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Abstract. We prove a new sufficient condition for the extendability of Griesmer
arcs depending on the possible spectra of a maximal hyperplane.

1 Preliminaries

The geometric nature of certain problems in coding theory has been long
known. In this paper we present a new result on the extendability of arcs in
finite projective spaces which translates in a natural way into a result about
the extendability of linear codes.

It is a well-known fact that adding a parity check to a binary [n, k, d]-code of
odd minimum distance d increases the minimum distance of the codes, i.e. the
resulting codes has parameters [n+ 1, k,d+ 1]. This result has been generalized
by Hill and Lizak in [2, 3]. They showed that if all weights in an [n, k,d], code
are congruent to 0 or d (mod ¢), with (d,¢) = 1, then it can be extended to an
[n+1,k,d+ 1], code. It turned out that this fact has a natural explanation in
terms of blocking sets containing a hyperplane. It was proved in [4, 6] that this
result can be obtained from the well-known Bose-Burton theorem for blocking
sets in PG(k — 1, ¢). This result was further generalized in [5] by using a result
of Beutelspacher and Heim on the size of the minimal non-trivial (i.e. not
containing a hyperplane) blocking set in a finite projective geometry.

In a series of papers, Maruta obtained further results [6, 7, 8] on extend-
ability of linear codes. He introduced the notion of diversity of a linear code
with spectrum (A4;) as the pair (®g, P1), where

1 1
Qo=——1 ZAi,‘IH:i_l >4,
177 givizo 17 204 (mod o)

He proved that for various values of the diversity this code is indeed extendable.
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It has been proved in [1] that linear [n, k, d]4-codes of full length and (n,n —
d)-arcs in PG(k — 1,¢) are in some sense equivalent objects. With each lin-
ear code one can associate an arc (possibly in an non-unique way) so that
semilinearly isomorphic codes give rise to equivalent arcs and vice versa. Arcs
associated with codes meeting the Griesmer bound are called Griesmer arcs.

2 Basic definitions

Let P be the set of points of the projective geometry PG(k — 1,q). Every
mapping K : P — Ny from the set of points of the geometry to the non-
negative integers is called a multiset in PG(k — 1, ¢). This mapping is extended
additively to the subsets of P: for every Q C P, K(Q) = > pco K(P). The
integer n := IC(P) is called the cardinality of K.

Multisets can be viewed as arcs or as blocking sets. A multiset K in PG(k —
1,q) is called an (n,w)-multiarc (or simply (n,w)-arc) if (1) K(P) = n, (2)
K(H) < w for every hyperplane H, and (3) there exists a hyperplane Hy with
K(Hp) = w. Similarly, a multiset K in PG(k — 1, ) is called an (n,w)-blocking
set (or (n,w)-minihyper) if (1) I(P) =n, (2) K(H) > w for every hyperplane
H, and (3) there exists a hyperplane Hy with K(Hg) = w.

An (n,w)-arc K in PG(k — 1,q) is called extendable (or incomplete), if
there exists an (n + 1,w)-arc K’ in PG(k — 1,q) with X'(P) > K(P) for every
point P € P. An arc is said to be complete if it is not extendable. Similarly,
an (n,w)-blocking set IC in PG(k — 1,¢q) is called reducible, if there exists an
(n — 1, w)-blocking set K" in PG(k — 1,¢) with K'(P) < K(P) for every point
P € P. A blocking set is called irreducible if it is not reducible.

3 Extendability of Griesmer arcs

Let K be an (n,w)-arc in ¥ = PG(k — 1,¢). Assume that all multiplicities
of hyperplanes in ¥ are congruent to n,n + 1,...,n + t modulo ¢ for some
constant ¢ < ¢q. This is a typical situation when one investigates the existence
of Griesmer arcs with given parameters.

Define a new multiset K in the dual geometry X by

= H — N
’C‘{ H—KH)=n+t—K(H) (mod q). ’ (1)

In other words, hyperplanes of multiplicity n+a (mod ¢) become (¢t —a)-points
in the dual geometry. The following result is straightforward.

Theorem 1. Let K an (n,w)-arc in ¥ = PG(k — 1,¢) and let K be defined by
(1). If ¥ contains a hyperplane without 0-points then K is extendable.
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Proof. Since maximal hyperplanes correspond to 0-points in the dual geometry,
the condition of the theorem is that there exists a point in 3 which is not
incident with maximal hyperplanes. O

By Theorem 1, the extendability of arcs is linked with the structure of a
certain multiset defined in the dual geometry. It turns out that this multiset is
highly divisible.

