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1 Introduction

Nonvolatile memory is computer memory that maintains stored information
without a power supply. Flash memory is currently the dominant nonvolatile
memory because it is cheap and can be electrically programmed and erased with
relative ease. Flash memory devices can be found almost everywhere nowadays.
They are lighter, faster and more shock resistant than traditional magnetic hard
drives.

The storage density of flash memory device is dependent on the number of
the discrete voltage levels and thus store a single bit. The demand for increased
storage capacity has created the need to store more than a single bit per cell
by simply representing more than two voltage levels. As this technology scales
and the storage density increases, data errors become more prevalent, making
error correction coding critical for maintaining data integrity.

Flash devices exhibit a multitude of complex error types and behaviors,
but common to all flavors of flash storage is the inherent asymmetry between
cell programming (charge replacement) and cell erasing (charge removal). This
asymmetry causes significant error sources to change cell levels in one dominant
direction. Moreover, many reported common flash error mechanisms induce
errors whose magnitudes (the number of error changes) are small, and indepen-
dent of the alphabet size, which may be significantly larger than the typical
error magnitude.

The asymmetric limited-magnitude error correcting codes can be used to
speed up the writing process to flash devices (memory write is referred to as
programming in the flash literature). Since the flash programming mechanism
is inherently probabilistic, the introduction of ”intentional” programming errors
in a controlled way can significantly reduce the average programming time and
improve the write performance. Such an outcome would be highly desirable
given the inferiority of flash devices in write performance compared to their
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read performance, and to the sequential write performance of the hard-disk
devices.

Asymmetric limited-magnitude error-correcting codes were proposed in [1].
The codes, proposed in that paper, were for the special case of correcting all
asymmetric limited-magnitude errors within the codeword. These codes turn
out to be a special case of the general construction method provided by Cassuto
et al. [2].

In 2011, T. Klove and B. Bose [3] proposed systematic codes that correct
single limited-magnitude systematic asymmetric errors and achieve higher rate
than the ones given in [2]. They also showed how their code construction can
be slightly modified to gives codes correcting symmetric errors of limited mag-
nitude. Later T. Klove et al. [4] extended their result and gave a necessary and
sufficient condition for existing a code over GFp correcting a single asymmetric
error.

As it has been already mentioned, asymmetric errors in flash memories are
very common. However, there are cases in which the possible error type includes
both a symmetric and an asymmetric error. For example, let us have a flash
memory with n voltage levels and we should increase the voltage level of a cell
with current level t− 1 by one (which is an usual situation when programming
a flash memory). In such a case the most common error we could have is
overcharging the cell (increasing the level with at least 2, or to charge it less
than is needed, i.e. after charging the cell stays at level t− 1. Hence, that kind
of error is a combination of the symmetric error (±1) and the asymmetric error
(2, 3, . . . , n).

The aim of this paper is to investigate the problem of finding suitable error
correcting codes capable of correcting such an error. To do that we are going
to use integer codes, which are designed to correct specific type of errors, in
contrast to the traditional codes.

In Section 2 we are going to give some necessary notation and definitions.
A new construction for integer code correcting single error of type (±1, 2) will
be shown in Section 3. Conclusion remarks will be given in Section 4.

2 Notations and definitions

In this section we shall present notation and definitions which will be used in
the next sections.

Asymmetric error correcting codes were consider first from Varshamov and
Tenegolz [6] in the middle of sixties. In that work they also gave the defini-
tion of integer code. For many years these codes there were almost forgotten.
The multilevel flash memory renew the interest in codes correcting asymmetric
errors.

Integer codes are codes defined over finite rings of integers. A. Han Vinck
and H. Morita [8] investigated integer codes with a view to magnetic recording
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and frame synchronization. A class of integer codes correcting specific types
of errors and their application to coded modulation has been proposed by H.
Kostadinov et al. [7]. Because of their flexibility integer codes are very suitable
for application in multilevel flash memory. Kostadinov and Manev [5] showed a
possible application of integer codes for flash memories. They have constructed
integer code correcting single error of type (1, 2) and gave the exact form of the
check matrix.

Definition 1. Let ZA be the ring of integers modulo A. An integer code of
length n with parity-check matrix H ∈ Zm×n

A , is referred to as a subset of Zn
A,

defined by
C(H,d)={c ∈ Zn

A | cHT = d mod A}
where d ∈ Zm

A .

If d = 0 the code is a linear [n, n − m] code over ZA. Without loss of
generality, in this paper we shall assume that d = 0. We will write C(H), or
only C of there is no possibility for ambiguity.

In this paper we consider only codes with m = 1 (one check symbol only).
Then H = (h1, h2, . . . , hn), 0 6= hi ∈ ZA and

C(H)={c ∈ ZA |
n∑

i=1

cihi = 0 mod A}

The integer code is designed to correct specific type of error instead cor-
recting number on bits in a codeword as is the case in the conventional codes.
Thus, we need the following definition.

Definition 2. Let lj and ei be positive integers, j = 1, . . . ,m, i = 1, . . . , s.
The code C(H, d) is said to be a single (l1, l2, . . . , lm,±e1,±e2, . . . ,±es)-error
correctable if it can correct any single error with value lj or ±ei.

