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Abstract. We prove a new sufficient condition for the extendability of Griesmer
arcs depending on the possible spectra of a maximal hyperplane.

1 Preliminaries

The geometric nature of certain problems in coding theory has been long
known. In this paper we present a new result on the extendability of arcs in
finite projective spaces which translates in a natural way into a result about
the extendability of linear codes.

It is a well-known fact that adding a parity check to a binary [n, k, d]-code of
odd minimum distance d increases the minimum distance of the codes, i.e. the
resulting codes has parameters [n+1, k, d+1]. This result has been generalized
by Hill and Lizak in [2, 3]. They showed that if all weights in an [n, k, d]q code
are congruent to 0 or d (mod q), with (d, q) = 1, then it can be extended to an
[n + 1, k, d + 1]q code. It turned out that this fact has a natural explanation in
terms of blocking sets containing a hyperplane. It was proved in [4, 6] that this
result can be obtained from the well-known Bose-Burton theorem for blocking
sets in PG(k− 1, q). This result was further generalized in [5] by using a result
of Beutelspacher and Heim on the size of the minimal non-trivial (i.e. not
containing a hyperplane) blocking set in a finite projective geometry.

In a series of papers, Maruta obtained further results [6, 7, 8] on extend-
ability of linear codes. He introduced the notion of diversity of a linear code
with spectrum (Ai) as the pair (Φ0, Φ1), where

Φ0 =
1

q − 1

∑

q|i,i 6=0

Ai,Φ1 =
1

q − 1

∑

i6≡0,d (mod q)

Ai,

He proved that for various values of the diversity this code is indeed extendable.
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It has been proved in [1] that linear [n, k, d]q-codes of full length and (n, n−
d)-arcs in PG(k − 1, q) are in some sense equivalent objects. With each lin-
ear code one can associate an arc (possibly in an non-unique way) so that
semilinearly isomorphic codes give rise to equivalent arcs and vice versa. Arcs
associated with codes meeting the Griesmer bound are called Griesmer arcs.

2 Basic definitions

Let P be the set of points of the projective geometry PG(k − 1, q). Every
mapping K : P → N0 from the set of points of the geometry to the non-
negative integers is called a multiset in PG(k−1, q). This mapping is extended
additively to the subsets of P: for every Q ⊆ P, K(Q) =

∑
P∈QK(P ). The

integer n := K(P) is called the cardinality of K.
Multisets can be viewed as arcs or as blocking sets. A multiset K in PG(k−

1, q) is called an (n,w)-multiarc (or simply (n,w)-arc) if (1) K(P) = n, (2)
K(H) ≤ w for every hyperplane H, and (3) there exists a hyperplane H0 with
K(H0) = w. Similarly, a multiset K in PG(k− 1, q) is called an (n,w)-blocking
set (or (n,w)-minihyper) if (1) K(P) = n, (2) K(H) ≥ w for every hyperplane
H, and (3) there exists a hyperplane H0 with K(H0) = w.

An (n,w)-arc K in PG(k − 1, q) is called extendable (or incomplete), if
there exists an (n + 1, w)-arc K′ in PG(k − 1, q) with K′(P ) ≥ K(P ) for every
point P ∈ P. An arc is said to be complete if it is not extendable. Similarly,
an (n,w)-blocking set K in PG(k − 1, q) is called reducible, if there exists an
(n − 1, w)-blocking set K′ in PG(k − 1, q) with K′(P ) ≤ K(P ) for every point
P ∈ P. A blocking set is called irreducible if it is not reducible.

3 Extendability of Griesmer arcs

Let K be an (n,w)-arc in Σ = PG(k − 1, q). Assume that all multiplicities
of hyperplanes in Σ are congruent to n, n + 1, . . . , n + t modulo q for some
constant t < q. This is a typical situation when one investigates the existence
of Griesmer arcs with given parameters.

Define a new multiset K in the dual geometry Σ by

K :
{ H → N0

H → K(H) = n + t−K(H) (mod q).
(1)

In other words, hyperplanes of multiplicity n+a (mod q) become (t−a)-points
in the dual geometry. The following result is straightforward.

Theorem 1. Let K an (n,w)-arc in Σ = PG(k − 1, q) and let K be defined by
(1). If Σ contains a hyperplane without 0-points then K is extendable.
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Proof. Since maximal hyperplanes correspond to 0-points in the dual geometry,
the condition of the theorem is that there exists a point in Σ which is not
incident with maximal hyperplanes.

By Theorem 1, the extendability of arcs is linked with the structure of a
certain multiset defined in the dual geometry. It turns out that this multiset is
highly divisible.

Theorem 2. Let S be subspace of Σ. Then

K(S) ≡ t (mod q).

Proof. Let S be a line. It corresponds to a subspace ∆ of codimension 2 in Σ.
Denote by Hi, i = 0, . . . , q the set of all hyperpalnes through ∆. We have

n =
q∑

i=0

K(Hi)− qK(∆).

