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Abstract. Consider the set Qn = {0, 1, 2}n equipped with the usual Hamming
distance. Denote by T (n) the minimal number of spheres of radius n needed to
cover Qn. The exact values of T (n) are known for n ≤ 8. The first undecided case
is n = 9 and it is known that 67 ≤ T (9) ≤ 68. We settle the case by showing
that T (9) = 68. The inequality T (9) = 68 implies T (10) ≥ 102, T (11) ≥ 153,
T (12) ≥ 230 and T (13) ≥ 345 thus improving the best known lower bounds for
10 ≤ n ≤ 13.

1 Introduction

In football pools one bets over 13 games. For each game he chooses between
three possible outcomes – win, draw or loss. The goal is to predict correctly
as many games as possible. Finding the minimal number of bets in order to
guarantee certain number of correctly predicted games is known as the football
pool problem. To put this into mathematical terms consider the set Qn =
{0, 1, 2}n with the usual Hamming distance. For x = (x1, x2, . . . , xn) and y =
(y1, y2, . . . , yn) we define the Hamming distance d(x,y) as

d(x,y) = |{i | xi 6= yi}|.
A ball B(x, r) and a sphere S(x, r) with center x and radius r are defined as
the sets

B(x, r) = {y | d(x,y) ≤ r}, S(x, r) = {y | d(x,y) = r}.
When we consider a bet as a point in Qn the football pool problem is defined
as: For R = 1, 2 or 3 find a set A ⊂ Qn of minimal cardinality such that for
every y ∈ Qn there exists x ∈ A for which d(x,y) ≤ R. In other words we
cover the space Qn with balls of radius R. For more information on this topic
the reader is referred to [2].

1This research is partially supported by the Bulgarian NSF under the contract I01/0003
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We may consider football pools from the opposite point of view. That is,
how to make certain number of bets in order to ensure that there exists a
bet for which none of the games will be correctly predicted. This problem was
first considered in Finish football pool magazine Veikkaaja. A subset A of Qn is
called covering if the spheres of radius n centered at the elements of A cover Qn.
In other words A ⊂ Qn is a covering if for any y ∈ Qn there exists x ∈ A such
that d(x,y) = n. The minimal cardinality of a covering of Qn is denoted by
T (n). Finally, a covering A of Qn is called optimal if |A| = T (n). The problem
of finding T (n) and all optimal coverings of Qn is known as the inverse football
pool problem (see [1]). The sequence T (n) is part of the on-line encyclopedia of
integer sequences [5], htpp://www.research.att.com/ njas/sequences/ number
A086676

After having the exact value of T (n) we are interested in finding the number
of distinct optimal coverings. Two coverings A and B are equivalent if A is
obtained from B by a permutation of the coordinates followed by a permutation
of the elements of every coordinate. More precisely we have

Definition 1. Two coverings A and B are equivalent if there exists a permu-
tation σ ∈ Sn and n permutations s1, s2, . . . , sn of {0, 1, 2} such that

(x1, x2, . . . , xn) ∈ A ⇐⇒ (s1(xσ(1)), s2(xσ(2)), . . . , sn(xσ(n)) ∈ B.

Call a pair (σ, (s1, s2, . . . , sn)) equivalence transformation. There exist n!6n

equivalence transformations and therefore, in general there exist that many
copies of every covering. The full automorphism group of A consists of all
equivalence transformations that map A onto itself.

The next proposition is straightforward and gives an important recursive
bound on T (n).

Lemma 1. The following inequality holds T (n) ≥ 3
2
T (n− 1).

Proof. Consider an optimal covering A of Qn, i.e. A is covering and |A| = T (n).
For each i ∈ {0, 1, 2} denote by Ai the set of vectors x = (x1, x2, . . . , xn−1) such
that (x1, x2, . . . , xn−1, i) ∈ A. Therefore

A = {x0 | x ∈ A0} ∪ {x1 | x ∈ A1} ∪ {x2 | x ∈ A2}.
For {i, j, k} = {0, 1, 2} it is clear that Ai ∪Aj is a covering of Qn−1. Therefore

|Ai|+ |Aj | ≥ T (n− 1).

