## MDS Deformations of linear codes ${ }^{1}$

## Azniv Kasparian

kasparia@fmi.uni-sofia.bg
Section of Algebra, Department of Mathematics and Informatics,
Kliment Ohridski University of Sofia
Evgeniya Velikova velikova@fmi.uni-sofia.bg
Section of Algebra, Department of Mathematics and Informatics,
Kliment Ohridski University of Sofia

## Dedicated to the memory of Professor Stefan Dodunekov


#### Abstract

For any $\mathbb{F}_{q}$-linear code $C_{0} \subset \mathbb{F}_{q}^{n}$ and any $[n, k, n-k+1]_{q}$-codes $C_{1}, \ldots, C_{r} \subset \mathbb{F}_{q}^{n}, r \leq q-1$, we find a family $J\left(f_{1}, \ldots, f_{n-k}\right) \rightarrow \mathbb{F}_{q}^{n}$ of $\mathbb{F}_{q}$-linear codes, depending on $f_{1}, \ldots, f_{n-k} \in \mathbb{F}_{q}\left[x_{1}, \ldots, x_{n}\right]$ and containing $C_{0}, C_{1}, \ldots, C_{r}$ as some of its fibers. For any family $J\left(f_{1}, \ldots, f_{n-k}\right) \rightarrow \mathbb{F}_{q}^{n}$ with $k$-dimensional fibers is shown the existence of an affine variety $X \subset{\overline{\mathbb{F}_{q}}}^{n}$, defined over $\mathbb{F}_{q}$, whose $\mathbb{F}_{q^{-}}$ Zariski tangent bundle $\left.T^{\mathbb{F}_{q}} X\right|_{X^{\text {smooth }}\left(\mathbb{F}_{q}\right)}$ coincides with $\left.J\left(f_{1}, \ldots f_{n-k}\right)\right|_{X^{\text {smooth }}\left(\mathbb{F}_{q}\right)}$ over the smooth $\mathbb{F}_{q}$-rational locus $X^{\text {smooth }}\left(\mathbb{F}_{q}\right)$ of $X$. The variety $X$ can be chosen in such a way that to require $\left.T^{\mathbb{F}_{q}} X\right|_{X^{\operatorname{smooth}\left(\mathbb{F}_{q}\right)}}$ to pass through $r \leq q$ MDS-fibers of $J\left(f_{1}, \ldots, f_{n-k}\right)$. If $\left.T^{\mathbb{F}_{q}} X\right|_{X^{\text {smooth }}\left(\mathbb{F}_{q}\right)}$ has an MDS-member $T_{a}^{\mathbb{F}_{q}} X \simeq \mathbb{F}_{q}^{k}$ then all the projections of $X \subset{\overline{\mathbb{F}_{q}}}^{n}$ in the $k$-dimensional coordinate subspaces of ${\overline{F_{q}}}^{n}$ have to be dominant. This global geometric property of $X$ is proved to be sufficient for the presence of an MDS-fiber $T_{a}^{\mathbb{F} q^{m}} X$ over a sufficiently large extension $\mathbb{F}_{q^{m}} \supseteq \mathbb{F}_{q}$.


All codes, considered in the present note are linear. We say that $C$ is an $[n, k, d]_{q}$-code if $C \subset \mathbb{F}_{q}^{n}$ is of length $n$, dimension $k$ and minimum distance $d$. Singleton bound asserts that $d \leq n+1-k$. A code $C$ is referred to as an MDS-one (Maximum Distance Separable) if $d=n+1-k$.

For $\forall f_{1}, \ldots, f_{n-k} \in \mathbb{F}_{q}\left[x_{1}, \ldots, x_{n}\right], \forall a \in \mathbb{F}_{q}^{n}$ consider the Jacobian matrix

$$
\frac{\partial\left(f_{1}, \ldots, f_{n-k}\right)}{\partial\left(x_{1}, \ldots, x_{n}\right)}=\left(\begin{array}{ccc}
\frac{\partial f_{1}}{\partial x_{1}} & \cdots & \frac{\partial f_{1}}{\partial x_{n}} \\
\ldots & \ldots & \ldots \\
\frac{\partial f_{n-k}}{\partial x_{1}} & \ldots & \frac{\partial f_{n-k}}{\partial x_{n}}
\end{array}\right)
$$

and the solution space $J\left(f_{1}, \ldots, f_{n-k}\right)_{a} \subset \mathbb{F}_{q}^{n}$ of the homogeneous linear system with matrix $\frac{\partial\left(f_{1}, \ldots, f_{n-k}\right)}{\partial\left(x_{1}, \ldots, x_{n}\right)}(a)$. The Jacobian family $J\left(f_{1}, \ldots, f_{n-k}\right) \rightarrow \mathbb{F}_{q}^{n}$ is the union $J\left(f_{1}, \ldots, f_{n-k}\right):=\cup_{a \in \mathbb{F}_{q}^{n}} J\left(f_{1}, \ldots, f_{n-k}\right)_{a}$.

