Blocking sets in finite projective spaces and the extension problem for linear codes

Ivan LandJev
i.landjev@nbu.bg

New Bulgarian University, 21 Montevideo str., 1618 Sofia, BULGARIA

Assia Rousseva

Sofia University, Faculty of Mathematics and Informatics
5 James Bourchier Blvd., 1126 Sofia, BULGARIA

Dedicated to the memory of Professor Stefan Dodunekov

Abstract

We prove a new sufficient condition for the extendability of Griesmer arcs depending on the possible spectra of a maximal hyperplane.

1 Preliminaries

The geometric nature of certain problems in coding theory has been long known. In this paper we present a new result on the extendability of arcs in finite projective spaces which translates in a natural way into a result about the extendability of linear codes.

It is a well-known fact that adding a parity check to a binary $[n, k, d]$-code of odd minimum distance d increases the minimum distance of the codes, i.e. the resulting codes has parameters $[n+1, k, d+1]$. This result has been generalized by Hill and Lizak in $[2,3]$. They showed that if all weights in an $[n, k, d]_{q}$ code are congruent to 0 or $d(\bmod q)$, with $(d, q)=1$, then it can be extended to an $[n+1, k, d+1]_{q}$ code. It turned out that this fact has a natural explanation in terms of blocking sets containing a hyperplane. It was proved in $[4,6]$ that this result can be obtained from the well-known Bose-Burton theorem for blocking sets in $\mathrm{PG}(k-1, q)$. This result was further generalized in [5] by using a result of Beutelspacher and Heim on the size of the minimal non-trivial (i.e. not containing a hyperplane) blocking set in a finite projective geometry.

In a series of papers, Maruta obtained further results $[6,7,8]$ on extendability of linear codes. He introduced the notion of diversity of a linear code with spectrum $\left(A_{i}\right)$ as the pair $\left(\Phi_{0}, \Phi_{1}\right)$, where

$$
\Phi_{0}=\frac{1}{q-1} \sum_{q \mid i, i \neq 0} A_{i}, \Phi_{1}=\frac{1}{q-1} \sum_{i \neq 0, d} A_{i}
$$

He proved that for various values of the diversity this code is indeed extendable.

It has been proved in [1] that linear $[n, k, d]_{q}$-codes of full length and $(n, n-$ $d)$-arcs in $\operatorname{PG}(k-1, q)$ are in some sense equivalent objects. With each linear code one can associate an arc (possibly in an non-unique way) so that semilinearly isomorphic codes give rise to equivalent arcs and vice versa. Arcs associated with codes meeting the Griesmer bound are called Griesmer arcs.

2 Basic definitions

Let \mathcal{P} be the set of points of the projective geometry $\operatorname{PG}(k-1, q)$. Every mapping $\mathcal{K}: \mathcal{P} \rightarrow \mathbb{N}_{0}$ from the set of points of the geometry to the nonnegative integers is called a multiset in $\operatorname{PG}(k-1, q)$. This mapping is extended additively to the subsets of \mathcal{P} : for every $\mathcal{Q} \subseteq \mathcal{P}, \mathcal{K}(\mathcal{Q})=\sum_{P \in \mathcal{Q}} \mathcal{K}(P)$. The integer $n:=\mathcal{K}(\mathcal{P})$ is called the cardinality of \mathcal{K}.

Multisets can be viewed as arcs or as blocking sets. A multiset \mathcal{K} in $\operatorname{PG}(k-$ $1, q)$ is called an (n, w)-multiarc (or simply (n, w)-arc) if (1) $\mathcal{K}(\mathcal{P})=n$, (2) $\mathcal{K}(H) \leq w$ for every hyperplane H, and (3) there exists a hyperplane H_{0} with $\mathcal{K}\left(H_{0}\right)=w$. Similarly, a multiset \mathcal{K} in $\operatorname{PG}(k-1, q)$ is called an (n, w)-blocking set (or (n, w)-minihyper) if (1) $\mathcal{K}(\mathcal{P})=n,(2) \mathcal{K}(H) \geq w$ for every hyperplane H, and (3) there exists a hyperplane H_{0} with $\mathcal{K}\left(H_{0}\right)=w$.

