# New extension theorems for codes over $\mathbb{F}_{q}{ }^{1}$ 

Tatsuya Maruta<br>Taichiro Tanaka<br>maruta@mi.s.osakafu-u.ac.jp<br>Hitoshi Kanda<br>ta330cha@gmail.com<br>jinza80kirisame@gmail.com<br>Department of Mathematics and Information Sciences<br>Osaka Prefecture University, Sakai, Osaka 599-8531, Japan

## Dedicated to the memory of Professor Stefan Dodunekov

Abstract. Some generalized extension theorems for linear codes over $\mathbb{F}_{q}$ are presented.

## 1 Introduction

Let $\mathbb{F}_{q}^{n}$ denote the vector space of $n$-tuples over $\mathbb{F}_{q}$, the field of $q$ elements. A $q$ ary linear code of length $n$ and dimension $k$ or an $[n, k]_{q}$ code is a $k$-dimensional subspace of $\mathbb{F}_{q}^{n}$. An $[n, k, d]_{q}$ code is an $[n, k]_{q}$ code with minimum (Hamming) distance $d$. The weight of a vector $\boldsymbol{x} \in \mathbb{F}_{q}^{n}$, denoted by $w t(\boldsymbol{x})$, is the number of nonzero coordinate positions in $\boldsymbol{x}$. The weight distribution of $\mathcal{C}$ is the list of numbers $A_{i}$ which is the number of codewords of $\mathcal{C}$ with weight $i$. The weight distribution with $\left(A_{0}, A_{d}, \ldots\right)=(1, \alpha, \ldots)$ is expressed as $0^{1} d^{\alpha} \ldots$ in this paper. A $q$-ary linear code $\mathcal{C}$ is $w$-weight $(\bmod q)$ if $\mathcal{C}$ has exactly $w$ kinds of weights under modulo $q$ for codewords. We only consider linear codes over finite fields having no coordinate which is identically zero. For an $[n, k, d]_{q}$ code $\mathcal{C}$ with a generator matrix $G, \mathcal{C}$ is called extendable (to $\mathcal{C}^{\prime}$ ) if there exists a vector $h \in \mathbb{F}_{q}^{k}$ such that the extended matrix $\left[G, h^{\mathrm{T}}\right]$ generates an $[n+1, k, d+1]_{q}$ code $\mathcal{C}^{\prime}$. Then $\mathcal{C}^{\prime}$ is called an extension of $\mathcal{C}$. The most well-known extension theorem is the following by Hill and Lizak (1995), see also [5].
Theorem 1 ([6]). Every $[n, k, d]_{q}$ code with $g c d(d, q)=1$, whose weights (of codewords) are congruent to 0 or $d(\bmod q)$, is extendable.

For even $q \geq 8$, we give a stronger result:
Theorem 2. For $q=2^{h}, h \geq 3$, every $[n, k, d]_{q}$ code with $d$ odd whose weights are congruent to 0 or $d(\bmod q / 2)$ is extendable.

Theorem 2 is the first extension theorem for 4 -weight $(\bmod q)$ linear codes. As for the extension theorems for 3 -weight $(\bmod q)$ linear codes, see [12].

[^0]Theorem 3. For $q=2^{h}, h \geq 3$, every $[n, k, d]_{q}$ code with $g c d(d, q)=2$ whose weights are congruent to 0 or $d(\bmod q)$ is extendable.

Simonis (2000) gave the following generalization of Theorem 1.
Theorem 4 ([13]). Every $[n, k, d]_{q}$ code with $g c d(d, q)=1, q=p^{h}, p$ prime, is extendable if $\sum_{i \neq d}(\bmod p) A_{i}=q^{k-1}$.

We give a generalization of Theorem 4:
Theorem 5. Let $h, m, t$ be integers with $0 \leq m<t \leq h$. For $q=p^{h}$ with prime $p$, every $[n, k, d]_{q}$ code with $g c d(d, q)=p^{m}$ is extendable if

$$
\begin{equation*}
\sum_{i \equiv d} A_{\left(\bmod p^{t}\right)} A_{i}>q^{k}-q^{k-1}-r(q) q^{k-3}(q-1), \tag{1}
\end{equation*}
$$

where $q+r(q)+1$ is the smallest size of a non-trivial blocking set in $P G(2, q)$.
It can be shown that (1) implies $\sum_{i \equiv d\left(\bmod p^{t}\right)} A_{i}=q^{k}-q^{k-1}$. Note that Theorem 4 is the case $m=0, t=1$ and $\sum_{i \equiv d\left(\bmod p^{t}\right)} A_{i}=q^{k}-q^{k-1}$ in Theorem 5.