The same argument implies that |Ai|+|Ak| ≥ T (n−1) and |Aj |+|Ak| ≥ T (n−1).
Summing up these inequalities gives

2T (n) = 2(|Ai|+ |Aj |+ |Ak|) ≥ 3T (n− 1),

hence T (n) ≥ 3
2
T (n− 1).
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Remark 1. Suppose we know the exact value of T (n) for particular n and let
T (n) be even. Moreover assume we know all optimal coverings of Qn. It follows

from Lemma 1 that the least feasible value of T (n + 1) is T (n + 1) =
3
2
T (n).

The proof of Lemma 1 implies that for any i, j ∈ {0, 1, 2}, i 6= j the set Ai ∪
Aj is a covering of Qn and |A0| = |A1| = |A2| =

1
2
T (n). Therefore A0 is

contained in the intersection of two coverings of Qn (these two coverings are
A0 ∪A1 and A0 ∪A2). This observation prompts the following approach. Since
A0 ∪ A1 is a covering of Qn we may consider A = A0 ∪ A1 as one of the
known coverings of Qn. Go through all copies of all known coverings of Qn

and find a copy (denote this copy by B) that intersects A in at least
1
2
T (n)

elements. If |A ∩B| > |A0| = 1
2
T (n) then we have |A1 ∩A2| ≥ 1 and therefore

|A1 ∪A2| < T (n), a contradiction.

Thus, we have |A ∩B| = |A0| = 1
2
T (n), A1 = A\A0 and A2 = B\A0. What

remains to be checked is whether A1 ∪ A2 is a covering of Qn. If this is the

case we have a covering of Qn+1 with cardinality
3
2
T (n). If one of the described

steps (finding B and checking whether A1 ∪ A2 is a covering of Qn) fails then

T (n + 1) >
3
2
T (n).

2 Known results

It is straightforward to show that T (1) = 2 and using the inequality from
Lemma 1 we obtain T (2) ≥ 3, T (3) ≥ 5, T (4) ≥ 8, T (5) ≥ 12, T (6) ≥ 18.

Using the observations from Lemma 1 and Remark 1 it is not difficult to
show that T (6) = 18 by finding a covering of Q6 with 18 elements. This covering
is given in the following table:

1. 0 0 0 0 0 0
2. 1 1 1 1 0 0
3. 2 2 1 0 1 0
4. 1 0 2 2 1 0
5. 0 2 2 1 2 0
6. 2 1 0 2 2 0
7. 1 2 2 0 0 1
8. 2 0 1 2 0 1
9. 2 1 2 1 1 1

10. 0 2 0 2 1 1
11. 0 1 1 0 2 1
12. 1 0 0 1 2 1
13. 2 2 0 1 0 2
14. 0 1 2 2 0 2
15. 1 1 0 0 1 2
16. 0 0 1 1 1 2
17. 2 0 2 0 2 2
18. 1 2 1 2 2 2

Table 1: Optimal covering of Q6.
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Note that all optimal coverings for n = 1, 2, 3, 4, 5 are contained as sub-
structures of the above covering. For example, to find a covering of Q5 first
choose any coordinate t and any two i, j ∈ {0, 1, 2}, i 6= j. Second, take all
elements from the covering of Q6 having i or j in coordinate t and then delete
this coordinate. As a result we obtain optimal covering of Q5.

Therefore we have first six exact values T (1) = 2, T (2) = 3, T (3) = 5,
T (4) = 8, T (5) = 12, T (6) = 18. All these results and the bounds T (7) ≤ 29
and T (8) ≤ 44 are due to the Finish football pool magazine Veikkaaja. It is
shown in [1] that for any n = 1, 2, 3, 4, 5, 6 there exists unique optimal covering
of Qn.

Observe that for all n ≤ 6 we have T (n) =
⌈

3
2
T (n− 1)

⌉
.

The first value of n for which T (n) 6=
⌈

3
2
T (n− 1)

⌉
is n = 7. It has been

shown in [1] by computer search that T (7) = 29 while the bound from Lemma
1 implies T (7) ≥ 27. An optimal covering of Q7 is given in the following table.
It is shown in [1] that this covering is unique.

