New extension theorems for codes over \mathbb{F}_q^{-1}

TATSUYA MARUTAmaruta@mi.s.osakafu-u.ac.jpTAICHIRO TANAKAta330cha@gmail.comHITOSHI KANDAjinza80kirisame@gmail.comDepartment of Mathematics and Information SciencesOsaka Prefecture University, Sakai, Osaka 599-8531, Japan

Dedicated to the memory of Professor Stefan Dodunekov

Abstract. Some generalized extension theorems for linear codes over \mathbb{F}_q are presented.

1 Introduction

Let \mathbb{F}_q^n denote the vector space of *n*-tuples over \mathbb{F}_q , the field of q elements. A qary linear code of length n and dimension k or an $[n, k]_q$ code is a k-dimensional subspace of \mathbb{F}_q^n . An $[n, k, d]_q$ code is an $[n, k]_q$ code with minimum (Hamming) distance d. The weight of a vector $\boldsymbol{x} \in \mathbb{F}_q^n$, denoted by $wt(\boldsymbol{x})$, is the number of nonzero coordinate positions in \boldsymbol{x} . The weight distribution of C is the list of numbers A_i which is the number of codewords of C with weight i. The weight distribution with $(A_0, A_d, \ldots) = (1, \alpha, \ldots)$ is expressed as $0^1 d^{\alpha} \cdots$ in this paper. A q-ary linear code C is w-weight (mod q) if C has exactly w kinds of weights under modulo q for codewords. We only consider linear codes over finite fields having no coordinate which is identically zero. For an $[n, k, d]_q$ code C with a generator matrix G, C is called extendable (to C') if there exists a vector $h \in \mathbb{F}_q^k$ such that the extended matrix $[G, h^T]$ generates an $[n + 1, k, d + 1]_q$ code C'. Then C' is called an extension of C. The most well-known extension theorem is the following by Hill and Lizak (1995), see also [5].

Theorem 1 ([6]). Every $[n, k, d]_q$ code with gcd(d, q) = 1, whose weights (of codewords) are congruent to 0 or d (mod q), is extendable.

For even $q \geq 8$, we give a stronger result:

Theorem 2. For $q = 2^h$, $h \ge 3$, every $[n, k, d]_q$ code with d odd whose weights are congruent to 0 or d (mod q/2) is extendable.

Theorem 2 is the first extension theorem for 4-weight (mod q) linear codes. As for the extension theorems for 3-weight (mod q) linear codes, see [12].

¹This research is partially supported by Grant-in-Aid for Scientific Research of Japan Society for the Promotion of Science under Contract Number 24540138.

Maruta, Tanaka, Kanda

Theorem 3. For $q = 2^h$, $h \ge 3$, every $[n, k, d]_q$ code with gcd(d, q) = 2 whose weights are congruent to 0 or $d \pmod{q}$ is extendable.

Simonis (2000) gave the following generalization of Theorem 1.

Theorem 4 ([13]). Every $[n, k, d]_q$ code with gcd(d, q) = 1, $q = p^h$, p prime, is extendable if $\sum_{i \not\equiv d \pmod{p}} A_i = q^{k-1}$.

We give a generalization of Theorem 4:

Theorem 5. Let h, m, t be integers with $0 \le m < t \le h$. For $q = p^h$ with prime p, every $[n, k, d]_q$ code with $gcd(d, q) = p^m$ is extendable if

$$\sum_{i \equiv d \pmod{p^t}} A_i > q^k - q^{k-1} - r(q)q^{k-3}(q-1), \tag{1}$$

where q + r(q) + 1 is the smallest size of a non-trivial blocking set in PG(2,q).

It can be shown that (1) implies $\sum_{i \equiv d \pmod{p^t}} A_i = q^k - q^{k-1}$. Note that Theorem 4 is the case m = 0, t = 1 and $\sum_{i \equiv d \pmod{p^t}} A_i = q^k - q^{k-1}$ in Theorem 5.

