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Abstract. We introduce a new combinatorial search problem in networks. This
search model can be viewed as an adaptive group testing in a graph, where a search-
ing object, or target, occupies one of the vertices. However, unlike standard group
testing problems, the target in our model can move to an adjacent vertex once after
each test. The problem is to find the location of the target, with a certain accu-
racy, using minimum number of binary tests applied on the subsets of vertices of
the underlying graph. In this paper we consider cycles and paths as underlying
graphs. We give optimal search strategies for isolation of the target within a subset
of vertices of a given size. We also considered a restricted case of the problem, when
the number of moves of the target is limited. Finally we present a coding analogue
of the problem.

1 Introduction

Problems involving search arise in various areas of human activity. The first
developments in search theory were made by Bernard Koopman and his col-
leagues during World War II. The purpose was to provide efficient ways to
search for enemy submarines. The work done from 1942 to 1945 was published
later (1946) in a book [9].

Basically, all search problems have two elements in common: a hidden object,
in the broad sense of something being searched for, and a searcher. Search
theory deals with the problem faced by a searcher: finding a hidden object,
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in a given search space, in minimum time. In most of early developments it is
assumed that a searching object is stationary and hidden according to a known
distribution or it is moving and its motion is determined, by some known rules.
This model of search is called one-sided search. In case the target cares about
when he is found and reacts in any intelligent way to the searcher, the problem
is called two-sided search.

A combinatorial search problem is considered in a discrete space and consists
of finding a set of items in it satisfying specified requirements. Nowadays,
combinatorial search involves an extensive number of challenging optimization
problems which come directly from practical applications. The fundamentals
of combinatorial search can be found in primary books [1], [3], [8].

During the Workshop ”Search Methodologies II” (2012) Rudolf Ahlswede
suggested to consider some combinatorial models of two-sided search for a mov-
ing object. This inspired us to introduce the following two-sided search model.

We define our search space N = {1, 2, . . . , N} as the vertices of a graph
G = (N , E). A searching object, also called a target, occupies one of those
vertices unknown to the searcher. The searcher is able to detect the presence of
the target at any subset of N , i.e. for any subset T ⊂ N , called a test set, the
searcher can learn whether the target is located at T or not. The goal is to find
the location of the target, with a certain accuracy, in minimum time (number
of tests). Note that in case of stationary target, the problem is equivalent to a
classical group testing problem (see [7] for more awareness) of finding a single
defective item.

We consider the following model of search for a moving target. After each
test, the target can move once to an adjacent vertex or stay at the same place.
For ease of description we assume that each vertex in our graph G has a loop.
Thus, we may assume w.l.o.g. that in each time unit the target moves to an
adjacent vertex. Furthermore, starting at vertex d1, after n time units the target
commits a walk dn+1 := (d1, . . . , dn+1) ⊂ N n+1; (di, di+1) ∈ E (i = 1, . . . , n).
Thus, vector dn+1 shows that the target occupies the vertex dj at time j. Recall
that in case of classical group testing we have di = dj ; 1 ≤ i, j ≤ n + 1.

Next we give a formal description of our adaptive search model. Let d1 ∈
N be the initial unknown position of the target and let (T1, T2, . . . , Tn) be a
sequence of test sets Ti ⊂ N (tests for short) performed one after another at
a time. Let also (d1, . . . , dn+1) be the corresponding unknown walk performed
by the target. For each test Ti we define the test function

fTi(di) =
{

0 , if di 6∈ Ti

1 , if di ∈ Ti.

A sequence (T1, T2, . . . , Tn) is called a sequential or adaptive strategy of
length n, if the result of each test Ti (i = 1, . . . , n− 1), defined by fTi(di), can
be used for the next test Ti+1.
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We denote by Di the set of possible positions of the target after the ith test,
thus D0 = N and for i = 1, . . . , n we have

Di =
{

Γ(Ti) , if fTi(di) = 1
Γ(Di−1\Ti) , if fTi(di) = 0,

where Γ(A) := {j ∈ N : ∃i ∈ A with (i, j) ∈ E} is the neighborhood of a subset
A ⊂ N . Thus, we can define Di as the search space after ith test.

