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Abstract. A mapping f from F2m to itself is almost perfect nonlinear (APN) if its
directional derivatives in nonzero directions are all 2-to-1. Let Cf be the binary linear

code of length 2m − 1, whose parity check matrix has its j-th column

[
πj

f(πj)

]
,

where π is a primitive element in F2m and j = 0, 1, · · · , 2m − 2. For m ≥ 3 and any

quadratic APN function f(x) =
∑m−1

i,j=0 ai,jx
2i+2j

, ai,j ∈ F2m , it is proved that Cf

is a quasi-perfect code. As a consequence this gives many classes of binary linear
codes with minimum distance 5 and covering radius 3.

1 Background

Let q be a power of a prime p, Fq denote the finite field with q elements and
F∗q = Fq \ {0}. A code C of length n over Fq is a nonempty subset of Fn

q .
The minimum (Hamming) distance d of a code C defines its error-correcting
properties: e = bd−1

2 c, which is known as the packing radius of the code C. The
covering radius % of a code C is the smallest possible integer such that the spheres
of this radius around the codewords cover the whole space Fn

q , i.e.,

% = max
x∈Fn

q

min
c∈C

d(x, c).

In particular, if the code C is linear, the covering radius can be equivalently
defined in terms of its parity-check matrix as follows.

Definition 1. Let C be an [n, k] code with parity-check matrix H. The covering
radius of C is the smallest integer % such that every q-ary (n − k)-dimensional
column vector can be written as a linear combination of at most % columns from
H.

Obviously, the covering radius is greater than or equal to the packing radius,
and when equality is attained the code C is said to be perfect. As there are only
finitely many classes of linear perfect codes, of particular interest are those codes
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with % = e + 1, called quasi-perfect codes. It is readily seen that any code with
covering radius 1 and minimum distance 1 or 2 is quasi-perfect. Therefore, quasi-
perfect codes with covering radius 2 and 3 were of more interest and have been
extensively studied. Many infinite families of binary, ternary, and quaternary
quasi-perfect codes are found ( see [9, 11] and references therein).

Let m be a positive integer and π be a primitive element of the field Fpm .
For a function f from Fpm to itself with f(0) = 0, define a matrix

Hf =
[

1 π π2 · · · πpm−2

f(1) f(π) f(π2) · · · f(πpm−2)

]
,

where each symbol stands for the column of its coordinate with respect to a
basis of the Fp-vector space Fpm . Let Cf denote the linear code admitting Hf

for parity-check matrix.
A function f from F2m to itself is called almost perfect nonlinear (APN) if for

any a ∈ F∗2m , the derivative Daf(x) = f(x+a)+f(x) is 2-to-1, and is referred to
as almost bent (AB) if for every u, v ∈ F2m , u 6= 0, the extended Walsh transform
Wf (u, v) =

∑
x∈Fm

2
(−1)tr(uf(x))+tr(vx) equals to 0 or ±2

m+1
2 (m is odd), where

tr(x) = x+x2+x4+ · · ·+x2m−1
. Every AB function is APN [8], but the converse

is not true. A comprehensive survey on APN and AB functions can be found
in [6].

Carlet et al in [7] intensively studied the relationship between the APNness
and ABness of the function f and the properties of the related code Cf .

Lemma 1. [7] Let f be a mapping from F2m to itself with f(0) = 0. Then, f
is APN if and only if the linear code Cf has minimum distance 5. Moreover, for
m ≥ 3, if f is APN, then the linear code Cf has dimension 2m − 1− 2m.

There is an interesting connection between AB functions and the uniformly
packed codes, whose covering radius equals to its external distance (i.e., the
number of different nonzero distances between the codewords of its dual).

Lemma 2. [7] Let f be a mapping from F2m to itself with f(0) = 0. Then, f is
AB if and only if the linear code Cf is a uniformly packed code with the minimum
distance 5 and covering radius 3.