To give another extension theorem, we introduce the diversity of a linear code. For an $[n, k, d]_{q}$ code $\mathcal{C}$ with $\operatorname{gcd}(d, q)=1$, let

$$
\Phi_{0}=\frac{1}{q-1} \sum_{q \mid i, i>0} A_{i}, \quad \Phi_{1}=\frac{1}{q-1} \sum_{i \neq 0, d}(\bmod q),
$$

where the notation $q \mid i$ means that $q$ is a divisor of $i$. The pair of integers $\left(\Phi_{0}, \Phi_{1}\right)$ is called the diversity of $\mathcal{C}([9],[10])$. Theorem 1 shows that $\mathcal{C}$ is extendable if $\Phi_{1}=0$. We denote $\theta_{j}=\left(q^{j+1}-1\right) /(q-1)$ for $\mathbb{F}_{q}$. As for the extendability of ternary linear codes $(q=3)$, it is known that an $[n, k, d]_{3}$ code with $\operatorname{gcd}(3, d)=1, k \geq 3$, is extendable if

$$
\left(\Phi_{0}, \Phi_{1}\right) \in\left\{\left(\theta_{k-2}, 0\right),\left(\theta_{k-3}, 2 \cdot 3^{k-2}\right),\left(\theta_{k-2}, 2 \cdot 3^{k-2}\right),\left(\theta_{k-2}+3^{k-2}, 3^{k-2}\right)\right\}
$$

see [10]. For an $[n, k, d]_{q}$ code $\mathcal{C}$ with $\operatorname{gcd}(d, q)=1, k \geq 3$, it follows from Theorem 1 that $\mathcal{C}$ is extendable if $\left(\Phi_{0}, \Phi_{1}\right)=\left(\theta_{k-2}, 0\right)$. We generalize the case $\left(\Phi_{0}, \Phi_{1}\right)=\left(\theta_{k-2}+3^{k-2}, 3^{k-2}\right)$ for ternary linear codes to $q$-ary linear codes.

Theorem 6. Let $\mathcal{C}$ be an $[n, k, d]_{q}$ code with diversity $\left(\Phi_{0}, \Phi_{1}\right)$, gcd $(d, q)=1$. Then $\mathcal{C}$ is extendable if $\left(\Phi_{0}, \Phi_{1}\right)=\left(\theta_{k-2}, 0\right)$ or $\left(\theta_{k-1}-2 q^{k-2}, q^{k-2}\right)$.
Example 1. (a) Let $\mathcal{C}_{1}$ be a $[100,3,87]_{8}$ code. It can be proved that all possible weights of $\mathcal{C}_{1}$ are $87,88,91,92,95,96$. Hence $\mathcal{C}_{1}$ is extendable by Theorem 2.
(b) There exists a $[30,3,22]_{4}$ code $\mathcal{C}_{2}$ with weight distribution $0^{1} 22^{45} 24^{15} 30^{3}$,
see $[3] . \mathcal{C}_{2}$ is extendable by Theorem 5 with $m=1, t=2, p=2$.
(c) Let $\mathcal{C}_{3}$ be a $[15,3,11]_{4}$ code with generator matrix

$$
\left[\begin{array}{lllllllllllllll}
1 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 1 & 0 & 1 & 1 & 1 & 0 & 0 \\
0 & 1 & 0 & 1 & 1 & \bar{\omega} & \bar{\omega} & 1 & \omega & 1 & \bar{\omega} & \omega & 1 & 1 & 1 \\
0 & 0 & 1 & 1 & 0 & 0 & 0 & \omega & 1 & 0 & 1 & 0 & 0 & \bar{\omega} & 1
\end{array}\right]
$$

where $\mathbb{F}_{4}=\{0,1, \omega, \bar{\omega}\}$. The weight distribution of $\mathcal{C}_{3}$ is $0^{1} 7^{3} 8^{3} 9^{3} 11^{9} 12^{36} 13^{9}$ with diversity $(13,4)$. So, $\mathcal{C}_{3}$ is extendable by Theorem 6.