Given a graph G = (N , E), a strategy of length n is called (G, s)–successful
if |Di| ≤ s for some i ≤ n. Let s∗(G) be the minimal number s∗ such that there
exists a (G, s∗)–successful strategy. Given an integer s ≥ s∗(G), we denote
by n(G, s) the minimum number n such that there exists a (G, s)–successful
strategy of length n. The corresponding strategy is called then an optimal
(G, s) strategy. To the best of our knowledge, this problem was not studied
earlier in the literature.

We also consider a more general problem when the mobility of the target is
limited, namely the target can move at most t times, t < |N |. In this case we
use the corresponding notation (G, s, t)–successful and n(G, s, t). Recall that
we consider the worst case analysis, i.e. the goal of the target is to maximize the
length of the strategy. In this paper we consider undirected cycle and paths as
underlying graphs. We denote by CN = (N , E) the cycle graph on N vertices,
where E = {(i, i + 1) : i = 1, . . . , N − 1} ∪ {N, 1} ∪ {(i, i) : i = 1, . . . , N}
and by LN = (N , E) the path (also called linear) graph on N vertices with
E = {(i, i + 1) : i = 1, . . . , N − 1} ∪ {(i, i) : i = 1, . . . , N}.

The paper is organized as follows: In Section 2 we give an optimal (CN , s)–
strategy for s ≥ 5 and any cycle CN . We also show that s∗(CN ) = 5 for
N ≥ 5. For a path LN we give an optimal (LN , 4) strategy, which is linear in
N . For s ≥ 5 we give an optimal (LN , s) strategy, which is logarithmic in N . In
Section 3 we consider the problem for cycles and paths, when a target can move
at most t times. We give optimal (CN , 3, t)–strategies for t = 1, 2 and for t ≥ 3
we give a general strategy. Finally, we give an optimal (LN , 3, 1)-strategy and a
general strategy for s ≥ 5. In Section 4 we present a new coding problem, which
is a twin to our search problem. We conclude the paper with some directions
for future research. Due to lack of space we skip some of proofs.

2 Optimal strategies for cycles and paths

We consider only two classes of graphs: cycles and paths on N vertices. We in-
troduce two new notation. Given integers n, s ≥ 1, we denote by Nc(n, s) resp.
Nl(n, s) the maximal number N , such that there exists a (CN , s)–successful
resp. (CL, s)–successful strategy. Afterwards, for ease of exposition, we present
our results in terms of Nc(n, s) resp. Nl(n, s) rather than n(CN , s) resp.
n(LN , s). We start with a simple observation for cycles.
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Proposition 1. For N ≥ 5 we have s∗(CN ) = 5.

Theorem 1. For n ≥ 0 we have

Nc(n, 5) = 2n + 4.

Proof. We proceed by induction on n. For n = 0 the statement is obvious.
n− 1 → n: Suppose Nc(n, 5) > 2n + 4 and (T1, . . . , Tn) is an optimal strategy.
Observe that in the worst case |D1| ≥ dNc(n, 5)/2e+ 2, with the equality iff T1

is a path in CN . This implies |D1| > (2n + 4)/2 + 2 = 2n−1 + 4, a contradiction
with the induction hypothesis |D1| ≤ Nc(n − 1, 5) = 2n−1 + 4. Hence we have
Nc(n, 5) ≤ 2n+4. On the other hand, by the induction hypothesis, taking a path
T1 with |T1| = N

2 , is sufficient (and necessary) to get an optimal strategy.

Using the same approach we can extend the result to arbitrary s ≥ 5.

Theorem 2. For s ≥ 5 and n ≥ 0 we have

Nc(n, s) = (s− 4)2n + 4.

Next we consider a path as an underlying graph.

Proposition 2. For N ≥ 4 we have s∗(CL) = 4.