2 Binary quasi-perfect linear codes from APN
quadratic functions

Recall that f : F2m → F2m is called quadratic if, up to addition of a constant
function,

f(x) =
m−1∑

i,j=0

ai,jx
2i+2j

, ai,j ∈ F2m . (1)
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In the m odd case, any quadratic function is APN if and only if it is AB [7].
This fact combined with Lemma 2 implies that every quadratic APN function
on odd variables gives a uniformly packed code Cf with minimum distance 5 and
covering radius 3.

By applying the divisibility property of number of solutions of a system of
certain polynomial equations, Moreno and Castro in [13] showed that the linear
code Cf with f(x) = x2i+1, (i,m) = 1 has covering radius 3.

In what follows, we will investigate the covering radius of Cf for general
quadratic APN functions in a direct way. It will be shown that for quadratic
functions f with f(0) = 0, f is APN if and only if the corresponding code Cf is
quasi-perfect.

Proposition 1. Let f be a mapping from F2m to itself with f(0) = 0. If the
linear code Cf is quasi-perfect, then f is APN.

Proof. As proved in [7], for any mapping f , the minimum distance of Cf satisfies
3 ≤ d ≤ 5, where d ≥ 3 comes from the fact every two columns of Hf are
distinct and d ≤ 5 is derived from the non-existence of a linear code [2m−1, k, d]
for k ≥ 2m − 1 − 2m and d ≥ 6. Thus, the linear code Cf has packing radius
1 ≤ e ≤ 2. On the other hand, for any α 6= 0, there exists no element x, y ∈ F∗2m

satisfying {
x + y = 0

f(x) + f(y) = α.

This together with f(0) = 0 implies that the covering radius of Cf is at least 3.
Hence, if the linear code Cf is quasi-perfect, then its minimum distance must be
5. It follows from Lemma 1 that f is an APN function.

For quadratic APN functions, as aforementioned, the code Cf for odd m has
covering radius 3. The following proposition settles the covering radius of Cf for
any positive integer m.

Proposition 2. Let f be a quadratic function as given in (1). For m ≥ 3, if f
is APN, then the linear codes Cf has covering radius 3.

Proof. By Definition 1, we need to show that for any (α, β) ∈ F2
2m , there exist

x1, x2, x3 ∈ F2m satisfying

x1 + x2 + x3 = α
f(x1) + f(x2) + f(x3) = β.

(2)

Let N(α, β) denote the number of solutions x1, x2, x3 of (2).
Taking yt = xt + α for t = 1, 2, 3, we have

f(yt) =
m−1∑
i,j=0

ai,j(xt + α)2
i+2j

=
m−1∑
i,j=0

ai,j(x2i+2j

t + α2i
x2j

t + α2j
x2i

t + α2i+2j
).
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Then, since x1 + x2 + x3 = α, it follows that

f(y1) + f(y2) + f(y3)

=
m−1∑
i,j=0

ai,j(x2i+2j

1 + x2i+2j

2 + x2i+2j

3 ) +
m−1∑
i,j=0

ai,jα
2i

(x2j

1 + x2j

2 + x2j

3 )

+
m−1∑
i,j=0

ai,jα
2j

(x2i

1 + x2i

2 + x2i

3 ) +
m−1∑
i,j=0

ai,jα
2i+2j

=
m−1∑
i,j=0

ai,j(x2i+2j

1 + x2i+2j

2 + x2i+2j

3 ) + f(α).

