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Abstract. We investigate CRC codes generated by polynomials of degree r = 24
and minimum distance 4. Historically, standardized polynomials of degree r were
chosen with a parity control check polynomial which ic product of (z + 1) and
a primitive polynomial of degree r — 1. We show that for the HARQ scheme of
the LTE standard [5] this approach is far from optimal. We propose a method to
select polynomials that perform better with respect to the function of probability
of undetected error for specific codelengths. Moreover, we do not need exhaustive
search to find better polynomials.

1 Introduction

Let C be a binary [n., k.,d = 4] CRC code generated by the polynomial g(z).
We recall that for each polynomial g(z) there is a number n., such that g(z)
divides 2" +1 and n, = min{m|z™ =1 (mod g(z))}. The number n. is called
order of the polynomial g(x) and is denoted by ord(g). So, length of code C'
is n. and deg(g) = r = n. — k.. Each codeword c(z) can be represented as a
product a(x)g(x), where deg(a) < n. — r.

For a binary symmetric channel (BSC) the probability of undetected error
can be expressed in the following way

Pu(Cre) =) A (1—e)" ",
=1

where ¢ is the channel error rate and {4}, is the distance distribution of the
code C.

So, not only the minimum distance is important to characterize a certain
CRC code with respect to probability of undetected error, but also the number
of minimum weight codewords. This characteristic is especially important when
¢ is close to zero. Let us denote the number of minimum weight codewords by
Adn.—s(g) for a shortened in s positions [n. — s,k. — s,d = 4] CRC code.
Consistently with the previous definition, we have A4(g) = Agn.(9)-
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We will say that a CRC code of length n. has an optimum value of Ay, (g),
if it is the smallest possible one for this length.

A NP-complete method of finding a polynomial g(x) that generates a code
with minimum value of Ay, —s(g) is presented in [8] and used in [1] and [2]. In
summary, for a given s, we need to calculate values of Ay, _s(g) for at most
2"~ polynomials. This can be done by calculating generator matrix of size
r and counting the weights of all possible combinations. Their number is 2"
and this will give us the dual distance distribution. We can get the value of
Ay p.—s(g) by applying the Mac-Williams transformation [6].

2 Classes of polynomials

Definition 1. If two polynomials g(z) and f(z) can be factorized on an equal
number k of irreducible polynomials g1(z), ..., gk(x) and fi(z),..., fr(x) such
that deg(g;(x)) = deg(fi(x)) for i = 1,...,k and ord(g;(x)) = ord(fi(z)) for

i=1,...,k we will say that they belong to one class.

All polynomials from one class generate equivalent cyclic codes with the
same Ag(g).

This work is inspired by two (classes of ) polynomials with optimal A4, —s(9)
for big intervals of codelengths for a fixed r = 16. Their optimal range is given
in [7]. The first of these (classes of) polynomials is optimal for the interval
8002 < n.—s < 19685 and the second one for the interval 1286 < n.—s < 8001.
Note that both polynomials have odd weight, i.e. (z+1) does not divide them.
These polynomials are:

gi(z) = 20+ pa 42 42042 1
= @4+l e+ )@+t B3+ )T +25+1),
gp(z) = 20+ 422427 +28 420+ 27+t 41

= @+ + )@+ P+ e+ D)@ b+t a? r 1)

For them it holds ord(g;) = 3 x 31 x 127 = 19685 and ord(gy) = 63 * 127 =
8001. To give indication about the properties of these polynomials, we compare
Aq(gi),1 = 1,2, with Ay4(f) of a shortened in the corresponding number of
positions CRC code generated by the polynomial f of degree 16 and order
215 1. In our case we use the CRC-16-CCITT standardized polynomial f(z) =
216 + 212 + 25 + 1. We have in Table 1 comparison of the corresponding Ag
values.

So, we see that these polynomials have a considerably better A4, . Since
the case r = 16 is covered in [7] we are interested to see how such CRC codes
behave for other r = 24. In particular, we compare these polynomials to the
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Code | Optimal polynomials Standard polynomial
length
8001 Ay 001(g2) = 3,550,443, 750 Ay g001(f) = 5,205,812,877

19685 | A4 19685(91) = 158,813,048,515 | Ay 196s5(f) = 190, 889, 834, 302

Table 1: Comparison of A, of standardized polynomials and optimal ones of
degree 16.

LTE standard. The LTE standard [5] defines two polynomials, namely:
ga(@) =2 4B B gl p g1 gl 410 0T 1S a5t a3 p et

and
g(z) = + 28 + 28+ 20+ + 1.
Error correction schemes in LTE standard are described extensively in [3]
and [4]. In brief, the standard uses blocks of maximum 6144 bits, 6120 in-
formation bits and 24 CRC bits generated by polynomial g4. All transmitted

information is protected additionally with 24 CRC bits generated by polynomial
gp. Both polynomials have order 8, 388, 607.