To give another extension theorem, we introduce the diversity of a linear code. For an $[n, k, d]_q$ code C with gcd(d, q) = 1, let

$$\Phi_0 = \frac{1}{q-1} \sum_{q|i,i>0} A_i, \quad \Phi_1 = \frac{1}{q-1} \sum_{i \neq 0,d \pmod{q}} A_i,$$

where the notation q|i means that q is a divisor of i. The pair of integers (Φ_0, Φ_1) is called the *diversity* of \mathcal{C} ([9], [10]). Theorem 1 shows that \mathcal{C} is extendable if $\Phi_1 = 0$. We denote $\theta_j = (q^{j+1} - 1)/(q - 1)$ for \mathbb{F}_q . As for the extendability of ternary linear codes (q = 3), it is known that an $[n, k, d]_3$ code with $\gcd(3, d) = 1, k \geq 3$, is extendable if

$$(\Phi_0, \Phi_1) \in \{(\theta_{k-2}, 0), (\theta_{k-3}, 2 \cdot 3^{k-2}), (\theta_{k-2}, 2 \cdot 3^{k-2}), (\theta_{k-2} + 3^{k-2}, 3^{k-2})\},\$$

see [10]. For an $[n, k, d]_q$ code C with $gcd(d, q) = 1, k \geq 3$, it follows from Theorem 1 that C is extendable if $(\Phi_0, \Phi_1) = (\theta_{k-2}, 0)$. We generalize the case $(\Phi_0, \Phi_1) = (\theta_{k-2} + 3^{k-2}, 3^{k-2})$ for ternary linear codes to q-ary linear codes.

Theorem 6. Let C be an $[n, k, d]_q$ code with diversity (Φ_0, Φ_1) , gcd(d, q) = 1. Then C is extendable if $(\Phi_0, \Phi_1) = (\theta_{k-2}, 0)$ or $(\theta_{k-1} - 2q^{k-2}, q^{k-2})$.

Example 1. (a) Let C_1 be a $[100, 3, 87]_8$ code. It can be proved that all possible weights of C_1 are 87, 88, 91, 92, 95, 96. Hence C_1 is extendable by Theorem 2. (b) There exists a $[30, 3, 22]_4$ code C_2 with weight distribution $0^1 22^{45} 24^{15} 30^3$,

see [3]. C_2 is extendable by Theorem 5 with m = 1, t = 2, p = 2. (c) Let C_3 be a $[15, 3, 11]_4$ code with generator matrix

														0	
0	1	0	1	1	$\bar{\omega}$	$\bar{\omega}$	1	ω	1	$\bar{\omega}$	ω	1	1	1	,
0	0	1	1	0	0	0	ω	1	0	1	0	0	$\bar{\omega}$	1	

where $\mathbb{F}_4 = \{0, 1, \omega, \bar{\omega}\}$. The weight distribution of \mathcal{C}_3 is $0^{1}7^3 8^3 9^3 11^9 12^{36} 13^9$ with diversity (13, 4). So, \mathcal{C}_3 is extendable by Theorem 6.

Problem. (i) Can the conditions " $q = 2^{h}$ " and " (mod q/2)" in Theorem 2 be generalized to " $q = p^{h}$ " and " (mod q/p)" for an odd prime p? (ii) Is Theorem 6 valid for the case $gcd(d, q) \ge 2$?

(iii) Find more diversities such that every code over \mathbb{F}_q is extendable.

2 Proof of the new extension theorems

We first give the geometric method to investigate linear codes over \mathbb{F}_q through the projective geometry. A *j*-flat of $\operatorname{PG}(r,q)$ is a projective subspace of dimension *j* in $\operatorname{PG}(r,q)$. The 0-flats, 1-flats, 2-flats and (r-1)-flats are called *points*, *lines*, *planes* and *hyperplanes*, respectively. The number of points in a *j*-flat is $|\operatorname{PG}(j,q)| = \theta_j = (q^{j+1}-1)/(q-1)$, where |T| denotes the number of elements in the set *T*. We refer to [7] for geometric terminologies.