An (n, w)-arc \mathcal{K} in $\mathrm{PG}(k-1, q)$ is called extendable (or incomplete), if there exists an $(n+1, w)$-arc \mathcal{K}^{\prime} in $\operatorname{PG}(k-1, q)$ with $\mathcal{K}^{\prime}(P) \geq \mathcal{K}(P)$ for every point $P \in \mathcal{P}$. An arc is said to be complete if it is not extendable. Similarly, an (n, w)-blocking set \mathcal{K} in $\mathrm{PG}(k-1, q)$ is called reducible, if there exists an $(n-1, w)$-blocking set \mathcal{K}^{\prime} in $\mathrm{PG}(k-1, q)$ with $\mathcal{K}^{\prime}(P) \leq \mathcal{K}(P)$ for every point $P \in \mathcal{P}$. A blocking set is called irreducible if it is not reducible.

3 Extendability of Griesmer arcs

Let \mathcal{K} be an (n, w)-arc in $\Sigma=\operatorname{PG}(k-1, q)$. Assume that all multiplicities of hyperplanes in Σ are congruent to $n, n+1, \ldots, n+t$ modulo q for some constant $t<q$. This is a typical situation when one investigates the existence of Griesmer arcs with given parameters.

Define a new multiset $\overline{\mathcal{K}}$ in the dual geometry $\bar{\Sigma}$ by

$$
\overline{\mathcal{K}}:\left\{\begin{array}{l}
\mathcal{H} \tag{1}\\
H \rightarrow \overline{\mathcal{K}}(H)=n+t-\mathcal{K}(H) \quad(\bmod q) .
\end{array} \quad \rightarrow \mathbb{N}_{0}\right.
$$

In other words, hyperplanes of multiplicity $n+a(\bmod q)$ become $(t-a)$-points in the dual geometry. The following result is straightforward.

Theorem 1. Let \mathcal{K} an (n, w)-arc in $\Sigma=\operatorname{PG}(k-1, q)$ and let $\overline{\mathcal{K}}$ be defined by (1). If $\bar{\Sigma}$ contains a hyperplane without 0 -points then \mathcal{K} is extendable.

Proof. Since maximal hyperplanes correspond to 0-points in the dual geometry, the condition of the theorem is that there exists a point in Σ which is not incident with maximal hyperplanes.

By Theorem 1, the extendability of arcs is linked with the structure of a certain multiset defined in the dual geometry. It turns out that this multiset is highly divisible.

Theorem 2. Let S be subspace of $\bar{\Sigma}$. Then

$$
\overline{\mathcal{K}}(S) \equiv t \quad(\bmod q) .
$$

Proof. Let S be a line. It corresponds to a subspace Δ of codimension 2 in Σ. Denote by $H_{i}, i=0, \ldots, q$ the set of all hyperpalnes through Δ. We have

$$
n=\sum_{i=0}^{q} \mathcal{K}\left(H_{i}\right)-q \mathcal{K}(\Delta)
$$

Reducing both sides modulo q and using the fact that $\mathcal{K}\left(H_{i}\right)+\overline{\mathcal{K}}\left(H_{i}\right)=n+t$, one gets

$$
(q+1)(n+t)-\sum_{i=0}^{q} \overline{\mathcal{K}}\left(H_{i}\right) \equiv n \quad(\bmod q)
$$

whence

$$
\overline{\mathcal{K}}(S)=\sum_{i=0}^{q} \overline{\mathcal{K}}\left(H_{i}\right) \equiv t \quad(\bmod q) .
$$

For subspaces of larger dimension, we can use the fact that the multiplicity of each line L in S is $t(\bmod q)$ and sum the multiplicities of all lines through a fixed point in S.

By the above theorem, the multiset $\overline{\mathcal{K}}$ has the following properties:

- the multiplicity of each point is at most t;
- the multiplicity of each subspace of dimension $r, 1 \leq r \leq k-1$, is at least $t v_{r}$.