Theorem 2. Let S be subspace of ¥.. Then
K(S)=t (mod q).

Proof. Let S be a line. It corresponds to a subspace A of codimension 2 in X.
Denote by H;, i =0,...,q the set of all hyperpalnes through A. We have

q

n=>_ K(H)-qgK(A).

1=0

Reducing both sides modulo ¢ and using the fact that K(H;) + K(H;) = n +t,
one gets

(q+ 1)+~ S KH)=n (mod q),
=0

whence

q
K(S) = ZE(H,) =t (mod q).
i=0
For subspaces of larger dimension, we can use the fact that the multiplicity
of each line L in S is ¢t (mod ¢) and sum the multiplicities of all lines through
a fixed point in S. O

By the above theorem, the multiset K has the following properties:
- the multiplicity of each point is at most ;

- the multiplicity of each subspace of dimension r, 1 < r < k — 1, is at least
tu,.

Here we use the conventional notation v, = (¢" — 1)/(¢ — 1). In the general
case, we do not know the cardinality of K.

For t = 1, the arc K is always extendable. In fact, this is another formulation
of the theorem by Hill and Lizak. In this case the arc K is projective. Further
every line is 1- or (¢ + 1)-line. Hence in the plane case K is either a line, or
the complete plane. In higher dimensions, one can easily check that IC is either
a hyperplane or the complete space. In both cases there exists a hyperplane
without O-points, which implies that K is extendable by Theorem 1.
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For ¢t = 2 and odd g > 5, the aI'CSE have been characterized by Maruta [6].
It turns out that in this case, the arc KC contains a hyperplane without 0-points,
and the arc K is again extendable.

Theorem 3. Let K be a Griesmer (n,w = n — d)-arc with K(H) = n,n +
1,...,n 4+t (mod q) for every hyperplane H. Denote by (a;) the spectrum of
the arc K|p,, where Hy is a hyperplane of multiplicity w, with respect to K.
Let A be the largest integer such that a (tvg_1 + A, tvg_o)-minihyper contains
a hyperplane in its support. If

qay—[d/q)—1 + 2qAy_[a/q)—2 + .-+ (t = 1)gq > a, < A,
u<w—[d/q]—t+1

then K is extendable.

Proof. By the fact that K is a Griesmer arc, we have that

k—1 k—1
d d
n = — |, W= —|.
2 [qﬂ ;:1 (qﬂ

The maximal multiplicity of a subspace of codimension 2 contained in Hj is
then

, d _k—ld
w —w—[qW—iZ;[qﬂ-

Let K be the arc in > defined earlier {in this section. The point 2* = Hy is a
O-point in ¥. Denote by L} all lines in > through z*. They correspond to the
hyperlines 9; in Hy, i.e. the subspaces of codimension 2 that are contained in
Hy.
Consider a fixed line L* = § where (0) = w'— X, A € {0,...,t—2}. Denote
by Hg, Hy, ..., H, all hyperplanes through §. Set

K(H;) =w—«a;q— B, B; €40,...,t},

Since K(H;) + K(H;) =n+t = w (mod q), we get that K(H;) = 8;. Now we
have

K(H;) = q(w’ = X)

I
.MQ

I
o

(w — aig — B;) — q(w' — A)

I
,MQ

Il
=)

)

q q d
= w—qZ%-Zﬁrﬂﬂj +qA,

=0 1=0
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whence
q

q
Z/Bi:(ﬁ;l—l +gA—d—q ) a.

i=0 i=0
Since d = —t (mod ¢q), we have q[g] —d = t. This gives an upper bound on
the multiplicity of L* with respect to K

q q
KL= Bi=t+qh—q> ai<t+qh
1=0 1=0

Now summing up the multiplicities of all lines L* through z* and taking
into account that (z*) = 0 one gets

K=Y F(L:)

Syt + a1 (t+q) -+ aw_a(t+ (E=2)) + Y au(t+(t—1)q)
u<w’—(t—1)

= Z Ay | t+ Qw19+ -+ +aw’7(t72)(t_ 2)Q+ Z au(t_ 1)q

u<w’ u<w’—(t—1)
et b g b 20 Y - e

u<w’—(t—1)

If
Qw1+t ay_gon(t—2)g+ D aut—1)g< A
u<lw’—(t—1)

we have that [K| < tvs_1; + A. This implies that K contains a hyperplane
without 0-points. Hence K is extendable by Theorem 1. O

The idea of Theorem 3 can be used to restrict the spectrum not only of the
maximal hyperplanes, but also of hyperplanes with a smaller multiplicity.
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