We assume $k \geq 3$. Let \mathcal{C} be an $[n, k, d]_q$ code with diversity (Φ_0, Φ_1) and a generator matrix $G = [g_{ij}]$ with no all-zero column. Let g_i be the *i*-th row of G for $1 \leq i \leq k$. We consider the mapping w_G from $\Sigma := \operatorname{PG}(k - 1, q)$ to $\{i \mid A_i > 0\}$, the set of non-zero weights of \mathcal{C} . For $P = \mathbf{P}(p_1, \ldots, p_k) \in \Sigma$, the weight of P with respect to G, denoted by $w_G(P)$, is defined as

$$w_G(P) = |\{j \mid \sum_{i=1}^k g_{ij} p_i \neq 0\}| = wt(\sum_{i=1}^k p_i g_i).$$

Let $F_d = \{P \in \Sigma \mid w_G(P) = d\}$. Recall that a hyperplane H of Σ is defined by a non-zero vector $h = (h_1, \ldots, h_k) \in \mathbb{F}_q^k$ as $H = \{\mathbf{P}(p_1, \ldots, p_k) \in \Sigma \mid h_1p_1 + \cdots + h_kp_k = 0\}$. The vector h is called a *defining vector of* H.

Lemma 7 ([11]). C is extendable if and only if there exists a hyperplane H of Σ such that $F_d \cap H = \emptyset$. Moreover, the extended matrix of G by adding a defining vector of H as a column generates an extension of C.

Now, let

$$F_0 = \{ P \in \Sigma \mid w_G(P) \equiv 0 \pmod{q} \},$$

$$F_1 = \{ P \in \Sigma \mid w_G(P) \not\equiv 0, d \pmod{q} \},$$

$$F_2 = \{ P \in \Sigma \mid w_G(P) \equiv d \pmod{q} \} \supset F_d.$$

Note that $(\Phi_0, \Phi_1) = (|F_0|, |F_1|)$. Since $(F_0 \cup F_1) \cap F_d = \emptyset$ if gcd(d, q) < q, we get the following.

Lemma 8. C is extendable if gcd(d,q) < q and if there exists a hyperplane H of Σ such that $H \subset F_0 \cup F_1$.

A set \mathcal{B} in PG(r,q) is called a *blocking set with respect to s-flats* if every *s*-flat in PG(r,q) meets \mathcal{B} in at least one point. A blocking set in PG(r,q) with respect to *s*-flats is called *non-trivial* if it contains no (r-s)-flat.

Theorem 9 ([1],[2],[4]). Let \mathcal{B} be a blocking set with respect to s-flats in PG(r,q).

(a) $|\mathcal{B}| \ge \theta_{r-s}$, where the equality holds if and only if \mathcal{B} is an (r-s)-flat.

(b) $|\mathcal{B}| \ge \theta_{r-s} + q^{r-s-1}r(q)$ if \mathcal{B} is non-trivial, where q + r(q) + 1 is the smallest size of a non-trivial blocking set in PG(2,q).

Considering the $(q + 1) \times n$ matrix whose rows are the vectors in the set $\{a_1 + \lambda a_2 \mid \lambda \in \mathbb{F}_q\} \cup \{a_2\}$, and counting the number of non-zero entries via rows and via columns, gives the following.

Lemma 10 ([5]). For two linearly independent vectors $a_1, a_2 \in \mathbb{F}_q^n$, it holds that

$$\sum_{\lambda \in \mathbb{F}_q} wt(\boldsymbol{a}_1 + \lambda \boldsymbol{a}_2) + wt(\boldsymbol{a}_2) \equiv 0 \pmod{q}.$$

As a consequence of Lemma 10, we get the following.

Lemma 11. For a line $L = \{P_0, P_1, \dots, P_q\}$ in Σ , it holds that

$$w_G(L) := \sum_{i=0}^{q} w_G(P_i) \equiv 0 \pmod{q}.$$
 (2)

Lemma 12 ([14]). Let K be a set in $\Sigma = PG(k-1,q)$, $k \ge 3$, $q = 2^h$, $h \ge 3$, meeting every line in exactly 1, q/2 + 1, or q + 1 points. Then, K contains a hyperplane of Σ .

Now, we are ready to prove our results.