If $\overline{\mathbb{F}_{q}}=\cup_{m=1}^{\infty} \mathbb{F}_{q^{m}}$ is the algebraic closure of $\mathbb{F}_{q}$ and $g_{1}, \ldots, g_{m} \in \mathbb{F}_{q}\left[x_{1}, \ldots, x_{n}\right]$, then $X=V\left(g_{1}, \ldots, g_{m}\right):=\left\{a \in{\overline{\mathbb{F}_{q}}}^{n} \mid g_{i}\left(a_{1}, \ldots, a_{n}\right)=0, \forall 1 \leq i \leq m\right\}$ is

[^0]called an affine variety, defined over $\mathbb{F}_{q}$ and $X\left(\mathbb{F}_{q}\right):=X \cap \mathbb{F}_{q}^{n}$ is the set of the $\mathbb{F}_{q}$-rational points of $X$. One defines the $\mathbb{F}_{q}$-Zariski tangent space to $X$ at $a \in X\left(\mathbb{F}_{q}\right)$ as $T_{a}^{\mathbb{F}_{q}} X=J\left(h_{1}, \ldots, h_{s}\right)_{a}$ for any generating set $h_{1}, \ldots, h_{s}$ of $I(X):=\left\{h \in \mathbb{F}_{q}\left[x_{1}, \ldots, x_{n}\right] \mid h(a)=0\right.$ for $\left.\forall a \in X\right\} \supseteq\left\langle g_{1}, \ldots, g_{m}\right\rangle_{\mathbb{F}_{q}}$.

## 1 Existence of MDS-deformations

Proposition 1. Let $\mathbb{F}_{q}=\left\{t_{0}=0, t_{1}, \ldots, t_{q-1}\right\}, A^{(0)} \in \operatorname{Mat}_{(n-k) \times n}\left(\mathbb{F}_{q}\right)$ be a check matrix of a code $C_{0} \subset \mathbb{F}_{q}^{n}$ and $A^{(1)}, \ldots, A^{(r)} \in \operatorname{Mat}_{(n-k) \times n}\left(\mathbb{F}_{q}\right)$ be check matrices of $[n, k, n-k+1]_{q}$-codes $C_{1}, \ldots, C_{r}$ for some $r \leq q-1$. If $L_{i}(x)=$ $\frac{\left(x-t_{0}\right) \ldots\left(x-t_{i-1}\right)\left(x-t_{i+1}\right) \ldots\left(x-t_{r}\right)}{\left(t_{i}-t_{0}\right) \ldots\left(t_{i}-t_{i-1}\right)\left(t_{i}-t_{i+1}\right) \ldots\left(t_{i}-t_{r}\right)}, \quad 0 \leq i \leq r$ are the Lagrange basis polynomials and $\Phi_{p}: \mathbb{F}_{q} \rightarrow \mathbb{F}_{q}, \Phi_{p}(t)=t^{p}$ is the Frobenius automorphism then the Jacobian family $J\left(f_{1}, \ldots, f_{n-k}\right) \rightarrow \mathbb{F}_{q}^{n}$ of $f_{s}\left(x_{1}, \ldots, x_{n}\right)=\sum_{j=1}^{n} \sum_{i=0}^{r} A_{s j}^{(i)} x_{j} L_{j}\left(x_{j}^{p}\right), \quad 1 \leq s \leq$ $n-k$ is a deformation of $J\left(f_{1}, \ldots, f_{n-k}\right)_{(0, \ldots, 0)}=C_{0}$ with $[n, k, n-k+1]_{q}$-fibers $J\left(f_{1}, \ldots, f_{n-k}\right)_{\left(\Phi_{p}^{-1}\left(t_{i}\right), \ldots, \Phi_{p}^{-1}\left(t_{i}\right)\right)}=C_{i}$ for $\forall 1 \leq i \leq r$.

In the case of $r=q-1, f_{s}\left(x_{1}, \ldots, x_{n}\right)=\sum_{j=1}^{n} \sum_{i=0}^{q-1} A_{s j}^{(i)} x_{j}\left[\sum_{m=0}^{q-1} t_{i}^{q-1-m} x_{j}^{p m}-1\right]$.

Proof. If $A^{(i)}=\left(A_{1}^{(i)} \ldots A_{n}^{(i)}\right)$ with $A_{j}^{(i)} \in \operatorname{Mat}_{(n-k) \times 1}\left(\mathbb{F}_{q}\right)$ then the polynomial family of points $H_{j}\left(x_{j}\right)=\sum_{i=0}^{r} A_{j}^{(i)} L_{i}\left(x_{j}^{p}\right) \in \operatorname{Mat}_{(n-k) \times 1}\left(\mathbb{F}_{q}\left[x_{j}\right]\right)$ passes through $H_{j}\left(\Phi_{p}^{-1}\left(t_{i}\right)\right)=A_{j}^{(i)}$ for $\forall 0 \leq i \leq r$. According to $\frac{\partial\left(x_{j} L_{i}\left(x_{j}^{p}\right)\right)}{\partial x_{j}}=$ $L_{i}\left(x_{j}^{p}\right)$, the Jacobian matrix $\frac{\partial\left(f_{1}, \ldots, f_{n-k}\right)}{\partial\left(x_{1}, \ldots, x_{n}\right)}=\left(H_{1}\left(x_{1}\right) \ldots H_{n}\left(x_{n}\right)\right)$ and the fibers $J\left(f_{1}, \ldots, f_{n-k}\right)_{\left(\Phi_{p}^{-1}\left(t_{i}\right), \ldots, \Phi_{p}^{-1}\left(t_{i}\right)\right)}=C_{i}$ for $\forall 0 \leq i \leq r$.

