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Abstract. For any Fg-linear code Co C Fy and any [n,k,n — k + 1]4-codes
Ci,...,Cr C Fy, v < g—1, we find a family J(fi1,..., fn_r) — Fg of Fy-linear
codes, depending on fi,..., fn—k € Fq[z1,...,2,] and containing Co,C1,...,Cr as
some of its fibers. For any family J(fi,..., fn—k) — Fg with k-dimensional fibers
is shown the existence of an affine variety X C F,", defined over F,, whose F,-
Zariski tangent bundle T]FqX|Xsnlooth(]Fq) coincides with J(f1,... fn—k)|xsmootn (g,
over the smooth F,-rational locus X¥™°°**(F,) of X. The variety X can be chosen
in such a way that to require T]Fq.Xlxsmooth(]Fq) to pass through r < ¢ MDS-fibers of
J(f1ye ooy foor). If T]FqX|Xsn—Aooth<]Fq) has an MDS-member 7, X ~ F¥ then all the
projections of X C F," in the k-dimensional coordinate subspaces of F," have to
be dominant. This global geometric property of X is proved to be sufficient for the

presence of an MDS-fiber Tf"m X over a sufficiently large extension Fgm D Fy.

All codes, considered in the present note are linear. We say that C is an
[n, k, d|g-code if C' C Fy is of length n, dimension k and minimum distance d.
Singleton bound asserts that d < n 4+ 1 — k. A code C' is referred to as an
MDS-one (Maximum Distance Separable) if d =n + 1 — k.

For Vfi,..., fo—k € Fylz1,...,2p], Va € [y consider the Jacobian matrix
oA Oh
8(f17"‘7fn7k) _ Oz Oz
8(x1,...,mn) Ofn—k O fr—r
0z te Oy
and the solution space J(f1,..., fn—k)a C [y of the homogeneous linear system

with matrix H(a) The Jacobian family J(f1,..., fo—x) — Fy is the

union J(fh SRR fn—k) = UaEF{;J(fla ) fn—k:)a-
IfF, = USS_,F m is the algebraic closure of F, and g1, . . ., gim € Fylx1, ..., 25,

then X = V(g1,...,9m) := {a € T, |gilar,...,a,) = 0,¥Y1 < i < m} is
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called an affine variety, defined over F;, and X(F,) := X N Fy is the set of
the IF,-rational points of X. One defines the F,-Zariski tangent space to X
at a € X(F,) as Tf"X = J(hi,...,hs), for any generating set hq,...,hs of
I(X) :={h € Fylz1,..., 2] | h(a) =0 for Va € X} D (g1,...,9m)F,

1 Existence of MDS-deformations

Proposition 1. Let F, = {to = 0,t1,...,t-1}, A € Mat(,_3)xn(Fq) be a
check matriz of a code Cy C Fy and A A e Mat(,_yxn(Fq) be check

matrices of [n,k,n —k + 1]4-codes C1,...,C, for some r < q¢—1. If Ly(x) =

(x—to)..(x—ti_1)(x—tiy1)...(x—tr)

(ti—to)...(ti—ti—1)(ti—tit1)...(Li—tr)’

and @, : Fq — Fy, ®,(t) =tP is the Frobenius automorphzsm then the Jacobian
k)

family J(fi, . Fuk) = F2 of fulwr,..smn) = 3 3 AVayLy(a?), 1< <

7j=1:=0
n—k is a deformation of J(f1,..., fu—k)(0,..0) = Co with [n,k,n—k+1],-fibers

‘](fla ) fn—k)(@;1(%)’.“’@;1(”)) = Cl fO’F V1 < 7 <r.

n a—
In the case of r = q—1, fs(x1,...,2) = Z_: Z:A j Lj Zotq - ml?m_l ’

0 <@ < r are the Lagrange basis polynomials

Proof. It A = (Agi)...Ag)) with Ay) € Mat(,_p)x1(Fy) then the polyno-
mial family of points Hj(x;) = ZA§i)Li(xp) € Mat(,_pyx1(Fy[z;]) passes
i=0