1. 0 0 0 0 0 0 0
2. 1 1 1 1 0 0 0
3. 2 2 1 0 1 0 0
4. 1 0 2 2 1 0 0
5. 1 2 2 0 0 1 0
6. 2 0 1 2 0 1 0
7. 2 1 2 1 1 1 0
8. 0 2 0 2 1 1 0
9. 1 0 1 0 2 2 0
10. 0 1 0 1 2 2 0

11. 2 2 2 2 2 2 0
12. 2 1 2 1 0 0 1
13. 0 2 0 2 0 0 1
14. 1 2 2 0 1 0 1
15. 2 0 1 2 1 0 1
16. 2 2 1 0 0 1 1
17. 1 0 2 2 0 1 1
18. 0 0 0 0 1 1 1
19. 1 1 1 1 1 1 1
20. 2 0 2 0 2 2 1

21. 1 2 1 2 2 2 1
22. 0 1 1 0 2 0 2
23. 1 0 0 1 2 0 2
24. 0 2 2 1 2 1 2
25. 2 1 0 2 2 1 2
26. 1 1 0 0 0 2 2
27. 0 0 1 1 0 2 2
28. 2 2 0 1 1 2 2
29. 0 1 2 2 1 2 2

Table 2: The unique optimal covering of Q7.

Lemma 1 implies T (8) ≥ 44 and since a covering of Q8 with 44 elements
exists we conclude that T (8) = 44.

The known results concerning T (n) are summarized in Table 3 and are taken
from [1].

n T(n)
1 2
2 3
3 5
4 8
5 12
6 18

7 29
8 44
9 66–68
10 99–104
11 149–172
12 224–264
13 336–408

Table 3. Results on T (n).
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The upper bounds for n = 9 and n = 10 were found in [4] using so-called
tabu search. It is shown in [3] that up to equivalence there exist two optimal
coverings of Q8. They are given in Table 4 and Table 5.

1. 0 0 0 0 0 0 0 2
2. 1 1 1 1 0 0 0 2
3. 2 2 1 0 1 0 0 1
4. 1 0 2 2 1 0 0 1
5. 1 2 2 0 0 1 0 1
6. 2 0 1 2 0 1 0 1
7. 2 1 2 1 1 1 0 2
8. 0 2 0 2 1 1 0 2
9. 1 0 1 0 2 2 0 2
10. 0 1 0 1 2 2 0 2
11. 2 2 2 2 2 2 0 2
12. 2 1 2 1 0 0 1 1
13. 0 2 0 2 0 0 1 1
14. 1 2 2 0 1 0 1 2
15. 2 0 1 2 1 0 1 2

16. 2 2 1 0 0 1 1 2
17. 1 0 2 2 0 1 1 2
18. 0 0 0 0 1 1 1 1
19. 1 1 1 1 1 1 1 1
20. 2 0 2 0 2 2 1 1
21. 1 2 1 2 2 2 1 1
22. 0 1 1 0 2 0 2 1
23. 1 0 0 1 2 0 2 1
24. 0 2 2 1 2 1 2 2
25. 2 1 0 2 2 1 2 2
26. 1 1 0 0 0 2 2 1
27. 0 0 1 1 0 2 2 1
28. 2 2 0 1 1 2 2 2
29. 0 1 2 2 1 2 2 2
30. 2 0 2 0 0 0 2 0

31. 1 2 1 2 0 0 2 0
32. 0 2 0 2 2 2 2 0
33. 2 1 2 1 2 2 2 0
34. 1 0 1 0 1 1 2 0
35. 2 2 2 2 1 1 2 0
36. 0 1 0 1 1 1 2 0
37. 1 1 0 0 2 0 1 0
38. 0 0 1 1 2 0 1 0
39. 0 1 1 0 0 2 1 0
40. 1 0 0 1 0 2 1 0
41. 2 1 0 2 1 2 0 0
42. 0 2 2 1 1 2 0 0
43. 0 1 2 2 2 1 0 0
44. 2 2 0 1 2 1 0 0

Table 4: Optimal covering A1 of Q8.