In the case of $r=q-1$, the elementary symmetric polynomials $\sigma_{s}=$ $\sum_{0 \leq i_{1}<\ldots<i_{s} \leq q-1} t_{i_{1}} \ldots t_{i_{s}}, 1 \leq s \leq q$ of $t_{0}, t_{1}, \ldots, t_{q-1}$ and the elementary symmetric polynomials $\tau_{s}=\sum_{i_{1}<\ldots<i_{s}, i \notin\left\{i_{1}, \ldots, i_{s}\right\}} t_{i_{1}} \ldots t_{i_{s}}, 1 \leq s \leq q-1$ of $t_{0}, \ldots, t_{i-1}, t_{i+1}, \ldots, t_{q-1}$ satisfy the equalities $\sigma_{1}=\tau_{1}+t_{1}$ and $\sigma_{s}=\tau_{s}+t_{i} \tau_{s-1}$ for $2 \leq s \leq q-1$. Then $x^{q}-x=\prod_{\nu=0}^{q-1}\left(x-t_{\nu}\right)=x^{q}+\sum_{m=0}^{q-1}(-1)^{q-m} \sigma_{q-m} x^{m}$ specifies that $\sigma_{1}=\ldots=\sigma_{q-2}=0, \sigma_{q-1}=(-1)^{q}, \sigma_{q}=0$. By an induction on $1 \leq s \leq q-2$, there holds $\tau_{s}=\left(-t_{i}\right)^{s}$ for $\forall 1 \leq s \leq q-2$. Combining with $\tau_{q-1}=(-1)^{q-1}\left(t_{i}^{q-1}-1\right)$, one gets $\Lambda_{i}(x)=\prod_{j \neq i}\left(x-t_{j}\right)=$ $x^{q-1}+\sum_{m=0}^{q-2}(-1)^{q-1-m} \tau_{q-1-m} x^{m}=\sum_{m=0}^{q-1} t_{i}^{q-1-m} x^{m}-1$. Thus, $\Lambda_{i}\left(t_{i}\right)=-1$ and
$-L_{i}(x)=-\frac{\Lambda_{i}(x)}{\Lambda_{i}\left(t_{i}\right)}=\Lambda_{i}(x)=\sum_{m=0}^{q-1} t_{i}^{q-1-m} x^{m}-1$. One can replace $f_{s}$ by $-f_{s}$.
The columns of the check matrices of $[n, k, n-k+1]_{q}$-codes consist of homogeneous coordinates of $n$-arcs in $\mathbb{P}^{n-k}\left(\mathbb{F}_{q}\right)$. In order to formulate the counterpart of Proposition 1 for arcs, let us consider the $\mathbb{F}_{q}^{*}$-action on $\mathbb{F}_{q}\left[x_{1}, \ldots, x_{n}\right]^{n-k}$ by $\left(\lambda,\left(f_{1}, \ldots, f_{n-k}\right)\right) \mapsto\left(\lambda f_{1}, \ldots, \lambda f_{n-k}\right)$ for $\lambda \in \mathbb{F}_{q}^{*}, f_{1}, \ldots, f_{n-k} \in \mathbb{F}_{q}\left[x_{1}, \ldots, x_{n}\right]$ and the orbit space $\mathbb{F}_{q}\left[x_{1}, \ldots, x_{n}\right]^{n-k} / \mathbb{F}_{q}^{*} \ni\left[f_{1}: \ldots: f_{n-k}\right]$. If $p=\operatorname{char}\left(\mathbb{F}_{q}\right)$ then the derivations

$$
\frac{\partial}{\partial x_{j}}\left(\sum_{\alpha} c_{\alpha} x_{1}^{\alpha_{1}} \ldots x_{j}^{\alpha_{j}} \ldots x_{n}^{\alpha_{n}}\right)=\sum_{\alpha} c_{\alpha} x_{1}^{\alpha_{1}} \ldots\left[\alpha_{j}(\bmod p)\right] x_{j}^{\alpha_{j}-1} \ldots x_{n}^{\alpha_{n}}
$$

$1 \leq j \leq n$ commute with the $\mathbb{F}_{q}^{*}$-action and descend to maps

$$
\frac{\partial}{\partial x_{j}}: \mathbb{F}_{q}\left[x_{1}, \ldots, x_{n}\right]^{n-k} / \mathbb{F}_{q}^{*} \longrightarrow \mathbb{F}_{q}\left[x_{1}, \ldots, x_{n}\right]^{n-k} / \mathbb{F}_{q}^{*}
$$

For any $a \in \mathbb{F}_{q}^{n}$ let

$$
\mathcal{E}_{a}: \mathbb{F}_{q}\left[x_{1}, \ldots, x_{n}\right]^{n-k} / \mathbb{F}_{q}^{*} \longrightarrow \mathbb{F}_{q}^{n-k} / \mathbb{F}_{q}^{*}=\mathbb{P}^{n-k}\left(\mathbb{F}_{q}\right) \cup\{[0: \ldots: 0]\}
$$