Here we use the conventional notation $v_{r}=\left(q^{r}-1\right) /(q-1)$. In the general case, we do not know the cardinality of $\overline{\mathcal{K}}$.

For $t=1$, the $\operatorname{arc} \mathcal{K}$ is always extendable. In fact, this is another formulation of the theorem by Hill and Lizak. In this case the arc $\overline{\mathcal{K}}$ is projective. Further every line is 1 - or $(q+1)$-line. Hence in the plane case $\overline{\mathcal{K}}$ is either a line, or the complete plane. In higher dimensions, one can easily check that $\overline{\mathcal{K}}$ is either a hyperplane or the complete space. In both cases there exists a hyperplane without 0 -points, which implies that \mathcal{K} is extendable by Theorem 1 .

For $t=2$ and odd $q \geq 5$, the arcs $\overline{\mathcal{K}}$ have been characterized by Maruta [6]. It turns out that in this case, the arc $\overline{\mathcal{K}}$ contains a hyperplane without 0 -points, and the arc \mathcal{K} is again extendable.
Theorem 3. Let \mathcal{K} be a Griesmer $(n, w=n-d)$-arc with $\mathcal{K}(H) \equiv n, n+$ $1, \ldots, n+t(\bmod q)$ for every hyperplane H. Denote by $\left(a_{i}\right)$ the spectrum of the $\left.\operatorname{arc} \mathcal{K}\right|_{H_{0}}$, where H_{0} is a hyperplane of multiplicity w, with respect to \mathcal{K}. Let A be the largest integer such that a $\left(t v_{k-1}+A, t v_{k-2}\right)$-minihyper contains a hyperplane in its support. If

$$
q a_{w-\lceil d / q\rceil-1}+2 q a_{w-\lceil d / q\rceil-2}+\ldots+(t-1) q \sum_{u \leq w-\lceil d / q\rceil-t+1} a_{u} \leq A,
$$

then \mathcal{K} is extendable.
Proof. By the fact that \mathcal{K} is a Griesmer arc, we have that

$$
n=\sum_{i=0}^{k-1}\left\lceil\frac{d}{q^{i}}\right\rceil, w=\sum_{i=1}^{k-1}\left\lceil\frac{d}{q^{i}}\right\rceil .
$$

The maximal multiplicity of a subspace of codimension 2 contained in H_{0} is then

$$
w^{\prime}=w-\left\lceil\frac{d}{q}\right\rceil=\sum_{i=2}^{k-1}\left\lceil\frac{d}{q^{i}}\right\rceil .
$$

Let $\overline{\mathcal{K}}$ be the arc in $\bar{\Sigma}$ defined earlier in this section. The point $x^{*}=H_{0}$ is a 0 -point in $\bar{\Sigma}$. Denote by L_{i}^{*} all lines in $\bar{\Sigma}$ through x^{*}. They correspond to the hyperlines δ_{i} in H_{0}, i.e. the subspaces of codimension 2 that are contained in H_{0}.

Consider a fixed line $L^{*}=\delta$ where $\mathcal{K}(\delta)=w^{\prime}-\lambda, \lambda \in\{0, \ldots, t-2\}$. Denote by $H_{0}, H_{1}, \ldots, H_{q}$ all hyperplanes through δ. Set

$$
\mathcal{K}\left(H_{i}\right)=w-\alpha_{i} q-\beta_{i}, \quad \beta_{i} \in\{0, \ldots, t\},
$$

Since $\mathcal{K}\left(H_{i}\right)+\overline{\mathcal{K}}\left(H_{i}\right) \equiv n+t \equiv w(\bmod q)$, we get that $\overline{\mathcal{K}}\left(H_{i}\right)=\beta_{i}$. Now we have

$$
\begin{aligned}
n & =\sum_{i=0}^{q} \mathcal{K}\left(H_{i}\right)-q\left(w^{\prime}-\lambda\right) \\
& =\sum_{i=0}^{q}\left(w-\alpha_{i} q-\beta_{i}\right)-q\left(w^{\prime}-\lambda\right) \\
& =w-q \sum_{i=0}^{q} \alpha_{i}-\sum_{i=0}^{q} \beta_{i}+q\left\lceil\frac{d}{q}\right\rceil+q \lambda,
\end{aligned}
$$

whence

$$
\sum_{i=0}^{q} \beta_{i}=q\left\lceil\frac{d}{q}\right\rceil+q \lambda-d-q \sum_{i=0}^{q} \alpha_{i} .
$$