Problem. (i) Can the conditions " $q=2^{h}$ " and " $(\bmod q / 2)$ " in Theorem 2 be generalized to " $q=p^{h}$ " and " $(\bmod q / p)$ " for an odd prime $p$ ?
(ii) Is Theorem 6 valid for the case $\operatorname{gcd}(d, q) \geq 2$ ?
(iii) Find more diversities such that every code over $\mathbb{F}_{q}$ is extendable.

## 2 Proof of the new extension theorems

We first give the geometric method to investigate linear codes over $\mathbb{F}_{q}$ through the projective geometry. A $j$-flat of $\mathrm{PG}(r, q)$ is a projective subspace of dimension $j$ in $\mathrm{PG}(r, q)$. The 0-flats, 1-flats, 2-flats and $(r-1)$-flats are called points, lines, planes and hyperplanes, respectively. The number of points in a $j$-flat is $|\mathrm{PG}(j, q)|=\theta_{j}=\left(q^{j+1}-1\right) /(q-1)$, where $|T|$ denotes the number of elements in the set $T$. We refer to [7] for geometric terminologies.

We assume $k \geq 3$. Let $\mathcal{C}$ be an $[n, k, d]_{q}$ code with diversity $\left(\Phi_{0}, \Phi_{1}\right)$ and a generator matrix $G=\left[g_{i j}\right]$ with no all-zero column. Let $g_{i}$ be the $i$-th row of $G$ for $1 \leq i \leq k$. We consider the mapping $w_{G}$ from $\Sigma:=\operatorname{PG}(k-1, q)$ to $\left\{i \mid A_{i}>0\right\}$, the set of non-zero weights of $\mathcal{C}$. For $P=\mathbf{P}\left(p_{1}, \ldots, p_{k}\right) \in \Sigma$, the weight of $P$ with respect to $G$, denoted by $w_{G}(P)$, is defined as

$$
w_{G}(P)=\left|\left\{j \mid \sum_{i=1}^{k} g_{i j} p_{i} \neq 0\right\}\right|=w t\left(\sum_{i=1}^{k} p_{i} g_{i}\right)
$$

Let $F_{d}=\left\{P \in \Sigma \mid w_{G}(P)=d\right\}$. Recall that a hyperplane $H$ of $\Sigma$ is defined by a non-zero vector $h=\left(h_{1}, \ldots, h_{k}\right) \in \mathbb{F}_{q}^{k}$ as $H=\left\{\mathbf{P}\left(p_{1}, \ldots, p_{k}\right) \in\right.$ $\left.\Sigma \mid h_{1} p_{1}+\cdots+h_{k} p_{k}=0\right\}$. The vector $h$ is called a defining vector of $H$.
Lemma 7 ([11]). $\mathcal{C}$ is extendable if and only if there exists a hyperplane $H$ of $\Sigma$ such that $F_{d} \cap H=\emptyset$. Moreover, the extended matrix of $G$ by adding a defining vector of $H$ as a column generates an extension of $\mathcal{C}$.

Now, let

$$
\begin{aligned}
& F_{0}=\left\{P \in \Sigma \mid w_{G}(P) \equiv 0 \quad(\bmod q)\right\} \\
& F_{1}=\left\{P \in \Sigma \mid w_{G}(P) \not \equiv 0, d \quad(\bmod q)\right\} \\
& F_{2}=\left\{P \in \Sigma \mid w_{G}(P) \equiv d \quad(\bmod q)\right\} \supset F_{d}
\end{aligned}
$$

Note that $\left(\Phi_{0}, \Phi_{1}\right)=\left(\left|F_{0}\right|,\left|F_{1}\right|\right)$. Since $\left(F_{0} \cup F_{1}\right) \cap F_{d}=\emptyset$ if $\operatorname{gcd}(d, q)<q$, we get the following.