$\mathcal{E}_{a}\left(\left[f_{1}: \ldots: f_{n-k}\right]\right)=\left[f_{1}(a): \ldots: f_{n-k}(a)\right]$ be the evaluation map at $a$
Corollary 1. Any n-arcs $\mathcal{A}_{i}=\left\{P_{1}^{(i)}, \ldots, P_{n}^{(i)}\right\} \subset \mathbb{P}^{n-k}\left(\mathbb{F}_{q}\right), 1 \leq i \leq r \leq q$ admit an integrable polynomial interpolation. Namely, there exists some $\bar{f}=$ $\left[f_{1}: \ldots: f_{n-k}\right] \in \mathbb{F}_{q}\left[x_{1}, \ldots, x_{n}\right]^{n-k} / \mathbb{F}_{q}^{*}$ with $\left(\mathcal{E}_{\left(\Phi_{p}^{-1}\left(t_{i}\right), \ldots, \Phi_{p}^{-1}\left(t_{i}\right)\right)} \circ \frac{\partial}{\partial x_{j}}\right)(f)=P_{j}^{(i)}$ for $\forall 1 \leq j \leq n, \forall \leq i \leq r, \mathbb{F}_{q}=\left\{t_{1}, \ldots, t_{q}\right\}$ and $\Phi_{p}: \mathbb{F}_{q} \rightarrow \mathbb{F}_{q}, \Phi_{p}(t)=t^{p}$.
Example 1. Let $S_{d}=S_{d}\left(x_{1}, \ldots, x_{n-1}\right)=\sum_{\nu=1}^{n-1} x_{\nu}^{d}$. Consider $\Sigma_{i}=S_{(i-1) p+1}$ for $1 \leq i \leq n-k-1, \Sigma_{n-k}=S_{(n-k-1) p+1}+x_{n}$ and $J\left(\Sigma_{1}, \ldots, \Sigma_{n-k}\right) \rightarrow \mathbb{F}_{q}^{n}$ for some $1 \leq n \leq q+1$. The fibers $J\left(\Sigma_{1}, \ldots, \Sigma_{n-k}\right)_{a}$ with $a_{i} \neq a_{j}$ for all $1 \leq i<j \leq n-1$ are $[n, k, n-k+1]_{q}$-codes. If $a^{\prime}=\left(a_{1}, \ldots, a_{n-1}\right) \in \mathbb{F}_{q}^{n-1}$ has $n-k \leq t \leq n-2$ different components then $J\left(\Sigma_{1}, \ldots, \Sigma_{n-k}\right)_{\left(a^{\prime}, a_{n}\right)}$ is an $[n, k, 2]_{q^{-}}$ code for $\forall a_{n} \in \mathbb{F}_{q}$. When $a^{\prime} \in \mathbb{F}_{q}^{n-1}$ has $1 \leq t<n-k$ different components, the fiber $J\left(\Sigma_{1}, \ldots, \Sigma_{n-k}\right)_{\left(a^{\prime}, a_{n}\right)}$ is an $[n, n-t, 2]_{q}$-code with $n-t>k$.

Towards an explanation of Example 1, let us note that the Jacobian matrix

$$
\frac{\partial\left(\Sigma_{1}, \ldots, \Sigma_{n-k}\right)}{\partial\left(x_{1}, \ldots, x_{n}\right)}=\left(\begin{array}{cccc}
1 & \ldots & 1 & 0 \\
x_{1}^{p} & \ldots & x_{n-1}^{p} & 0 \\
\ldots & \ldots & \ldots & \ldots \\
x_{1}^{(n-k-2) p} & \ldots & x_{n-1}^{(n-k-2) p} & 0 \\
x_{1}^{(n-k-1) p} & \ldots & x_{n-1}^{(n-k-1) p} & 1
\end{array}\right)
$$

The projectivizations of the columns of the above matrix belong to a rational normal curve in $\mathbb{P}^{n-k}\left(\mathbb{F}_{q}\right)$ and form an arc for different $x_{1}, \ldots, x_{n-1} \in \mathbb{F}_{q}$.

## 2 The MDS-families as Zariski tangent bundles

If $X=V\left(f_{1}, \ldots, f_{n-k}\right) \subset{\overline{\mathbb{F}_{q}}}^{n}$ is of $\operatorname{dim} X=k$ and $J\left(f_{1}, \ldots, f_{n-k}\right)$ if of constant rank $k$, then $J\left(f_{1}, \ldots, f_{n-k}\right)_{a}=T_{a}^{\mathbb{F}_{q}} X$ for $\forall a \in X^{\text {smooth }}\left(\mathbb{F}_{q}\right)$ with an eventually strict inclusion $\left\langle f_{1}, \ldots, f_{n-k}\right\rangle \subseteq I(X)$. The next proposition realizes $J\left(f_{1}, \ldots, f_{n-k}\right) \rightarrow \mathbb{F}_{q}^{n}$ as an $\mathbb{F}_{q}$-Zariski tangent bundle for arbitrary $\operatorname{dim} V\left(f_{1}, \ldots, f_{n-k}\right) \geq k$.