1. 0 0 0 0 0 0 0 2
2. 1 1 1 1 0 0 0 1
3. 2 2 1 0 1 0 0 2
4. 1 0 2 2 1 0 0 2
5. 1 2 2 0 0 1 0 2
6. 2 0 1 2 0 1 0 2
7. 2 1 2 1 1 1 0 1
8. 0 2 0 2 1 1 0 2
9. 1 0 1 0 2 2 0 1
10. 0 1 0 1 2 2 0 2
11. 2 2 2 2 2 2 0 1
12. 2 1 2 1 0 0 1 2
13. 0 2 0 2 0 0 1 1
14. 1 2 2 0 1 0 1 1
15. 2 0 1 2 1 0 1 1

16. 2 2 1 0 0 1 1 1
17. 1 0 2 2 0 1 1 1
18. 0 0 0 0 1 1 1 1
19. 1 1 1 1 1 1 1 2
20. 2 0 2 0 2 2 1 2
21. 1 2 1 2 2 2 1 2
22. 0 1 1 0 2 0 2 1
23. 1 0 0 1 2 0 2 2
24. 0 2 2 1 2 1 2 2
25. 2 1 0 2 2 1 2 1
26. 1 1 0 0 0 2 2 2
27. 0 0 1 1 0 2 2 1
28. 2 2 0 1 1 2 2 1
29. 0 1 2 2 1 2 2 2
30. 1 0 2 0 0 0 2 0

31. 2 2 1 2 0 0 2 0
32. 0 0 0 2 1 0 2 0
33. 0 2 0 0 0 1 2 0
34. 2 0 1 0 1 1 2 0
35. 1 2 2 2 1 1 2 0
36. 1 1 2 1 2 2 2 0
37. 2 1 0 0 2 0 1 0
38. 0 1 1 2 2 1 1 0
39. 2 0 0 1 0 2 1 0
40. 0 2 1 1 1 2 1 0
41. 0 0 2 1 2 0 0 0
42. 1 2 0 1 2 1 0 0
43. 0 1 2 0 0 2 0 0
44. 1 1 0 2 1 2 0 0

Table 5. Optimal covering A2 of Q8.
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We continue by examining some properties of the two optimal coverings of
Q8. For obtaining the main result in this paper it is important to know the
pairs distance distribution for both coverings. Those are given in the following
table.

t 1 2 3 4 5 6 7 8

pairs from A1 at distance t 0 0 0 210 320 240 128 48

pairs from A2 at distance t 0 0 0 222 320 216 128 60

Note that in both coverings the distance between any two elements is at
least 4.

The full automorphism group ofA1 has order 384 and the full automorphism
group of A2 has order 4.

3 Main results

The main result of this paper is given in the following Theorem.

Theorem 1. It is true that T (9) ≥ 68.

Proof. Suppose there exists a covering A of Q9 with cardinality 67. For any t,
1 ≤ t ≤ 9 and any i ∈ {0, 1, 2} denote by At

i the set of elements of A having i
in coordinate number t without this coordinate. Let also at

i = |At
i|.

It follows from T (8) = 44 that for any coordinate t we have

{at
0, a

t
1, a

t
2} = {21, 23, 23} or {22, 22, 23}.

In both cases there exists a special element i ∈ {0, 1, 2} such that at
j + at

k = 44
for {i, j, k} = {0, 1, 2}. Note that in the case {21, 23, 23} there exist two special
elements.

Without loss of generality assume that a9
1 +a9

2 = 44. Hence, the set A9
1∪A9

2
is equivalent to A1 or A2.

The following Lemma provides an important property of the elements of A9
1

and A9
2.

Lemma 2. Let A be a covering of Q9 and u = (u1, . . . , u8) and v = (v1, . . . , v8)
be two elements from A9

1∪A9
2 such that d(u,v) = 4. If there exists t, 1 ≤ t ≤ 8,

such that ut 6= vt and {0, 1, 2} \ {ut, vt} is a special element for coordinate t,
then u and v are not simultaneous elements of A9

i for i = 1, 2.

Proof. Let u and v be vectors satisfying the given properties. Denote the
extensions of u and v in A without coordinate t by u and v. Since {0, 1, 2} \
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{ut, vt} is special element for coordinate t it follows that u and v are elements
of one of the two optimal coverings A1 or A2 of Q8.

If u,v ∈ At
i for i = 1 or 2 then d(u,v) = 3 (since we delete coordinate

t where ut 6= vt and add coordinate 9 where u and v have one and the same
element). This is a contradiction with d(x,y) ≥ 4 for any x,y ∈ Ai for i = 1
or 2.

Definition 2. A vector (u1, . . . , u8) is called characteristic vector for the cov-
ering A of Q9 if for any t, 1 ≤ t ≤ 8 the element ut is a special element for
coordinate t.