j
through H;(®,'(t;)) = A;Z) for VO < i < r. According to 5@57%(,)) =

Li(x%), the Jacobian matrix M = (Hy(x1) ... Hp(zy,)) and the fibers

T1yeensTn)
J(f1,.. ., fn,k)(@;1(“)7”'7@;1(“)) =C;for VO <i<r.
In the case of r = ¢ — 1, the elementary symmetric polynomials o; =
D 0<iy<.<in<qgo1tin---tiy, 1 < s < g of to,t1,...,t—1 and the elementary
symmetric polynomials 75 = > tiy ... ti,, 1 < s < qg—1 of
11 <. <0, 3 {01, s0s }
to, ...y tic1, g1, tg—1 satisfy the equalities 01 = 7 +t1 and 05 = 75+ ;751
q—1 q—1
for 2 <s<g—1 Thena? -z = [[(x—1t,) =27+ > (—1)7"ogma™
v=0 m=0
specifies that oy = ... = 042 = 0, 0g-1 = (-1)%, 0, = 0. By an in-

duction on 1 < s < ¢ — 2, there holds 74 = (—t;)® for V1 < s < q — 2.
Combining with 7,1 = (=1)97'#?"" = 1), one gets Ai(z) = [[(z — t;) =
J#1

q—2
xq_l + Z (—]_)q_l_mTq_l_m,]; Z tq 1=m m 1 ThuS A( ) — _]. and
m=
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q—1
—Li(z) = _ﬁz((t“l)) = Ai(z) = mgo t?il*mmm — 1. One can replace fs by —fs.
]

The columns of the check matrices of [n, k,n—k+1]4-codes consist of homo-
geneous coordinates of n-arcs in P"~*¥(IF,). In order to formulate the counterpart

of Proposition 1 for arcs, let us consider the F-action on F, [T1,...,2,]" % by
()\, (fl, R 7fnfk)> — ()\fl, ceey )\fnfk) for A\ € IF;;, fi,-oos faok € Fq[xl, ce ,mn]
and the orbit space Fylx, .. .,mn]”_k/F(’; S (ft+ ... famk). If p = char(FF,)

then the derivations

0 a; aj—1
— E Cayt x| = E cayt .. [og(modp)|z;” . oapn,
8SU]'

« o

1 < j <n commute with the F;—action and descend to maps

(9(35]' cFylza, ... ,xn]"*k/[ﬁ‘z — Fyz, . .. 7xn]n7k/IF‘Z.
For any a € IE‘(’; let
&+ Fylan, . .. ,:):n]”—k/IE‘Z — FZ_k/F’,; _ Pn_k(]Fq) U{0:...: 0]},
Ea([fi oot fuzk]) =1[fi(a) s ... fn_k(a)] be the evaluation map at a

Corollary 1. Any n-arcs A; = {Pl(i),...,P,gi)} CPrkF,), 1<i<r<gq
admit an integrable polynomial interpolation. Namely, there exists some f =

[freee s fai] € Folon, . an]™™* /By with (E oty a1 (1) © %)( f) = pj@

[ARR)

forvV1<j<n, V<i<r F,={ti,...,t;} and &, :F, = F,, O,(t) =1tP.

n—1
Example 1. Let Sy = Sy(x1,...,2p_1) = > 2¢. Consider L; = S(i—1)p+1
v=1

for1<i<n—k—-1 % = Snk—1)ypt1 T Tn and J(X1,..., 8, ) — FY
for some 1 < n < q+ 1. The fibers J(X1,...,50-k)a with a; # a; for all
1<i<j<n-—1arenkn—k+1],-codes. Ifa' = (ai,...,an—1) € IFZil has
n—k <t < n-—2 different components then J(X1, ..., X0 k) (a’,a,) 5 an [0, k, 2]4-
code for Va, € F,. When o' € Fg_l has 1 <t < n — k different components,
the fiber J(X1,. .., Y0 k) (' an) 18 an [n,n — t,2]4-code with n —t > k.

Towards an explanation of Example 1, let us note that the Jacobian matrix

1 .. 1 0

z ... zr 0

O, nk) _
8(3;1, R ,l‘n) l_gnfk72)p o m(117711672)p 0
xgn_k_l)p e arff__lk_l)p 1
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The projectivizations of the columns of the above matrix belong to a rational
normal curve in IP’"_k(Fq) and form an arc for different x1,...,2,-1 € Fy.

2 The MDS-families as Zariski tangent bundles

If X = V(fi,...,fax) C F," is of dimX = k and J(fi,..., fu_s) if of

constant rank k, then J(fi,..., fa_r)a = Tu'X for Va € Xsmooth(R ) with
an eventually strict inclusion (f1,..., fn—x) € I(X). The next proposition
realizes J(f1,..., fn-x) — Fy as an F -Zariski tangent bundle for arbitrary

dim V(fl, ceey fnfk) > k.