Proposition 2. Suppose that $J\left(f_{1}, \ldots, f_{n-k}\right) \rightarrow \mathbb{F}_{q}^{n}$ has $\operatorname{dim}_{\mathbb{F}_{q}} J\left(f_{1}, \ldots, f_{n-k}\right)=$ $k$ for $\forall a \in S_{o} \subseteq \mathbb{F}_{q}^{n}, D=\max \left(\operatorname{deg}\left(f_{1}\right), \ldots, \operatorname{deg}\left(f_{n-k}\right)\right), p=\operatorname{char}\left(\mathbb{F}_{q}\right)$ and $g_{s}=f_{s}+x_{s}^{p D}$ for $1 \leq s \leq n-k$. Then $X=V\left(g_{1}, \ldots, g_{n-k}\right)$ is an affine variety of $\operatorname{dim} X=k, S_{o} \cap X=S_{o} \cap X\left(\mathbb{F}_{q}\right)$ is contained in $X^{\text {smooth }}\left(\mathbb{F}_{q}\right)$ and $J\left(f_{1}, \ldots, f_{n-k}\right)_{a}=J\left(g_{1}, \ldots, g_{n-k}\right)_{a}=T_{a}^{\mathbb{F}_{q}} X$ for $\forall a \in S_{o} \cap X$.

Proof. Note that $J\left(f_{1}+x_{1}^{p D}, \ldots, f_{n-k}+x_{n-k}^{p D}\right)_{a}=J\left(f_{1}, \ldots, f_{n-k}\right)_{a}$ for $\forall a \in \mathbb{F}_{q}^{n}$ by $\frac{\partial\left(f_{1}+x_{1}^{D D}, \ldots, f_{n-k}+x_{n-k}^{D}\right)}{\partial\left(x_{1}, \ldots, x_{n}\right)} \equiv \frac{\partial\left(f_{1}, \ldots, f_{n-k}\right)}{\partial\left(x_{1}, \ldots, x_{n}\right)}$. Let $I:=\left\langle g_{1}, \ldots, g_{s}\right\rangle_{\mathbb{F}_{q}}, X=V(I)$, $I(X)=\left\langle h_{1}, \ldots, h_{m}\right\rangle_{\mathbb{F}_{q}}$. Then $T^{\mathbb{F}_{q}} X:=\cup_{a \in X\left(\mathbb{F}_{q}\right)} T_{a}^{\mathbb{F}_{q}} X=\left.J\left(h_{1}, \ldots, h_{m}\right)\right|_{X\left(\mathbb{F}_{q}\right)}$ and $I \subseteq I(X)$ implies the fiberwise inclusion $\left.T^{\mathbb{F}_{q}} X \subseteq J\left(f_{1}, \ldots, f_{n-k}\right)\right|_{X\left(\mathbb{F}_{q}\right)}$. It suffices to show that $\operatorname{dim} X=k$ towards $T_{a}^{\mathbb{F}_{q}} X=J\left(f_{1}, \ldots, f_{n-k}\right)_{a}$ for all $a \in S_{o} \cap X=S_{o} \cap X\left(\mathbb{F}_{q}\right)$ and $S_{o} \cap X \subseteq X^{\text {smooth }}\left(\mathbb{F}_{q}\right)$.

For any $\Sigma \subseteq \mathbb{F}_{q}\left[x_{1}, \ldots, x_{n}\right]$ let $\Sigma^{(s)}:=\{f \in \Sigma \mid \operatorname{deg} f \leq s\}$. By Prop.3, p. 428 [1] and Prop.4, p. 428 [1], for sufficiently large $s$ the function $H P_{I(X)}(s):=$ $\operatorname{dim}_{\mathbb{F}_{q}} \mathbb{F}_{q}\left[x_{1}, \ldots, x_{n}\right]^{(s)}-\operatorname{dim}_{\mathbb{F}_{q}} I(X)^{(s)}$ is a polynomial of $s$, called the Hilbert polynomial of $X$. Thm.6, p. 451 [1] and Def.7, p. 430 [1] imply that $\operatorname{dim} X=$ $\operatorname{deg} H P_{I(X)}$. Prop.6, p.430. [1] provides $H P_{I(X)}(s)=H P_{I}(s)$, whereas $\operatorname{dim} X=$ $\operatorname{deg} H P_{I}(s)$. Let $\succ$ be the graded monomial order with respect to which $x^{\alpha} \succ x^{\beta}$ if and only if $\sum_{i=1}^{n} \alpha_{i}>\sum_{i=1}^{n} \beta_{i}$ or $\sum_{i=1}^{n} \alpha_{i}=\sum_{i=1}^{n} \beta_{i}, \alpha_{1}=\beta_{1}, \ldots, \alpha_{j-1}=\beta_{j-1}, \alpha_{j}>\beta_{j}$ for some $1 \leq j \leq n$. The ideal $L T(I):=\langle L T(f) \mid f \in I\rangle_{\mathbb{F}_{q}}$ of the leading terms of $I$ has Hilbert polynomial $H P_{L T(I)}(s)=H P_{I}(s)$ by Prop.4, p. 421 [1]. According to Prop.6, p. 430 and Def.7, p.430, $\operatorname{dim} X=\operatorname{deg} H P_{L T(I)}=\operatorname{deg} H P_{I(V(L T(I)))}=$ $\operatorname{dim} V(L T(I))$. However, $L T\left(g_{s}\right)=x_{s}^{p D} \in L T(I), \forall 1 \leq s \leq n-k$ implies $V(L T(I)) \subseteq V\left(x_{1}^{p D}, \ldots, x_{n-k}^{p D}\right) \simeq \mathbb{F}_{q}^{k}$, so that $\operatorname{dim} X=\operatorname{dim} V(L T(I)) \leq k$ and $\operatorname{dim} X=k$.