Proof of Theorem 2. For $q = 2^h$, $h \ge 3$, let \mathcal{C} be an $[n, k, d]_q$ code with d odd whose weights are congruent to 0 or $d \pmod{q/2}$. For a generator matrix G of \mathcal{C} and a line L in $\Sigma = \operatorname{PG}(k-1,q)$, we have $w_G(L) = \sum_{P \in L} w_G(P) \equiv 0 \pmod{q}$ by Lemma 11. Let $\tilde{F}_0 := \{Q \in \Sigma \mid w_G(Q) \text{ is even}\}$. Then, $\tilde{F}_0 \cap F_d = \emptyset$. Assume that the t points on L have odd weights and that the other have even weights. Then, from the condition, we have $td \equiv 0 \pmod{q/2}$, so, $t \equiv 0 \pmod{q/2}$, for d is odd. Hence t = 0, q/2 or q. Thus, $|\tilde{F}_0 \cap L| = 1, q/2 + 1$ or q + 1, and \tilde{F}_0 contains a hyperplane of Σ by Lemma 12. Hence our assertion follows from Lemma 7.

Proof of Theorem 3. For $q = 2^h$, $h \ge 3$, let \mathcal{C} be an $[n, k, d]_q$ code with gcd(d, q) = 2 whose weights are congruent to 0 or $d \pmod{q}$. For a generator matrix G of \mathcal{C} and a line L in $\Sigma = PG(k - 1, q)$, we have $w_G(L) = \sum_{P \in L} w_G(P) \equiv 0 \pmod{q}$ by Lemma 11. Note that $\Sigma = F_0 \cup F_2$, $F_0 \cap F_2 = \emptyset$. Assume $|L \cap F_2| = t$. Then, from the condition, we have $td \equiv 0 \pmod{q}$, so, $t \equiv 0 \pmod{q/2}$, for gcd(d, q) = 2. Hence t = 0, q/2 or q. Thus, $|F_0 \cap L| = 1, q/2 + 1$ or q + 1, and F_0 contains a hyperplane of Σ by Lemma 12. Hence \mathcal{C} is extendable by Lemma 8.

Proof of Theorem 5. For integers h, m, t with $0 \leq m < t \leq h$ and for $q = p^h$ with prime p, let \mathcal{C} be an $[n, k, d]_q$ code with $gcd(d, q) = p^m$ and assume $\sum_{i \equiv d \pmod{p^t}} A_i > q^k - q^{k-1} - r(q)q^{k-3}(q-1)$. For a generator matrix G of \mathcal{C} and a line L in $\Sigma = PG(k-1,q)$, we have $w_G(L) = \sum_{P \in L} w_G(P) \equiv 0 \pmod{q}$ by Lemma 11. Let $\overline{F_0} = \{Q \in \Sigma \mid w_G(Q) \not\equiv d \pmod{p^t}\}$ and $\overline{F_2} = \{Q \in \Sigma \mid w_G(Q) \not\equiv d \pmod{p^t}\}$ and $\overline{F_2} = \{Q \in \Sigma \mid w_G(Q) \equiv d \pmod{p^t}\}$. Then, $\overline{F_0} \cap F_d = \emptyset$ and $|\overline{F_0}| < \theta_{k-2} + r(q)q^{k-3}$. Suppose $L \subset \overline{F_2}$. Then, we have $d \equiv 0 \pmod{p^t}$, a contradiction. Thus $\overline{F_0}$ forms a blocking set w.r.t. lines in Σ . Hence $\overline{F_0}$ contains a hyperplane of Σ by Theorem 9, and \mathcal{C} is extendable by Lemma 7.

Lemma 13 ([8]). Let K be a proper subset of a t-flat Π_t in PG(k - 1, q). If every line meets K in either one or q + 1 points, then K is a hyperplane of Π_t .

A *t*-flat Π of Σ with $|\Pi \cap F_0| = i$, $|\Pi \cap F_1| = j$ is called an $(i, j)_t$ flat. An $(i, j)_1$ flat is called an (i, j)-line. An (i, j)-hyperplane is an $(i, j)_{k-2}$ flat. Note that a (1, 1)-line and a (0, 1)-line do not exist by Lemma 11.