Proposition 2. Suppose that J(f1, ..., fo—x) — Fy has dimg, J(f1,..., fn—k) =
k for Ya € S, C Fy, D = max(deg(f1),...,deg(fn—k)), p = char(F;) and
gs = fs—f—xng for1 < s <n-—k. Then X = V(g1,...,9n—k) 1S an affine
variety of dim X =k, S, N X = S, N X(F,) is contained in X*™°"N(F,) and
Tty faei)a = J (915 Gnt)a = Ta’X forVa e SoNX.

Proof. Note that J(f; +33110D, ce fn—k*’ffilzk)a =J(f1,--, fa—k)a for Va € Fy

L Ay L o BTG OO
by S i) = el et 1= (gy,. L ga)E,, X = V(D)
I(X) = <h1,. . .,hm>[gq. Then T]FqX = Uan(Fq)TC]LFqX = J(hl, .. '7hm)|X(Fq)
and I C I(X) implies the fiberwise inclusion T%¢X C J(fy,..., fr—)x(F,)-

It suffices to show that dim X = k towards TE"X = J(f1,.--, fn—k)a for all
a€SyNX=25,nX(F,) and S, N X C Xsmooth(F ).

For any ¥ C Flzy,...,2,] let ) := {f € S|degf < s}. By Prop.3,
p-428 [1] and Prop.4, p.428 [1], for sufficiently large s the function H Pr(x(s) :=
dimg, Fy[z1, . .. ,xp)®) — dimg, I(X)®) is a polynomial of s, called the Hilbert
polynomial of X. Thm.6, p.451 [1] and Def.7, p.430 [1] imply that dim X =
deg H Pj(x). Prop.6, p.430. [1] provides H Pr(x)(s) = H Pi(s), whereas dim X =
deg HPy(s). Let = be the graded monomial order with respect to which z® = z
ifandonlyif i o; > i ﬁz or i o = Zn: ﬁi, o] = ﬁl,... y 01 = ﬂj,l,aj > ﬁj
for some 1 SZ’ 1§ n. Tlhé ideal ZL%’(I) ::Z (1LT(f)|f € I)r, of the leading terms of
I has Hilbert polynomial H Ppp(r)(s) = HPy(s) by Prop.4, p.421 [1]. According
to Prop.6, p430 and Def.?, p430, dim X = deg HPLT([) = deg HPI(V(LT(I))) =
dim V(LT (I)). However, LT(gs) = a¢P € LT(I), V1 < s < n — k implies
V(LT(I)) C V(xﬁ’D, . ,xffzk) ~ F¥ so that dim X = dim V(LT(I)) < k and
dim X = k.

O
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Corollary 2. Suppose that J(f1,..., fn—k) — Fy has dimp, J(f1, ..., fo—k)a =
k forva € S, CFy and [n, k,n—k+1]g-fibers J(fu, ..., fa—k)qn, 1 <A <7 <gq.
If agi), .. .,agz) € Iy are different for Vjs € {j1, .-, jn—k}, 1 < ... < jn—k and
{a(l), . ..a(r)} ¢ V(f,), V1 <v < n—k, then one can find polynomials gs =

D+r—-1
fs+ > Cs,gng € Fylz1,..., 2], 1 < s <n—k, cutting a k-dimensional affine
60=D

variety X =V (g1, ..., gn_r) C By, defined over Fy, with aV),... a") € S,nX
and J(f1,- s fo—k)a=J(g1,- s In—k)a = quX forallae S,NX.

Proof. By the proof of Proposition 2, dim X = k under the presence of at least
one cg 5 # 0 forany 1 < s < n—k. Towards a e S,NX for V1 < A < r, the un-
D4r—1
determined coefficients ¢, 5 € F; have to satisfy 0875(a§;\))p5 = —fy(a™),
6=D
1 < A < r. The coefficient matrix of that linear system has determinant
, p P

(ag.? . .ag»g))pD I [(ag-:\)) - <a§-’j)> } # 0, as far as q)p(a§-j‘)) # <I>p(a§-’:))

‘ ‘ r>X>p>1 ‘ ‘ ‘ ‘
for ag-j) #* ag-f) and ®,(t) =P, t € Fy,.

O

Assume that Cp from Proposition 1 is an [n,k,n — k + 1];-code. Then
Corollary 2 applies to J(f1,..., fo—) — Fy and provides an affine variety X,
defined over F, with at least r < g F,-Zariski tangent spaces, which are MDS-
codes.