Corollary 2. Suppose that $J\left(f_{1}, \ldots, f_{n-k}\right) \rightarrow \mathbb{F}_{q}^{n}$ has $\operatorname{dim}_{\mathbb{F}_{q}} J\left(f_{1}, \ldots, f_{n-k}\right)_{a}=$ $k$ for $\forall a \in S_{o} \subseteq \mathbb{F}_{q}^{n}$ and $[n, k, n-k+1]_{q}-$ fibers $J\left(f_{1}, \ldots, f_{n-k}\right)_{a(\lambda)}, 1 \leq \lambda \leq r \leq q$. If $a_{j_{s}}^{(1)}, \ldots, a_{j_{s}}^{(r)} \in \mathbb{F}_{q}^{*}$ are different for $\forall j_{s} \in\left\{j_{1}, \ldots, j_{n-k}\right\}, j_{1}<\ldots<j_{n-k}$ and $\left\{a^{(1)}, \ldots a^{(r)}\right\} \nsubseteq V\left(f_{\nu}\right), \forall 1 \leq \nu \leq n-k$, then one can find polynomials $g_{s}=$ $f_{s}+\sum_{\delta=D}^{D+r-1} c_{s, \delta} x_{j_{s}}^{p \delta} \in \mathbb{F}_{q}\left[x_{1}, \ldots, x_{n}\right], 1 \leq s \leq n-k$, cutting a $k$-dimensional affine variety $X=V\left(g_{1}, \ldots, g_{n-k}\right) \subset \overline{\mathbb{F}}_{q}{ }^{n}$, defined over $\mathbb{F}_{q}$, with $a^{(1)}, \ldots, a^{(r)} \in S_{o} \cap X$ and $J\left(f_{1}, \ldots, f_{n-k}\right)_{a}=J\left(g_{1}, \ldots, g_{n-k}\right)_{a}=T_{a}^{\mathbb{F}_{q}} X$ for all $a \in S_{o} \cap X$.

Proof. By the proof of Proposition 2, $\operatorname{dim} X=k$ under the presence of at least one $c_{s, \delta} \neq 0$ for any $1 \leq s \leq n-k$. Towards $a^{(\lambda)} \in S_{o} \cap X$ for $\forall 1 \leq \lambda \leq r$, the undetermined coefficients $c_{s, \delta} \in \mathbb{F}_{q}$ have to satisfy $\sum_{\delta=D}^{D+r-1} c_{s, \delta}\left(a_{j_{s}}^{(\lambda)}\right)^{p \delta}=-f_{s}\left(a^{(\lambda)}\right)$, $1 \leq \lambda \leq r$. The coefficient matrix of that linear system has determinant $\left(a_{j_{s}}^{(1)} \ldots a_{j_{s}}^{(r)}\right)^{p D} \prod_{r \geq \lambda>\mu \geq 1}\left[\left(a_{j_{s}}^{(\lambda)}\right)^{p}-\left(a_{j_{s}}^{(\mu)}\right)^{p}\right] \neq 0$, as far as $\Phi_{p}\left(a_{j_{s}}^{(\lambda)}\right) \neq \Phi_{p}\left(a_{j_{s}}^{(\mu)}\right)$ for $a_{j_{s}}^{(\lambda)} \neq a_{j_{s}}^{(\mu)}$ and $\Phi_{p}(t)=t^{p}, t \in \mathbb{F}_{q}$.

Assume that $C_{0}$ from Proposition 1 is an $[n, k, n-k+1]_{q}$-code. Then Corollary 2 applies to $J\left(f_{1}, \ldots, f_{n-k}\right) \rightarrow \mathbb{F}_{q}^{n}$ and provides an affine variety $X$, defined over $\mathbb{F}_{q}$ with at least $r \leq q \mathbb{F}_{q}$-Zariski tangent spaces, which are MDScodes.

Let $\mathbb{F}_{q}=\left\{t_{0}=0, t_{1}, \ldots, t_{q-1}\right\}, \zeta=(0,1, \ldots, q-1) \in \operatorname{Sym}(q)$ and $b_{i}=$ $\left(t_{\zeta^{i}(0)}, \ldots, t_{\zeta^{i}(n-2)}, \theta_{i}\right), 1 \leq i \leq q$ for some $\theta_{i} \in \mathbb{F}_{q}$. The application of Corollary 2 to $J\left(\Sigma_{1}, \ldots, \Sigma_{n-k}\right)$ from Example 1 and its fibers over $b_{1}, \ldots, b_{q}$ implies the existence of an affine variety $X$, defined over $\mathbb{F}_{q}$ with at least $q \mathbb{F}_{q}$-Zariski tangent spaces, which are MDS-codes.