Recall that A9
1 ∪A9

2 is equivalent to A1 or A2.
Suppose that for given characteristic vector there exist vectors u,v,w from

A1 for i = 1 or 2, any two of which satisfy the conditions of Lemma 2. Since
at least two of them are elements of A9

i for i = 1 or 2 we have a contradiction
to Lemma 2. Therefore this characteristic vector has to be rejected.

For example, consider elements 1,3,4 from covering A1 of Table 4. Any two
of these elements satisfy the conditions of Lemma 2 for all characteristic vectors
of the form

(u1, u2, u3, u4, 2, u6, u7, u8)

where u1 = 0 or u2 = 1 or u3 = 0 or u4 = 1.
For all possible 38 = 6561 characteristic vectors we try to find three vectors

u,v,w from Ai for i = 1 or 2, any two of which satisfy the condition of Lemma
2.

For the first covering for any characteristic vector such a triple always ex-
ists. Hence all characteristic vectors are rejected and therefore A9

1 ∪ A9
2 is not

equivalent to A1.
For the second covering A2 we obtain only 4 characteristic vectors for which

such a triple does not exist:

(00021002); (02000102); (10221020); (12200120).

Since the permutation (24)(56) is an automorphism of A2 we may consider only
first and third vectors.

Thus, without loss of generality we assume that A9
1 ∪ A9

2 = A2 and there
are two possible characteristic vectors (00021002) and (10221020).

For a particular characteristic vector the next step is to extend each vector
with 1 or 2, i.e. we have to split the elements of A2 into A9

1 and A9
2. Again

we make use of Lemma 2. Let the extension of the first vector be 1, i.e. x =
(00000002) is in A9

1. Consider a vector y ∈ A2, for which d(x,y) = 4. If
there exists a coordinate for which the two entries of x and y in this coordinate
and the corresponding special element are pairwise distinct (equivalently they
form the set {0, 1, 2}) then it follows from Lemma 2 that y is extended by
2. This procedure is applicable to any vector that has already been extended.
Eventually we extend all vectors. For each of the two characteristic vectors
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we obtain only two possible extensions. They are given in the next table (i-th
element of the given vector is the extension of the i-th element of A2).

Characteristic vector extensions of the elements
00021002 11122121221212112111222121112122221211222112
00021002 12122111122112112122112111222122221222112112
10221020 11222211222221111221122111122112211212212112
10221020 12222221121121111212212121212112211221122112

Up to now we know all elements of A9
1 and A9

2. Thus, it remains to find the
elements of A9

0, i.e. the elements with last coordinate 0. Note that |A9
0| = 23,

so we need 23 vectors. Let xi for i = 1 or 2 and y0 be two elements of the
covering A. If there exists a coordinate for which the two entries of xi and y0
and the corresponding special element are pairwise distinct then d(x,y) ≥ 3.
Therefore in order to find all possible elements of A9

0 we have to find all vectors
y of length 8 with the described property. Direct verification shows that there
exist 178 such vectors. Denote this set by B.

Furthermore, for any two vectors x and y from A9
0 we have that if there

exists a coordinate for which both x and y differ from the corresponding special
element then d(x,y) ≥ 4. Therefore we have to find a subset A9

0 of B with
cardinality 23 any two elements of which satisfy the above property. In addition,
for any coordinate t, 1 ≤ t ≤ 9 of the set A = A9

0 ∪ A9
1 ∪ A9

2 we must have
{at

0, a
t
1, a

t
2} = {23, 23, 21} or {23, 22, 22}.

Computer search finds no such set.
Therefore T (9) > 67 and since there exists a covering of Q9 with 68 elements

we conclude that T (9) = 68.

In order to verify the computer search results, all the computations have
been carried out independently by different programs written on Pascal and
C++ developed by the authors. The time needed to perform the steps of the
computation ranges from a few minutes to a few hours for the last step.

The exact value T (9) = 68 and Lemma 1 imply that

T (10) ≥ 102, T (11) ≥ 153, T (12) ≥ 230, T (13) ≥ 345.
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[2] H. Hämäläinen, I. Honkala, S. Litsyn, P. R. J. Ostergard, Football pools -
a game for mathematicians, Amer. Math. Monthly 102, 1995, 579–588.

[3] E. Kolev, How to have a wrong bet in football pools, accepted for publi-
cation in CR Acad. Bulg. Sci.



Kolev, Baicheva 133
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