Lemma 1. For n ≥ 0 we have

Nl(n, 4) = 2n + 4.

Theorem 3. For integers n ≥ 0 and s ≥ 4 we have

Nl(n, s) = (s− 4)2n + 2n + 4.

Proof. In view of Lemma 1 we consider now the case s ≥ 5. We denote by
ai the maximal number such that Dn−i = {1, 2, . . . , ai} in a (LN , n)-successful
strategy. It is not hard to show that ai = (ai−1 − 1) + (Nc(i − 1, s) − 2). Our
goal now is to show that ai = (s− 4)2i + i + 4, using induction on i. It is clear
that a0 = s and for i− 1 → i we have
ai = ((s− 4)2i−1 + (i− 1) + 4− 1) + ((s− 4)2i−1 + 4− 2) = (s− 4)2i + i + 4.
Since Nl(n, s) = 2(an−1 − 1) the statement follows.

3 Optimal strategies for the restricted case

In this section we consider the case when the target can move at most t times.
Thus, there are most t + 1 different vertices in any walk of the target. We
consider the problem first for cycles CN .
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Theorem 4. For integers s ≥ 5, 1 ≤ t < n we have

Nc(n, s, t) ≥ (s− 4)2n + 4 + 4(2n−t − 1).

In view of Theorem 2 we get the following

Corollary 1. For integers s ≥ 5, 1 ≤ t < n we have

Nc(n, s, t) ≥ Nc(n, s) + 4(2n−t − 1).

We consider now the cases t = 1, 2.

Theorem 5.

(i) For n ≥ 1 and s ≥ 3 we have Nc(n, s, 1) = (s− 2)2n.

(ii) For n ≥ 4 we have Nc(n, 3, 2) = 2n−2.

Next we consider the restricted case for paths.

Theorem 6. For integers s ≥ 5, 1 ≤ t < n we have

Nl(n, s, t) ≥ (s− 4)2n + 2t + 2n−t+2.

Theorem 7. For s ≥ 3 we have

Nl(n, s, 1) = (s− 2)2n + 2.

4 A new coding model and concluding remarks

Many adaptive search problems can be formulated as a coding problem. Already
in 1964 Berlekamp [4] showed that the problem of searching for one element with
at most e wrong answers is equivalent to construction of an e–error correcting
code with feedback. More examples can be found in [2], [5]. [6].

We describe now a coding problem which is equivalent to our two-sided
search model. Let N = {1, 2, . . . , N} be a set of messages, which we identify
with the vertices of an undirected graph G = (N , E). A source chooses a
message d1 ∈ N which the transmitter should transmit by sending at most
n(G) binary symbols (bits) step by step (adaptively) over a noiseless binary
channel. However, after every transmission of one bit, the source may change
the message into a neighboring message. The sequence of vertices d1, . . . , dj

describes an alteration, after j transmissions with the actual message dj . Let
(c1, . . . , cj−1) ∈ {0, 1}j−1 be the submitted sequence of the sender. Then the
jth bit cj depends on the actual message dj and the j − 1 submitted bits, so
that cj = cj(c1, . . . , cj−1, dj).
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The goal is to describe an efficient scheme of transmission such that for
every walk d1, . . . , dn+1 the receiver is able to find a set S ⊂ N , of a given size
s, which includes a message dj+1, after j ≤ n transmissions.

It can be seen that this setting of the problem is equivalent to our search
problem. On the other hand we note that from the coding point of view it
seems more natural to consider the following problem: the goal is to find a set
of size s containing the message dn+1.
We emphasize that for cycles and paths the answers for both problems are the
same.

We have considered a two-sided combinatorial search problem for two classes
of underlying graphs, cycles and paths, with the most simple topologies. In fact,
the problem essentially depends on the topology of the underlying graph. It is
natural to consider the problem for other popular topologies like grids, trees,
n-cubes etc. Another direction for future research is to consider probabilistic
models of the problem.
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