Proposition 3. Let $X=V(I) \subset{\overline{\mathbb{F}_{q}}}^{n}, I \triangleleft \mathbb{F}_{q}\left[x_{1}, \ldots, x_{n}\right]$ be an irreducible affine variety of $\operatorname{dim} X=k$, defined over $\mathbb{F}_{q}$. For any $i=\left(i_{1}, \ldots, i_{k}\right)$ with $1 \leq i_{1}<$ $\ldots<i_{k} \leq n,\left\{j_{1}, \ldots, j_{n-k}\right\}=\{1, \ldots, n\} \backslash\left\{i_{1}, \ldots, i_{k}\right\}, 1 \leq j_{1}<\ldots<j_{n-k} \leq n$ consider the projection $\Pi_{i}: X \rightarrow{\overline{\mathbb{F}_{q}}}^{k}, \Pi_{i}\left(x_{1}, \ldots, x_{n}\right)=\left(x_{i_{1}}, \ldots, x_{i_{k}}\right)$ and a Groebner basis $G_{i}$ of $I \triangleleft \mathbb{F}_{q}\left[x_{1}, \ldots, x_{n}\right]$ with respect to the lexicographic order $\succ$ of $\mathbb{F}_{q}\left[x_{1}, \ldots, x_{n}\right]$ with $x_{j_{1}} \succ \ldots \succ x_{j_{n-k}} \succ x_{i_{1}} \succ \ldots \succ x_{i_{k}}$.
(i) If $a \in X^{\text {smooth }}\left(\mathbb{F}_{q}\right)$ has smooth images $\Pi_{i}(a) \in \Pi_{i}(X)$ for $\forall i$ and $T_{a}^{\mathbb{F}_{q}} X$ is an $[n, k, n-k+1]_{q}$-code, then $G_{i} \cap \mathbb{F}_{q}\left[x_{i_{1}}, \ldots, x_{i_{k}}\right]=\emptyset$ for $\forall i=\left(i_{1}, \ldots, i_{k}\right)$.
(ii) If $G_{i} \cap \mathbb{F}_{q}\left[x_{i_{1}}, \ldots, x_{i_{k}}\right]=\emptyset$ for $\forall i$ then there is $N \in \mathbb{N}$, depending on the embedding of $X$ in $\overline{\mathbb{F}}_{q}^{n}$, such that for $\forall m \in \mathbb{N}$ with $q^{m}>N$ at least one $\mathbb{F}_{q^{m}}$-Zariski tangent space $T_{a}^{\mathbb{T}_{q^{m}}} X, a \in X^{\text {smooth }}\left(\mathbb{F}_{q^{m}}\right)$ is an $[n, k, n-k+1]_{q^{-}}$-code.

Proof. A morphism $\varphi: Y \rightarrow Z$ is dominant when $\varphi(Y)$ is not contained in a proper affine subvariety of $Z$. We claim that $\Pi_{i}: X \rightarrow{\overline{\mathbb{F}_{q}}}^{k}, \Pi_{i}\left(x_{1}, \ldots, x_{n}\right)=$ $\left(x_{i_{1}}, \ldots, x_{i_{k}}\right)$ is dominant if and only if $G_{i} \cap \mathbb{F}_{q}\left[x_{i_{1}}, \ldots, x_{i_{k}}\right]=\emptyset$. To this end, let $I_{j}:=I \cap \mathbb{F}_{q}\left[x_{i_{1}}, \ldots, x_{i_{k}}\right]$ and note that $V\left(I_{j}\right)$ is the Zariski closure of $\Pi_{i}(X)$ by the proof of Thm.3, p. 123 [1]. The Elimination Thm.2, p. 114 [1] asserts that $G_{i} \cap \mathbb{F}_{q}\left[x_{i_{1}}, \ldots, x_{i_{k}}\right]$ is a Groebner basis of $I_{j}$. Thus, $G_{i} \cap \mathbb{F}_{q}\left[x_{i_{1}}, \ldots, x_{i_{k}}\right]=\emptyset$ is equivalent to $I_{j}=\{0\}$ which, in turn, holds exactly when $V\left(I_{j}\right)={\overline{\mathbb{F}_{q}}}^{k}$.