Thus, the elements x1, x2, x3 satisfying (2) if and only if y1, y2, y3 satisfy

y1 + y2 + y3 = 0
f(y1) + f(y2) + f(y3) = β′, (3)

where β′ = β + f(α). That is to say, N(α, β) = N(0, β′).
We next show N(0, γ) ≥ 1 for any γ ∈ F∗2m if f is APN.
Following from the definition, it is easily seen that f is APN if and only if

f(x1)+f(x2)+f(x3)+f(x1 +x2 +x3) = 0 can be achieved only when x1 = x2 or
x1 = x3 or x2 = x3. By an observation in [6] attributed to Dillon, if f(x) is APN,
then for any nonzero γ ∈ F∗2m , the equation f(x1) + f(x2) + f(x3) + f(x1 + x2 +
x3) = γ has at least a solution. Indeed, suppose there exists a nonzero element γ0

not contained in the set {f(x1)+f(x2)+f(x3)+f(x1+x2+x3) : x1, x2, x3 ∈ F2m},
then for any Boolean function ϕ : F2m → F2, the function f ′(x) = f(x)+γ0ϕ(x)
will be APN. This is because the equation

f ′(x1) + f ′(x2) + f ′(x3) + f ′(x1 + x2 + x3) = 0

suggests

f(x1)+f(x2)+f(x3)+f(x1+x2+x3) = (ϕ(x1)+ϕ(x2)+ϕ(x3)+ϕ(x1+x2+x3))γ0,

and then one has f(x1)+f(x2)+f(x3)+f(x1 +x2 +x3) = 0. The APNness of f
implies that f(x1)+f(x2)+f(x3)+f(x1+x2+x3) = 0 can be achieved only when
x1 = x2 or x1 = x3 or x2 = x3. Thus, f ′(x1)+f ′(x2)+f ′(x3)+f ′(x1+x2+x3) = 0
is achieved only when x1 = x2 or x1 = x3 or x2 = x3 as well, and then f ′(x) is
APN.

Furthermore, if we take ϕ(x) = tr(δ0f(x)) with tr(δ0γ0) = 1, then

tr(δ0f
′(x)) = tr(δ0f(x) + δ0γ0ϕ(x)) = tr(δ0f(x)) + tr(δ0γ0)ϕ(x) = 0. (4)

¿From Lemma 1, the linear code Cf ′ defined from the APN function f ′ has
dimension 2m − 1− 2m. That is to say, tr(δ0f

′(x)) = 0 holds only when δ0 = 0.
This is a contradiction. Hence, the equation f(x1)+ f(x2)+ f(x3)+ f(x1 +x2 +
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x3) = γ has at least a solution. This is equivalent to saying that for any γ ∈ F∗2m ,
the system

x1 + x2 + x3 = x4

f(x1) + f(x2) + f(x3) = f(x4) + γ

has at least a solution. Putting yt = xt + x4 for t = 1, 2, 3, then

y1 + y2 + y3 = 0
f(y1) + f(y2) + f(y3) = γ

has at least a solution. That is, N(0, γ) ≥ 1. The proof follows.

By Propositions 1 and 2, we immediately have

Theorem 1. For m ≥ 3 and the quadratic function

f(x) =
m−1∑

i,j=0

ai,jx
2i+2j

, ai,j ∈ F2m ,

the linear code Cf is quasi-perfect if and only if f is APN.

New constructions of APN functions, which are extended affine (EA) inequiv-
alent and Carlet-Charpin-Zinoviev (CCZ) inequivalent to the known ones are of
particular interest [6]. Six classes of APN monomial functions xd have been found
and one class of them, the Gold monomial x2i+1, (i,m) = 1, is quadratic. Dob-
bertin conjectured that the list of APN monomial functions is complete. Much
work has been done as well on quadratic functions to get new APN functions
EA/CCZ inequivalent to the known ones, and many infinite classes have been
obtained (see [1–5,10]).

For quadratic APN functions in odd variables, the related codes Cf are uni-
formly packed codes with covering radius 3 [7]. Nevertheless, a glance at the
list of the currently known quadratic APN functions in [6] shows that a major-
ity of them are APN only in even variables. In this paper, all these functions
in even variables are shown to yield linear codes with minimum distance 5 and
covering radius 3. Further study on the extended Walsh spectrum of quadratic
functions in even variables reveals that the generated quasi-perfect codes can not
be uniformly packed.
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