Obviously, C(H, d) is a single (l1, l2, . . . , lm,±e1,±e2, . . . ,±es)-error correct-
able code if and only if the subsets {hj l1, hj l2, . . . , hj lm,±hj e1,±hj e2, . . . ,
± hj es} ⊂ ZA, are pairwise disjoint and of the same cardinality 2s + l, for any
j = 1, 2, . . . , n. Thus, we have

A ≥ (2s + l)n + 1.

Definition 3. A single (l1, l2, . . . , lm,±e1,±e2, . . . ,±es)-error correctable code
C(H, d) of block length n is called perfect, when A = (2s + l)n + 1.

In most of the cases perfect integer codes do not exist. We shall say that
a single (l1, l2, . . . , lm,±e1,±e2, . . . ,±es)-error correctable integer code C(H, d)
of block length n over ZA is optimal if A is the minimum value for which the
code C(H, d) exists.
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3 Construction of an integer code correcting single
error of type (±1, 2)

In this section we shall investigate how to construct an integer code C(H)
capable to correct a single error of type (±1, 2). Because the code will be
single error correctable, the check matrix H will consist of a single row.

First, let us consider the set of integers

B = B(m) = { 4kl < m | k, l, m ∈ N, l is odd and m ≥ 6 is even}.
And let divide the set B into two subsets - B0 and B1, where

B0 = {a|3a ≡ 0 (mod 2m), or ∃ b ∈ B : 2a + b ≡ 0 (mod 2m)} (1)

and B1 = B \B0.
Remark. For every element a ∈ B(m) the following inequality 2a < 2m

holds. Hence, if there exists a solution of the equation 2a+b ≡ 0 (mod 2m), a, b ∈
B(m), it is unique. Therefore, the sets B0 and B1 are uniquely defined.

Example 1. Let m = 82. Following the definition of B, B0 and B1 we obtain

Bm = {4, 12, 16, 20, 28, 36, 44, 48, 52, 60, 64, 68, 76, 80}

B0 = {44, 48, 52, 60, 64, 68, 72, 80}
and

B1 = {4, 12, 16, 20, 28, 36}.
We have the following construction for a single (±1, 2) error correctable

integer code.

Theorem 1. Let m ≥ 6 is a given integer and m is even. Let us consider the
sets B(m), B0 and B1. The integer code C(H) over Z2m with the check matrix

H = (1, 3, 5, 7, · · · ,m− 1 |B1)

is a single (±1, 2) error-correctable.

Proof. The integer code C(H) is a single (±1, 2) error-correctable if all its syn-
drome values are different. Hence, to prove the theorem will be enough to show
that

H ∩ (−H) ∩ (2H) = ∅, (2)

where all the operation are taken into Z2m.
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For convenience, let us divide H into 2 subsets A1 = (1, 3, 5, 7, · · · ,m − 1)
and B1. So, the equation (2) is equivalent to

A1 ∩ (−A1) ∩ (2A1) ∩B1 ∩ (−B1) ∩ (2B1) = ∅. (3)

One can easily see that −A = (m + 1,m + 3,m + 5, · · · , 2m − 1), and
A1 ∩ (−A1) ∩ (2A1) = ∅. Moreover,

A1 ∪ (−A1) = {2n + 1|n = 0, 1, 2, 3 · · · ,m− 1} (4)

and
2A1 = {4n + 2|n = 0, 1, 2, 3 · · · ,m/2− 1} (5)

On the other side, 2m is divisible by 4. Hence, all the elements of the sets
B1,−B1 = {2m − b|b ∈ B1} and 2B1 are divisible by 4. So, using (4) and (5)
we have

(A1 ∪ (−A1) ∪ (2A1)) ∩ (B1 ∪ (−B1) ∪ (2B1)) = ∅. (6)

The only thing that we have to show is that

B1 ∪ (−B1) ∪ (2B1) = ∅. (7)

It is obvious that B1 ∪ (2B1) = ∅, because all the elements of B1 are not
divisible by 8, while all the elements of 2B1 are divisible by 8. We have that
B1 ∪ (−B1) = ∅, since 2m− bi > bj , where bi, bj ∈ B1.

To prove that (−B1)∪(2B1) = ∅ we should show that 2a+b 6= 0 (mod 2m),
where a, b ∈ B1. But that follows from (1) and the definition of the set B1.
Hence, using (6) and (7) we complete the proof of the theorem.

Example 2. Let m = 64. For the sets B, B0 and B1 we have

Bm = {4, 12, 16, 20, 28, 36, 44, 48, 52, 60}, B0 = ∅,
B1 = {4, 12, 16, 20, 28, 36, 44, 48, 52, 60}.

So, the integer code C(H) over Z128 with the check matrix

H = (1, 3, 5, 7, · · · , 63, 4, 12, 16, 20, 28, 36, 44, 48, 52, 60)

is a single (±1, 2) error-correctable.

From the definition of B0 we have that if 2a + b ≡ 0 (mod 2m), where
a, b ∈ Bm, then a ∈ B0 and b ∈ B1. Note that if we exchange the elements a
and b, i.e., a ∈ B1, b ∈ B0, then the theorem still holds. In other words, for
every such a pair (a, b), we can choose one of the elements to be in B0 and the
other one in B1 and the above theorem still holds.
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4 Conclusion

In this work we have presented a new class of single error correctable integer
codes designed for an application in a flash memory. Moreover, we gave the
exact form of the check matrix for those codes. The decoding complexity of the
codes is linear, regarding to the code length, and can be used a look-up table to
decode them. All these advantages of integer codes makes them very suitable
for their usage in the practice.
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