Lemma 8. $\mathcal{C}$ is extendable if $\operatorname{gcd}(d, q)<q$ and if there exists a hyperplane $H$ of $\Sigma$ such that $H \subset F_{0} \cup F_{1}$.

A set $\mathcal{B}$ in $\operatorname{PG}(r, q)$ is called a blocking set with respect to s-flats if every $s$-flat in $\operatorname{PG}(r, q)$ meets $\mathcal{B}$ in at least one point. A blocking set in $\operatorname{PG}(r, q)$ with respect to $s$-flats is called non-trivial if it contains no $(r-s)$-flat.

Theorem 9 ([1],[2],[4]). Let $\mathcal{B}$ be a blocking set with respect to s-flats in $P G(r, q)$.
(a) $|\mathcal{B}| \geq \theta_{r-s}$, where the equality holds if and only if $\mathcal{B}$ is an $(r-s)$-flat.
(b) $|\mathcal{B}| \geq \theta_{r-s}+q^{r-s-1} r(q)$ if $\mathcal{B}$ is non-trivial, where $q+r(q)+1$ is the smallest size of a non-trivial blocking set in $P G(2, q)$.

Considering the $(q+1) \times n$ matrix whose rows are the vectors in the set $\left\{\boldsymbol{a}_{1}+\lambda \boldsymbol{a}_{2} \mid \lambda \in \mathbb{F}_{q}\right\} \cup\left\{\boldsymbol{a}_{2}\right\}$, and counting the number of non-zero entries via rows and via columns, gives the following.

Lemma 10 ([5]). For two linearly independent vectors $\boldsymbol{a}_{1}, \boldsymbol{a}_{2} \in \mathbb{F}_{q}^{n}$, it holds that

$$
\sum_{\lambda \in \mathbb{F}_{q}} w t\left(\boldsymbol{a}_{1}+\lambda \boldsymbol{a}_{2}\right)+w t\left(\boldsymbol{a}_{2}\right) \equiv 0 \quad(\bmod q)
$$

As a consequence of Lemma 10, we get the following.
Lemma 11. For a line $L=\left\{P_{0}, P_{1}, \cdots, P_{q}\right\}$ in $\Sigma$, it holds that

$$
\begin{equation*}
w_{G}(L):=\sum_{i=0}^{q} w_{G}\left(P_{i}\right) \equiv 0 \quad(\bmod q) \tag{2}
\end{equation*}
$$

Lemma 12 ([14]). Let $K$ be a set in $\Sigma=\operatorname{PG}(k-1, q), k \geq 3, q=2^{h}, h \geq 3$, meeting every line in exactly $1, q / 2+1$, or $q+1$ points. Then, $K$ contains a hyperplane of $\Sigma$.

Now, we are ready to prove our results.
Proof of Theorem 2. For $q=2^{h}, h \geq 3$, let $\mathcal{C}$ be an $[n, k, d]_{q}$ code with $d$ odd whose weights are congruent to 0 or $d(\bmod q / 2)$. For a generator matrix $G$ of $\mathcal{C}$ and a line $L$ in $\Sigma=\operatorname{PG}(k-1, q)$, we have $w_{G}(L)=\sum_{P \in L} w_{G}(P) \equiv 0(\bmod q)$ by Lemma 11. Let $\tilde{F}_{0}:=\left\{Q \in \Sigma \mid w_{G}(Q)\right.$ is even $\}$. Then, $\tilde{F}_{0} \cap F_{d}=\emptyset$. Assume that the $t$ points on $L$ have odd weights and that the other have even weights. Then, from the condition, we have $t d \equiv 0(\bmod q / 2)$, so, $t \equiv 0(\bmod q / 2)$, for $d$ is odd. Hence $t=0, q / 2$ or $q$. Thus, $\left|\tilde{F}_{0} \cap L\right|=1, q / 2+1$ or $q+1$, and $\tilde{F}_{0}$
contains a hyperplane of $\Sigma$ by Lemma 12. Hence our assertion follows from Lemma 7.