Let F, = {to = 0,t1,...,tq—1}, ¢ = (0,1,...,¢ — 1) € Sym(q) and b; =
(teio)s - - teim—2),0i); 1 < i < q for some 0; € F;. The application of Corollary
2 to J(X4,...,%,_k) from Example 1 and its fibers over by, ..., b, implies the
existence of an affine variety X, defined over F, with at least ¢ F,-Zariski
tangent spaces, which are MDS-codes.

Proposition 3. Let X = V(I) CF,", IaF,[x1,...,x,] be an irreducible affine
variety of dim X = k, defined over F,. For any i = (i1,...,4;) with 1 < i3 <
o<iap <, {jl,...,jn,k}:{1,...,n}\{i1,...,’ik}, 1<in<...<jnik<n

consider the projection 1I; : X — Fy , Wi(x1,...,2n) = (Tiy,...,xi,) and a
Groebner basis G; of I <Fylx1, ..., x,] with respect to the lezicographic order >
of Folwt, ... xp] with xj = ... = xj, , = Xiy = ... = Tj.

(i) If a € XM (F,) has smooth images 1;(a) € 1;(X) for Vi and ThX
is an [n,k,n — k+ 1]4-code, then G; NFylz;,, ...,z ] =0 for Vi = (i1, ..., ).
(it) If Gi N Fylxiy, ...,z ] = O for Vi then there is N € N, depending on
the embedding of X in En, such that for Ym € N with ¢ > N at least one
Fym - Zariski tangent space qumX, a € X5MOUN(F o) is an [n, k, n—k+1],-code.
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Proof. A morphism ¢ : Y — Z is dominant when ¢(Y") is not contained in a
proper affine subvariety of Z. We claim that II; : X — Ek, I0(z1, ... xn) =
(@iy, ..., 2, ) is dominant if and only if G; NFylz;,,...,x;] = 0. To this end,
let I; := INFy[z;,, ...,z ] and note that V(I;) is the Zariski closure of II;(X)
by the proof of Thm.3, p.123 [1]. The Elimination Thm.2, p.114 [1] asserts that
GiNFy[z;,,...,x;] is a Groebner basis of I;. Thus, G; NFy[z;,, ...,z ] =01is
equivalent to I; = {0} which, in turn, holds exactly when V' (I;) = Ek.

A morphism ¢ : Y — ¢(Y) is etale at a € Y if dyp), : TI],F‘IY — ngp)cp(Y) is
an [Fg-linear isomorphism. Thus, TL]IF‘IX, a € XSmOt (F ) is an [n, k,n—k+ 1],

code exactly when II; are etale at a for Vi. More precisely, Tf ?X is an MDS-code
if an only if for any i there exist homogeneous linear functions vj, (v, ..., v, ),

1<r<n-—kwith T,°X = {v=(v1,...,0n) [V(viy,...,v5) € FF}. The last
condition is equivalent to the invertibility of d,II; : Tf X — IF"; for Vi.

i) If I, is etale at @ € X¥™°°h(F ) then F¥ = d,I1;(TE*X) C T
q q

n-(a)Hi(X )
requires Tg?(a)l'[i(X) = FF. For a smooth point II;(a) € IL;(X)™°™" that
suffices for dimII;(X) = k and holds exactly when II; is dominant.

(ii) The dominant morphism II; : X — Ek of an irreducible X induces an
embedding Fy(z;,, ..., ;) — F,(X) of the function fields. Due to dim X = k,

[F(X) : Fy(xiy,...,2:,)] < oo and II; has finite fibers. If R; C Ek is the
branch locus of II;, then II; : 11, 1(Ek \ R;)) — Ek \ R; is an etale covering.

Let IF4(X) be the ideal of X over Fy. If I, ; : X — F," " I, i(21, ..., 2n) =
(xjs7xi17 SR xik)’ Mjs - Hjs,i(X) - Hi(X)7 Trjs(sz7wi17 R xlk) = (xil? R xlk)
and Rj;, is the branch locus of 7, then R; = U?:_jRjS. For Vjs € {1,...,n}\
{i1,... ik} there is ¢, € {Fylziy, ..., i )2, ] N IF(X)}\ {0} with I, ;(X) =
{(@js, @iy, .. miy,) € Ek+1|¢js(£js) = 0}. If dj, € N is the total degree

of the discriminant D(yp;,) € Fylxi,...,x;] then R;, = {(xq,...,2;,) €
Fy | D(3.) (@i, w5,) = 0} has | Ry, (Fgm)| < dj,g™ "D, Thus, [Ri(Fgn| <

n—k et
(Sz:l djs> gkl < gk = |F§ml for ¢™ > N := S; dj, and R;(Fgm) & Fgm.
O
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