Proof of Theorem 6. It suffices to prove for the case $(\Phi_0, \Phi_1) = (\theta_{k-1} - 2q^{k-2}, q^{k-2})$. Let \mathcal{C} be an $[n, k, d]_q$ code with diversity $(\Phi_0, \Phi_1) = (\theta_{k-1} - 2q^{k-2}, q^{k-2})$, $gcd(d,q) = 1, k \geq 3$. Then, we have $|F_1| = |F_2| = q^{k-2}$. For $R \in F_2$, there exist at least θ_{k-3} lines through R containing no point of F_1 , for $|F_1| = q^{k-2}$. Such lines are (1, 0)-lines, for gcd(d, q) = 1. Let $l_1, \dots, l_{\theta_{k-3}}$ be such lines and let $H = \bigcup_{i=1}^{\theta_{k-3}} l_i$. Since $|F_2 \cap H| = (q-1)\theta_{k-3} + 1 = |F_2|$, we have $F_2 \subset H$. Hence, every line through two points of F_2 is a (1, 0)-line. For $R_i \in l_i$ and $R_j \in l_j$ with $i \neq j$ and $R_i, R_j \neq R$, the line $l = \langle R_i, R_j \rangle$ is a (1, 0)-line. Let P be the point of F_0 on l. If there exists a point of F_1 on the line $l_P = \langle R, P \rangle$, then there exists a (1, 1)-line or a (0, 1)-line on the plane $\langle l_i, l_j \rangle$, a contradiction. Hence l_P is also a (1, 0)-line, and l is contained in H. It follows that H forms a hyperplane of $\Sigma = PG(k-1, q)$. Since H contains only (1, 0)-lines or (q+1, 0)-lines, $H_0 = F_0 \cap H$ is a hyperplane of H by Lemma 13. Now, take a hyperplane H_1 through H_0 with $H_1 \neq H$. Then, it holds that $H_1 \subset F_0 \cup F_1$ since $F_2 = H \setminus H_0$. Hence \mathcal{C} is extendable by Lemma 8.

References

- [1] A. Beutelspacher, Blocking sets and partial spreads in finite projective spaces, *Geom. Dedicata*, **9**, 1980, 425-449.
- [2] R. C. Bose, R. C. Burton, A characterization of flat spaces in a finite projective geometry and the uniqueness of the Hamming and the MacDonald codes, J. Combin. Theory, 1, 1966, 96-104.
- [3] I. Bouyukliev, M. Grassl, Z. Varbanov, New bounds for $n_4(k, d)$ and classification of some optimal codes over GF(4), *Discrete Math.*, **281**, 2004, 43-66.
- [4] U. Heim, Blockierende Mengen in endlichen projektiven Räumen, Mitt. Math. Sem. Giessen, 226, 1996.
- [5] R. Hill, An extension theorem for linear codes, Des. Codes Cryptogr., 17, 1999, 151-157.
- [6] R. Hill, P. Lizak, Extensions of linear codes, Proc. IEEE Int. Symposium on Inform. Theory, Whistler, Canada, 1995, p. 345.
- [7] J. W. P. Hirschfeld, Projective Geometries over Finite Fields, Second edition, Clarendon Press, Oxford, 1998.
- [8] T. Maruta, On the extendability of linear codes, *Finite Fields Appl.*, 7, 2001, 350-354.
- [9] T. Maruta, A new extension theorem for linear codes, *Finite Fields Appl.*, 10, 2004, 674-685.
- [10] T. Maruta, Extendability of ternary linear codes, Des. Codes Cryptogr., 35, 2005, 175-190.
- [11] T. Maruta, Extendability of linear codes over \mathbb{F}_q , Proc. 11th International Workshop on Algebraic and Combinatorial Coding Theory, Pamporovo, Bulgaria, 2008, 203-209.
- [12] T. Maruta, Extension theorems for linear codes over finite fields, J. Geom., 101, 2011, 173-183.
- [13] J. Simonis, Adding a parity check bit, IEEE Trans. Inform. Theory, 46, 2000, 1544-1545.
- [14] Y. Yoshida, T. Maruta, An extension theorem for $[n, k, d]_q$ codes with gcd(d, q) = 2, Australas. J. Combin., 48, 2010, 117-131.