Proof of Theorem 3. For $q=2^{h}, h \geq 3$, let $\mathcal{C}$ be an $[n, k, d]_{q}$ code with $\operatorname{gcd}(d, q)=2$ whose weights are congruent to 0 or $d(\bmod q)$. For a generator matrix $G$ of $\mathcal{C}$ and a line $L$ in $\Sigma=\operatorname{PG}(k-1, q)$, we have $w_{G}(L)=$ $\sum_{P \in L} w_{G}(P) \equiv 0(\bmod q)$ by Lemma 11. Note that $\Sigma=F_{0} \cup F_{2}, F_{0} \cap F_{2}=\emptyset$. Assume $\left|L \cap F_{2}\right|=t$. Then, from the condition, we have $t d \equiv 0(\bmod q)$, so, $t \equiv 0(\bmod q / 2)$, for $\operatorname{gcd}(d, q)=2$. Hence $t=0, q / 2$ or $q$. Thus, $\left|F_{0} \cap L\right|=$ $1, q / 2+1$ or $q+1$, and $F_{0}$ contains a hyperplane of $\Sigma$ by Lemma 12. Hence $\mathcal{C}$ is extendable by Lemma 8 .

Proof of Theorem 5. For integers $h, m, t$ with $0 \leq m<t \leq h$ and for $q=p^{h}$ with prime $p$, let $\mathcal{C}$ be an $[n, k, d]_{q}$ code with $\operatorname{gcd}(d, q)=p^{m}$ and assume $\sum_{i \equiv d\left(\bmod p^{t}\right)} A_{i}>q^{k}-q^{k-1}-r(q) q^{k-3}(q-1)$. For a generator matrix $G$ of $\mathcal{C}$ and a line $L$ in $\Sigma=\mathrm{PG}(k-1, q)$, we have $w_{G}(L)=\sum_{P \in L} w_{G}(P) \equiv 0(\bmod q)$ by Lemma 11. Let $\bar{F}_{0}=\left\{Q \in \Sigma \mid w_{G}(Q) \not \equiv d\left(\bmod p^{t}\right)\right\}$ and $\bar{F}_{2}=\{Q \in$ $\left.\Sigma \mid w_{G}(Q) \equiv d\left(\bmod p^{t}\right)\right\}$. Then, $\bar{F}_{0} \cap F_{d}=\emptyset$ and $\left|\bar{F}_{0}\right|<\theta_{k-2}+r(q) q^{k-3}$. Suppose $L \subset \bar{F}_{2}$. Then, we have $d \equiv 0\left(\bmod p^{t}\right)$, a contradiction. Thus $\bar{F}_{0}$ forms a blocking set w.r.t. lines in $\Sigma$. Hence $\bar{F}_{0}$ contains a hyperplane of $\Sigma$ by Theorem 9 , and $\mathcal{C}$ is extendable by Lemma 7 .

Lemma 13 ([8]). Let $K$ be a proper subset of a $t$-flat $\Pi_{t}$ in $\mathrm{PG}(k-1, q)$. If every line meets $K$ in either one or $q+1$ points, then $K$ is a hyperplane of $\Pi_{t}$.

A $t$-flat $\Pi$ of $\Sigma$ with $\left|\Pi \cap F_{0}\right|=i,\left|\Pi \cap F_{1}\right|=j$ is called an $(i, j)_{t}$ flat. An $(i, j)_{1}$ flat is called an $(i, j)$-line. An $(i, j)$-hyperplane is an $(i, j)_{k-2}$ flat. Note that a ( 1,1 )-line and a ( 0,1 )-line do not exist by Lemma 11 .