A morphism $\varphi: Y \rightarrow \varphi(Y)$ is etale at $a \in Y$ if $d \varphi_{p}: T_{p}^{\mathbb{F}_{q}} Y \rightarrow T_{\varphi(p)}^{\mathbb{F}_{q}} \varphi(Y)$ is an $\mathbb{F}_{q^{-}}$-linear isomorphism. Thus, $T_{a}^{\mathbb{F}_{q}} X, a \in X^{\text {smooth }}\left(\mathbb{F}_{q}\right)$ is an $[n, k, n-k+1]_{q^{-}}$ code exactly when $\Pi_{i}$ are etale at $a$ for $\forall i$. More precisely, $T_{a}^{\mathbb{F}_{q}} X$ is an MDS-code if an only if for any $i$ there exist homogeneous linear functions $v_{j_{r}}\left(v_{i_{1}}, \ldots, v_{i_{k}}\right)$, $1 \leq r \leq n-k$ with $T_{a}^{\mathbb{F}_{q}} X=\left\{v=\left(v_{1}, \ldots, v_{n}\right) \mid \forall\left(v_{i_{1}}, \ldots, v_{i_{k}}\right) \in \mathbb{F}_{q}^{k}\right\}$. The last condition is equivalent to the invertibility of $d_{a} \Pi_{i}: T_{a}^{\mathbb{F}_{q}} X \rightarrow \mathbb{F}_{q}^{k}$ for $\forall i$.
(i) If $\Pi_{i}$ is etale at $a \in X^{\text {smooth }}\left(\mathbb{F}_{q}\right)$ then $\mathbb{F}_{q}^{k}=d_{a} \Pi_{i}\left(T_{a}^{\mathbb{F}_{q}} X\right) \subseteq T_{\Pi_{i}(a)}^{\mathbb{F}_{q}} \Pi_{i}(X)$ requires $T_{\Pi_{i}(a)}^{\mathbb{F}_{q}} \Pi_{i}(X)=\mathbb{F}_{q}^{k}$. For a smooth point $\Pi_{i}(a) \in \Pi_{i}(X)^{\text {smooth }}$ that suffices for $\operatorname{dim} \Pi_{i}(X)=k$ and holds exactly when $\Pi_{i}$ is dominant.
(ii) The dominant morphism $\Pi_{i}: X \rightarrow \overline{\mathbb{F}}_{q}$ of an irreducible $X$ induces an embedding $\overline{\mathbb{F}_{q}}\left(x_{i_{1}}, \ldots, x_{i_{k}}\right) \hookrightarrow \overline{\mathbb{F}_{q}}(X)$ of the function fields. Due to $\operatorname{dim} X=k$, $\left[\overline{\mathbb{F}_{q}}(X): \overline{\mathbb{F}_{q}}\left(x_{i_{1}}, \ldots, x_{i_{k}}\right)\right]<\infty$ and $\Pi_{i}$ has finite fibers. If $R_{i} \subset \overline{\mathbb{F}}_{q}^{k}$ is the branch locus of $\Pi_{i}$, then $\Pi_{i}: \Pi_{i}^{-1}\left({\overline{\mathbb{F}_{q}}}^{k} \backslash R_{i}\right) \longrightarrow{\overline{\mathbb{F}_{q}}}^{k} \backslash R_{i}$ is an etale covering. Let $I^{\overline{\mathbb{F}_{q}}}(X)$ be the ideal of $X$ over $\overline{\mathbb{F}_{q}}$. If $\Pi_{j_{s}, i}: X \rightarrow{\overline{\mathbb{F}_{q}}}^{k+1}, \Pi_{j_{s}, i}\left(x_{1}, \ldots, x_{n}\right)=$ $\left(x_{j_{s}}, x_{i_{1}}, \ldots, x_{i_{k}}\right), \pi_{j_{s}}: \Pi_{j_{s}, i}(X) \rightarrow \Pi_{i}(X), \pi_{j_{s}}\left(x_{j_{s}}, x_{i_{1}}, \ldots, x_{i_{k}}\right)=\left(x_{i_{1}}, \ldots, x_{i_{k}}\right)$ and $R_{j_{s}}$ is the branch locus of $\pi_{j_{s}}$ then $R_{i}=\cup_{s=1}^{n-k} R_{j_{s}}$. For $\forall j_{s} \in\{1, \ldots, n\} \backslash$ $\left\{i_{1}, \ldots, i_{k}\right\}$ there is $\varphi_{j_{s}} \in\left\{\overline{\mathbb{F}_{q}}\left[x_{i_{1}}, \ldots, x_{i_{k}}\right]\left[x_{j_{s}}\right] \cap I^{\overline{\mathbb{F}_{q}}}(X)\right\} \backslash\{0\}$ with $\Pi_{j_{s}, i}(X)=$ $\left\{\left(x_{j_{s}}, x_{i_{1}}, \ldots, x_{i_{k}}\right) \in \overline{\mathbb{F}}_{q}^{k+1} \mid \varphi_{j_{s}}\left(x_{j_{s}}\right)=0\right\}$. If $d_{j_{s}} \in \mathbb{N}$ is the total degree of the discriminant $D\left(\varphi_{j_{s}}\right) \in \overline{\mathbb{F}_{q}}\left[x_{i_{1}}, \ldots, x_{i_{k}}\right]$ then $R_{j_{s}}=\left\{\left(x_{i_{1}}, \ldots, x_{i_{k}}\right) \in\right.$ \left.${\overline{\mathbb{F}_{q}}}^{k} \mid D\left(\varphi_{j_{s}}\right)\left(x_{i_{1}}, \ldots, x_{i_{k}}\right)=0\right\}$ has $\left|R_{j_{s}}\left(\mathbb{F}_{q^{m}}\right)\right| \leq d_{j_{s}} q^{m(k-1)}$. Thus, $\mid R_{i}\left(\mathbb{F}_{q^{m}} \mid \leq\right.$ $\left(\sum_{s=1}^{n-k} d_{j_{s}}\right) q^{m(k-1)}<q^{m k}=\left|\mathbb{F}_{q^{m}}^{k}\right|$ for $q^{m}>N:=\sum_{s=1}^{n-k} d_{j_{s}}$ and $R_{i}\left(\mathbb{F}_{q^{m}}\right) \nsubseteq \mathbb{F}_{q^{m}}^{k}$.

## References

[1] D. Cox, J. Little and D. O'Shea, Ideals, varieties, and Algorithms - An Introduction to Computational Algebraic Geometry and Commutative Algebra, Springer, 1992.


[^0]:    ${ }^{1}$ This research is partially supported by Contract 101/19.04.2013.