Reducing both sides modulo q and using the fact that K(Hi) +K(Hi) = n + t,
one gets

(q + 1)(n + t)−
q∑

i=0

K(Hi) ≡ n (mod q),

whence

K(S) =
q∑

i=0

K(Hi) ≡ t (mod q).

For subspaces of larger dimension, we can use the fact that the multiplicity
of each line L in S is t (mod q) and sum the multiplicities of all lines through
a fixed point in S.

By the above theorem, the multiset K has the following properties:

- the multiplicity of each point is at most t;

- the multiplicity of each subspace of dimension r, 1 ≤ r ≤ k − 1, is at least
tvr.

Here we use the conventional notation vr = (qr − 1)/(q − 1). In the general
case, we do not know the cardinality of K.

For t = 1, the arc K is always extendable. In fact, this is another formulation
of the theorem by Hill and Lizak. In this case the arc K is projective. Further
every line is 1- or (q + 1)-line. Hence in the plane case K is either a line, or
the complete plane. In higher dimensions, one can easily check that K is either
a hyperplane or the complete space. In both cases there exists a hyperplane
without 0-points, which implies that K is extendable by Theorem 1.
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For t = 2 and odd q ≥ 5, the arcs K have been characterized by Maruta [6].
It turns out that in this case, the arc K contains a hyperplane without 0-points,
and the arc K is again extendable.

Theorem 3. Let K be a Griesmer (n,w = n − d)-arc with K(H) ≡ n, n +
1, . . . , n + t (mod q) for every hyperplane H. Denote by (ai) the spectrum of
the arc K|H0 , where H0 is a hyperplane of multiplicity w, with respect to K.
Let A be the largest integer such that a (tvk−1 + A, tvk−2)-minihyper contains
a hyperplane in its support. If

qaw−dd/qe−1 + 2qaw−dd/qe−2 + . . . + (t− 1)q
∑

u≤w−dd/qe−t+1

au ≤ A,

then K is extendable.

Proof. By the fact that K is a Griesmer arc, we have that

n =
k−1∑

i=0

d d

qi
e, w =

k−1∑

i=1

d d

qi
e.

The maximal multiplicity of a subspace of codimension 2 contained in H0 is
then

w′ = w − dd
q
e =

k−1∑

i=2

d d

qi
e.

Let K be the arc in Σ defined earlier in this section. The point x∗ = H0 is a
0-point in Σ. Denote by L∗i all lines in Σ through x∗. They correspond to the
hyperlines δi in H0, i.e. the subspaces of codimension 2 that are contained in
H0.

Consider a fixed line L∗ = δ where K(δ) = w′−λ, λ ∈ {0, . . . , t−2}. Denote
by H0, H1, . . . , Hq all hyperplanes through δ. Set

K(Hi) = w − αiq − βi, βi ∈ {0, . . . , t},
Since K(Hi) + K(Hi) ≡ n + t ≡ w (mod q), we get that K(Hi) = βi. Now we
have

n =
q∑

i=0

K(Hi)− q(w′ − λ)

=
q∑

i=0

(w − αiq − βi)− q(w′ − λ)

= w − q

q∑

i=0

αi −
q∑

i=0

βi + qdd
q
e+ qλ,
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whence
q∑

i=0

βi = qdd
q
e+ qλ− d− q

q∑

i=0

αi.

Since d ≡ −t (mod q), we have qdd
q e − d = t. This gives an upper bound on

the multiplicity of L∗ with respect to K

K(L∗) =
q∑

i=0

βi = t + qλ− q

q∑

i=0

αi ≤ t + qλ.

Now summing up the multiplicities of all lines L∗ through x∗ and taking
into account that K(x∗) = 0 one gets

|K|=
∑

i

K(L∗i )

≤aw′t + aw′−1(t + q) + · · ·+ aw′−(t−2)(t + (t− 2)q) +
∑

u≤w′−(t−1)

au(t + (t− 1)q)

=


 ∑

u≤w′
au


 t + aw′−1q + · · ·+ aw′−(t−2)(t− 2)q +

∑

u≤w′−(t−1)

au(t− 1)q

=vk−1t + aw′−1q + · · ·+ aw′−(t−2)(t− 2)q +
∑

u≤w′−(t−1)

au(t− 1)q.

If
aw′−1q + · · ·+ aw′−(t−2)(t− 2)q +

∑

u≤w′−(t−1)

au(t− 1)q ≤ A

we have that |K| ≤ tvk−1 + A. This implies that K contains a hyperplane
without 0-points. Hence K is extendable by Theorem 1.

The idea of Theorem 3 can be used to restrict the spectrum not only of the
maximal hyperplanes, but also of hyperplanes with a smaller multiplicity.
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