Proof of Theorem 6. It suffices to prove for the case $\left(\Phi_{0}, \Phi_{1}\right)=\left(\theta_{k-1}-\right.$ $\left.2 q^{k-2}, q^{k-2}\right)$. Let $\mathcal{C}$ be an $[n, k, d]_{q}$ code with diversity $\left(\Phi_{0}, \Phi_{1}\right)=\left(\theta_{k-1}-\right.$ $\left.2 q^{k-2}, q^{k-2}\right), \operatorname{gcd}(d, q)=1, k \geq 3$. Then, we have $\left|F_{1}\right|=\left|F_{2}\right|=q^{k-2}$. For $R \in F_{2}$, there exist at least $\theta_{k-3}$ lines through $R$ containing no point of $F_{1}$, for $\left|F_{1}\right|=q^{k-2}$. Such lines are (1, 0 )-lines, for $\operatorname{gcd}(d, q)=1$. Let $l_{1}, \cdots, l_{\theta_{k-3}}$ be such lines and let $H=\bigcup_{i=1}^{\theta_{k-3}} l_{i}$. Since $\left|F_{2} \cap H\right|=(q-1) \theta_{k-3}+1=\left|F_{2}\right|$, we have $F_{2} \subset H$. Hence, every line through two points of $F_{2}$ is a $(1,0)$-line. For $R_{i} \in l_{i}$ and $R_{j} \in l_{j}$ with $i \neq j$ and $R_{i}, R_{j} \neq R$, the line $l=\left\langle R_{i}, R_{j}\right\rangle$ is a $(1,0)$-line. Let $P$ be the point of $F_{0}$ on $l$. If there exists a point of $F_{1}$ on the line $l_{P}=\langle R, P\rangle$, then there exists a $(1,1)$-line or a ( 0,1 )-line on the plane $\left\langle l_{i}, l_{j}\right\rangle$, a contradiction. Hence $l_{P}$ is also a ( 1,0 )-line, and $l$ is contained in $H$. It follows that $H$ forms a hyperplane of $\Sigma=\operatorname{PG}(k-1, q)$. Since $H$ contains only ( 1,0 )-lines or $(q+1,0)$-lines, $H_{0}=F_{0} \cap H$ is a hyperplane of $H$ by Lemma 13. Now, take a hyperplane $H_{1}$ through $H_{0}$ with $H_{1} \neq H$. Then, it holds that $H_{1} \subset F_{0} \cup F_{1}$ since $F_{2}=H \backslash H_{0}$. Hence $\mathcal{C}$ is extendable by Lemma 8 .

## References

[1] A. Beutelspacher, Blocking sets and partial spreads in finite projective spaces, Geom. Dedicata, 9, 1980, 425-449.
[2] R. C. Bose, R. C. Burton, A characterization of flat spaces in a finite projective geometry and the uniqueness of the Hamming and the MacDonald codes, J. Combin. Theory, 1, 1966, 96-104.
[3] I. Bouyukliev, M. Grassl, Z. Varbanov, New bounds for $n_{4}(k, d)$ and classification of some optimal codes over GF(4), Discrete Math., 281, 2004, 43-66.
[4] U. Heim, Blockierende Mengen in endlichen projektiven Räumen, Mitt. Math. Sem. Giessen, 226, 1996.
[5] R. Hill, An extension theorem for linear codes, Des. Codes Cryptogr., 17, 1999, 151-157.
[6] R. Hill, P. Lizak, Extensions of linear codes, Proc. IEEE Int. Symposium on Inform. Theory, Whistler, Canada, 1995, p. 345.
[7] J. W. P. Hirschfeld, Projective Geometries over Finite Fields, Second edition, Clarendon Press, Oxford, 1998.
[8] T. Maruta, On the extendability of linear codes, Finite Fields Appl., 7, 2001, 350-354.
[9] T. Maruta, A new extension theorem for linear codes, Finite Fields Appl., 10, 2004, 674-685.
[10] T. Maruta, Extendability of ternary linear codes, Des. Codes Cryptogr., 35, 2005, 175-190.
[11] T. Maruta, Extendability of linear codes over $\mathbb{F}_{q}$, Proc. 11th International Workshop on Algebraic and Combinatorial Coding Theory, Pamporovo, Bulgaria, 2008, 203-209.
[12] T. Maruta, Extension theorems for linear codes over finite fields, J. Geom., 101, 2011, 173-183.
[13] J. Simonis, Adding a parity check bit, IEEE Trans. Inform. Theory, 46, 2000, 1544-1545.
[14] Y. Yoshida, T. Maruta, An extension theorem for $[n, k, d]_{q}$ codes with $\operatorname{gcd}(d, q)=2$, Australas. J. Combin., 48, 2010, 117-131.


[^0]:    ${ }^{1}$ This research is partially supported by Grant-in-Aid for Scientific Research of Japan Society for the Promotion of Science under Contract Number 24540138.