3 Method of investigation

To determine the number of minimum weight codewords of an extended Ham-
ming code we can refer to

Theorem 1. ([7, Theorem 9]) Let C be a binary [n. — r, ke, 4] code generated
by the polynomial (x + 1)g(z) of degree r and order n. = 2"~! — 1. Then the
following equality holds:

(ne —3)((ne — 4s)(ne — 1) + 6s(s — 1))
24

A4,nc75(g) = - B, (1)

where B = Y% ) S M s ) (Qmg(9) — Y021 Quuga(9)),

Qm,j(g)_{l’ g(x) | 2™+ 27 + 1,

0, otherwise

1 g(@)|a™+al +a' +1,

0, otherwise.

Qm,i,j (g) = {
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According to Theorem 1, the Hamming codes shortened in s positions gen-
erated by primitive polynomials of degree » — 1 multiplied by = + 1 have values
of Ayn.—s(g) in a close range because the most terms in B from (1) will be 0
or 1.

Unfortunately, we do not have such formulas for an arbitrary CRC code. In
this work we use several techniques to easily obtain generator polynomials of
CRC codes that perform significantly better, if not optimal, for a given n. — s.

The classical method of calculation of Ay, —s(g) is to use the distance
distribution of the dual code calculated with the standard Gray code method
[9] and then to apply the MacWillams transformation [6]. The idea behind
the Gray code is that each codeword is generated at a simple step based on
the current state and the previous codeword. Therefore the complexity of this
algorithm is O(2"), r = ord(g). If we apply exhaustive search, we need to do
this for all polynomials except reciprocal ones, so an additional factor of 271
applies.

In our method, we still use Gray code to calculate dual distance distribution,
however, we do this on significantly smaller number of polynomials. It can be
summarized in four steps.

1. We group all polynomials in classes according to Definition 1. We exclude
reciprocal polynomials, i.e. g(x) and 224g(1/x), since they have the same
order and distance distribution. So, we take only one of them.

2. For each order n. and factorization, we select one polynomial h from every
class and we calculate the minimum distance d of the corresponding CRC
code. If d = 3, we skip this class of polynomials.

3. For each class represented by a polynomial h, we calculate the number of
minimum weight codewords A4 6120(h) and select two groups of polyno-
mial classes - one with a polynomial representative of order bigger than
6120 and one of order bigger than 100, 000.

4. For the first three classes with a minimum value of Aj—46120 (in order
to compare with g4) and the first three classes with a minimum value of
Ag=4100,000 and an order bigger than 100,000 (in order to compare with
gp) and big codelengths we perform calculations on all their members. In
that way we find the best polynomial from the corresponding class that
generates a minimum Ag—4 6120-

The software computational modules are developed by the author and are
available on request.
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4 Results

In the tables below we give our results for the investigated degrees. We propose
new polynomials that generate CRC codes with a much smaller number of
minimum weight codewords than the polynomials used in the LTE standard. All
polynomials are presented in hexadecimal notation, for example the polynomial
22 + 28 + 2% + 2% + 23 + 1 is denoted by 0x1000079 and z* + 23 + x + 1 is
denoted by 0x1B.

Polynomial notation order Ag 120
0x1864CFB (standard,gs) | 222 — 1 | 56,416,496
0x114855B 38227 | 24,989,800
0x17A481F 12291 | 25,013,640
0x14AC147 19065 | 25,463,304

Table 2: Comparison of the minimum weight codewords of standardized poly-
nomials and new proposals with order lower than 100,000.

Polynomial notation order Ade120
0x1800063 (standard,gg) | 223 — 1 | 68,018,112
0x103A977 114681 | 25,201,272
0x116C3EF 522753 | 25,850,512
0x140F133 278845 | 29,275,776

Table 3: Comparison of the minimum weight codewords of the standardized
polynomials and the new proposals of order higher than 100,000.

We notice that all optimal polynomials have odd weight and they perform
significantly better than the corresponding standard polynomial.

5 Conclusions

In this work we propose polynomials which perform significantly better than the
standard LTE polynomials for the target codelenght. We group polynomials in
classes and we select ones with d = 4 and minimum value of A4 ,,,_, for n.—s =
6120 and 100, 000. The proposed polynomials perform much better compared to
standardized LTE polynomials with respect to the function of undetected error
probability for the most useful case when ¢ is close to zero. Although the whole
algorithm is NP-complete, exhaustive calculation of 2" polynomials is replaced
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by one of limited number of investigated polynomials. We have shown that for
large range of codelengths we can obtain easily polynomials that perform better
with respect to the probability of undetected error.
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