk) ∈ Fk

q as H = {P(p1, . . . , pk) ∈
Σ | h1p1 + · · ·+ hkpk = 0}. The vector h is called a defining vector of H.

Lemma 7 ([11]). C is extendable if and only if there exists a hyperplane H
of Σ such that Fd ∩ H = ∅. Moreover, the extended matrix of G by adding a
defining vector of H as a column generates an extension of C.

Now, let

F0 = {P ∈ Σ | wG(P ) ≡ 0 (mod q)},
F1 = {P ∈ Σ | wG(P ) 6≡ 0, d (mod q)},
F2 = {P ∈ Σ | wG(P ) ≡ d (mod q)} ⊃ Fd.
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Note that (Φ0,Φ1) = (|F0|, |F1|). Since (F0 ∪ F1) ∩ Fd = ∅ if gcd(d, q) < q, we
get the following.

Lemma 8. C is extendable if gcd(d, q) < q and if there exists a hyperplane H
of Σ such that H ⊂ F0 ∪ F1.

A set B in PG(r, q) is called a blocking set with respect to s-flats if every
s-flat in PG(r, q) meets B in at least one point. A blocking set in PG(r, q) with
respect to s-flats is called non-trivial if it contains no (r − s)-flat.

Theorem 9 ([1],[2],[4]). Let B be a blocking set with respect to s-flats in
PG(r, q).

(a) |B| ≥ θr−s, where the equality holds if and only if B is an (r − s)-flat.
(b) |B| ≥ θr−s + qr−s−1r(q) if B is non-trivial, where q + r(q) + 1 is the

smallest size of a non-trivial blocking set in PG(2, q).

Considering the (q + 1) × n matrix whose rows are the vectors in the set
{a1 + λa2 | λ ∈ Fq} ∪ {a2}, and counting the number of non-zero entries via
rows and via columns, gives the following.

Lemma 10 ([5]). For two linearly independent vectors a1, a2 ∈ Fn
q , it holds

that ∑

λ∈Fq

wt(a1 + λa2) + wt(a2) ≡ 0 (mod q).

As a consequence of Lemma 10, we get the following.

Lemma 11. For a line L = {P0, P1, · · · , Pq} in Σ, it holds that

wG(L) :=
q∑

i=0

wG(Pi) ≡ 0 (mod q). (2)

Lemma 12 ([14]). Let K be a set in Σ = PG(k − 1, q), k ≥ 3, q = 2h, h ≥ 3,
meeting every line in exactly 1, q/2 + 1, or q + 1 points. Then, K contains a
hyperplane of Σ.

Now, we are ready to prove our results.

Proof of Theorem 2. For q = 2h, h ≥ 3, let C be an [n, k, d]q code with d odd
whose weights are congruent to 0 or d (mod q/2). For a generator matrix G of C
and a line L in Σ = PG(k− 1, q), we have wG(L) =

∑
P∈L wG(P ) ≡ 0 (mod q)

by Lemma 11. Let F̃0 := {Q ∈ Σ | wG(Q) is even}. Then, F̃0∩Fd = ∅. Assume
that the t points on L have odd weights and that the other have even weights.
Then, from the condition, we have td ≡ 0 (mod q/2), so, t ≡ 0 (mod q/2), for
d is odd. Hence t = 0, q/2 or q. Thus, |F̃0 ∩ L| = 1, q/2 + 1 or q + 1, and F̃0
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contains a hyperplane of Σ by Lemma 12. Hence our assertion follows from
Lemma 7.

Proof of Theorem 3. For q = 2h, h ≥ 3, let C be an [n, k, d]q code with
gcd(d, q) = 2 whose weights are congruent to 0 or d (mod q). For a gener-
ator matrix G of C and a line L in Σ = PG(k − 1, q), we have wG(L) =∑

P∈L wG(P ) ≡ 0 (mod q) by Lemma 11. Note that Σ = F0 ∪F2, F0 ∩F2 = ∅.
Assume |L ∩ F2| = t. Then, from the condition, we have td ≡ 0 (mod q), so,
t ≡ 0 (mod q/2), for gcd(d, q) = 2. Hence t = 0, q/2 or q. Thus, |F0 ∩ L| =
1, q/2 + 1 or q + 1, and F0 contains a hyperplane of Σ by Lemma 12. Hence C
is extendable by Lemma 8.

Proof of Theorem 5. For integers h, m, t with 0 ≤ m < t ≤ h and for
q = ph with prime p, let C be an [n, k, d]q code with gcd(d, q) = pm and assume∑

i≡d (mod pt) Ai > qk − qk−1 − r(q)qk−3(q − 1). For a generator matrix G of C
and a line L in Σ = PG(k− 1, q), we have wG(L) =

∑
P∈L wG(P ) ≡ 0 (mod q)

by Lemma 11. Let F̄0 = {Q ∈ Σ | wG(Q) 6≡ d (mod pt)} and F̄2 = {Q ∈
Σ | wG(Q) ≡ d (mod pt)}. Then, F̄0 ∩ Fd = ∅ and |F̄0| < θk−2 + r(q)qk−3.
Suppose L ⊂ F̄2. Then, we have d ≡ 0 (mod pt), a contradiction. Thus F̄0

forms a blocking set w.r.t. lines in Σ. Hence F̄0 contains a hyperplane of Σ by
Theorem 9, and C is extendable by Lemma 7.

Lemma 13 ([8]). Let K be a proper subset of a t-flat Πt in PG(k − 1, q). If
every line meets K in either one or q + 1 points, then K is a hyperplane of Πt.

A t-flat Π of Σ with |Π∩F0| = i, |Π∩F1| = j is called an (i, j)t flat. An (i, j)1
flat is called an (i, j)-line. An (i, j)-hyperplane is an (i, j)k−2 flat. Note that a
(1, 1)-line and a (0, 1)-line do not exist by Lemma 11.

Proof of Theorem 6. It suffices to prove for the case (Φ0, Φ1) = (θk−1 −
2qk−2, qk−2). Let C be an [n, k, d]q code with diversity (Φ0, Φ1) = (θk−1 −
2qk−2, qk−2), gcd(d, q) = 1, k ≥ 3. Then, we have |F1| = |F2| = qk−2. For
R ∈ F2, there exist at least θk−3 lines through R containing no point of F1,
for |F1| = qk−2. Such lines are (1, 0)-lines, for gcd(d, q) = 1. Let l1, · · · , lθk−3

be such lines and let H =
⋃θk−3

i=1 li. Since |F2 ∩ H| = (q − 1)θk−3 + 1 = |F2|,
we have F2 ⊂ H. Hence, every line through two points of F2 is a (1, 0)-line.
For Ri ∈ li and Rj ∈ lj with i 6= j and Ri, Rj 6= R, the line l = 〈Ri, Rj〉 is
a (1, 0)-line. Let P be the point of F0 on l. If there exists a point of F1 on
the line lP = 〈R, P 〉, then there exists a (1, 1)-line or a (0, 1)-line on the plane
〈li, lj〉, a contradiction. Hence lP is also a (1, 0)-line, and l is contained in H.
It follows that H forms a hyperplane of Σ = PG(k − 1, q). Since H contains
only (1, 0)-lines or (q +1, 0)-lines, H0 = F0∩H is a hyperplane of H by Lemma
13. Now, take a hyperplane H1 through H0 with H1 6= H. Then, it holds that
H1 ⊂ F0 ∪ F1 since F2 = H \H0. Hence C is extendable by Lemma 8.
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