Since $d \equiv-t(\bmod q)$, we have $q\left\lceil\frac{d}{q}\right\rceil-d=t$. This gives an upper bound on the multiplicity of L^{*} with respect to $\overline{\mathcal{K}}$

$$
\overline{\mathcal{K}}\left(L^{*}\right)=\sum_{i=0}^{q} \beta_{i}=t+q \lambda-q \sum_{i=0}^{q} \alpha_{i} \leq t+q \lambda .
$$

Now summing up the multiplicities of all lines L^{*} through x^{*} and taking into account that $\overline{\mathcal{K}}\left(x^{*}\right)=0$ one gets

$$
\begin{aligned}
|\overline{\mathcal{K}}| & =\sum_{i} \overline{\mathcal{K}}\left(L_{i}^{*}\right) \\
& \leq a_{w^{\prime}} t+a_{w^{\prime}-1}(t+q)+\cdots+a_{w^{\prime}-(t-2)}(t+(t-2) q)+\sum_{u \leq w^{\prime}-(t-1)} a_{u}(t+(t-1) q) \\
& =\left(\sum_{u \leq w^{\prime}} a_{u}\right) t+a_{w^{\prime}-1} q+\cdots+a_{w^{\prime}-(t-2)}(t-2) q+\sum_{u \leq w^{\prime}-(t-1)} a_{u}(t-1) q \\
& =v_{k-1} t+a_{w^{\prime}-1} q+\cdots+a_{w^{\prime}-(t-2)}(t-2) q+\sum_{u \leq w^{\prime}-(t-1)} a_{u}(t-1) q .
\end{aligned}
$$

If

$$
a_{w^{\prime}-1} q+\cdots+a_{w^{\prime}-(t-2)}(t-2) q+\sum_{u \leq w^{\prime}-(t-1)} a_{u}(t-1) q \leq A
$$

we have that $|\overline{\mathcal{K}}| \leq t v_{k-1}+A$. This implies that $\overline{\mathcal{K}}$ contains a hyperplane without 0 -points. Hence \mathcal{K} is extendable by Theorem 1.

The idea of Theorem 3 can be used to restrict the spectrum not only of the maximal hyperplanes, but also of hyperplanes with a smaller multiplicity.

Acknowledgements. This research has been supported by Contract Nr. 100/ 19.04.2013 with the Science Research Fund of Sofia University.

References

[1] S. Dodunekov, J. Simonis, Codes and projective multisets, Electronic Journal of Combinatorics 5 (1998), R37.
[2] R. Hill, An extension theorem for linear codes, Des. Codes and Crypt. 17 (1999), 151-157.
[3] R. Hill, P. Lizak, Extensions of linear codes, in: Proc. Int. Symp. on Inf. Theory, Whistler, BC, Canada 1995.
[4] I. Landjev, The geometric approach to linear codes, in: Finite Geometries, (eds. A. Blokhuis et al.), Kluwer Acad. Publ. 2001, 247-256.
[5] I. Landjev, A. Rousseva, An extension theorem for arcs and linear codes, Probl. Inform. Transmission 42 (2006), 65-76.
[6] T. Maruta, On the extendability of linear codes Finite Fields and Appl. 7 (2001), 350-354.
[7] T. Maruta, Extendability of linear codes over GF (q) with minimum distance, $d, \operatorname{gcd}(d, q)=1$, Discrete Math. 266 (2003), 377-385.
[8] T. Maruta, A new extension theorem for linear codes, Finite Fields and Appl. 10 (2004), 674-685.

