MDS Deformations of linear codes¹

AZNIV KASPARIAN kasparia@fmi.uni-sofia.bg Section of Algebra, Department of Mathematics and Informatics, Kliment Ohridski University of Sofia EVGENIYA VELIKOVA velikova@fmi.uni-sofia.bg Section of Algebra, Department of Mathematics and Informatics, Kliment Ohridski University of Sofia

Dedicated to the memory of Professor Stefan Dodunekov

Abstract. For any \mathbb{F}_q -linear code $C_0 \subset \mathbb{F}_q^n$ and any $[n,k,n-k+1]_q$ -codes $C_1, \ldots, C_r \subset \mathbb{F}_q^n, r \leq q-1$, we find a family $J(f_1, \ldots, f_{n-k}) \to \mathbb{F}_q^n$ of \mathbb{F}_q -linear codes, depending on $f_1, \ldots, f_{n-k} \in \mathbb{F}_q[x_1, \ldots, x_n]$ and containing C_0, C_1, \ldots, C_r as some of its fibers. For any family $J(f_1, \ldots, f_{n-k}) \to \mathbb{F}_q^n$ with k-dimensional fibers is shown the existence of an affine variety $X \subset \overline{\mathbb{F}_q}^n$, defined over \mathbb{F}_q , whose \mathbb{F}_q -Zariski tangent bundle $T^{\mathbb{F}_q}X|_{X^{\mathrm{smooth}}(\mathbb{F}_q)}$ coincides with $J(f_1,\ldots,f_{n-k})|_{X^{\mathrm{smooth}}(\mathbb{F}_q)}$ over the smooth \mathbb{F}_q -rational locus $X^{\mathrm{smooth}}(\mathbb{F}_q)$ of X. The variety X can be chosen in such a way that to require $T^{\mathbb{F}_q}X|_{X^{\text{smooth}}(\mathbb{F}_q)}$ to pass through $r \leq q$ MDS-fibers of $J(f_1,\ldots,f_{n-k})$. If $T^{\mathbb{F}_q}X|_{X^{\mathrm{smooth}}(\mathbb{F}_q)}$ has an MDS-member $T_a^{\mathbb{F}_q}X\simeq \mathbb{F}_q^k$ then all the projections of $X \subset \overline{\mathbb{F}_q}^n$ in the k-dimensional coordinate subspaces of $\overline{\mathbb{F}_q}^n$ have to be dominant. This global geometric property of X is proved to be sufficient for the presence of an MDS-fiber $T_a^{\mathbb{F}_q^m} X$ over a sufficiently large extension $\mathbb{F}_{q^m} \supseteq \mathbb{F}_q$.

All codes, considered in the present note are linear. We say that C is an $[n, k, d]_q$ -code if $C \subset \mathbb{F}_q^n$ is of length n, dimension k and minimum distance d. Singleton bound asserts that $d \leq n + 1 - k$. A code C is referred to as an MDS-one (Maximum Distance Separable) if d = n + 1 - k. For $\forall f_1, \ldots, f_{n-k} \in \mathbb{F}_q[x_1, \ldots, x_n], \forall a \in \mathbb{F}_q^n$ consider the Jacobian matrix

$$\frac{\partial(f_1,\ldots,f_{n-k})}{\partial(x_1,\ldots,x_n)} = \begin{pmatrix} \frac{\partial f_1}{\partial x_1} & \cdots & \frac{\partial f_1}{\partial x_n} \\ \cdots & \cdots & \cdots \\ \frac{\partial f_{n-k}}{\partial x_1} & \cdots & \frac{\partial f_{n-k}}{\partial x_n} \end{pmatrix}$$

and the solution space $J(f_1, \ldots, f_{n-k})_a \subset \mathbb{F}_q^n$ of the homogeneous linear system with matrix $\frac{\partial (f_1, \dots, f_{n-k})}{\partial (x_1, \dots, x_n)}(a)$. The Jacobian family $J(f_1, \dots, f_{n-k}) \to \mathbb{F}_q^n$ is the union $J(f_1,\ldots,f_{n-k}) := \bigcup_{a \in \mathbb{F}_q^n} J(f_1,\ldots,f_{n-k})_a.$

If $\overline{\mathbb{F}_q} = \bigcup_{m=1}^{\infty} \mathbb{F}_{q^m}$ is the algebraic closure of \mathbb{F}_q and $g_1, \ldots, g_m \in \mathbb{F}_q[x_1, \ldots, x_n]$, then $X = V(g_1, ..., g_m) := \{a \in \overline{\mathbb{F}_q}^n | g_i(a_1, ..., a_n) = 0, \forall 1 \le i \le m\}$ is

¹This research is partially supported by Contract 101/19.04.2013.

called an affine variety, defined over \mathbb{F}_q and $X(\mathbb{F}_q) := X \cap \mathbb{F}_q^n$ is the set of the \mathbb{F}_q -rational points of X. One defines the \mathbb{F}_q -Zariski tangent space to Xat $a \in X(\mathbb{F}_q)$ as $T_a^{\mathbb{F}_q}X = J(h_1, \ldots, h_s)_a$ for any generating set h_1, \ldots, h_s of $I(X) := \{h \in \mathbb{F}_q[x_1, \ldots, x_n] \mid h(a) = 0 \text{ for } \forall a \in X\} \supseteq \langle g_1, \ldots, g_m \rangle_{\mathbb{F}_q}.$

1 Existence of MDS-deformations

Proposition 1. Let $\mathbb{F}_q = \{t_0 = 0, t_1, \dots, t_{q-1}\}, A^{(0)} \in Mat_{(n-k)\times n}(\mathbb{F}_q)$ be a check matrix of a code $C_0 \subset \mathbb{F}_q^n$ and $A^{(1)}, \dots, A^{(r)} \in Mat_{(n-k)\times n}(\mathbb{F}_q)$ be check matrices of $[n, k, n - k + 1]_q$ -codes C_1, \dots, C_r for some $r \leq q - 1$. If $L_i(x) = \frac{(x-t_0)\dots(x-t_{i-1})(x-t_{i+1})\dots(x-t_r)}{(t_i-t_0)\dots(t_i-t_{i-1})(t_i-t_{i+1})\dots(t_i-t_r)}, \quad 0 \leq i \leq r$ are the Lagrange basis polynomials and $\Phi_p: \mathbb{F}_q \to \mathbb{F}_q, \Phi_p(t) = t^p$ is the Frobenius automorphism then the Jacobian family $J(f_1, \dots, f_{n-k}) \to \mathbb{F}_q^n$ of $f_s(x_1, \dots, x_n) = \sum_{j=1}^n \sum_{i=0}^r A_{sj}^{(i)} x_j L_j(x_j^p), \quad 1 \leq s \leq n-k$ is a deformation of $J(f_1, \dots, f_{n-k})_{(0,\dots,0)} = C_0$ with $[n, k, n-k+1]_q$ -fibers $J(f_1, \dots, f_{n-k})_{(\Phi_p^{-1}(t_i),\dots, \Phi_p^{-1}(t_i))} = C_i$ for $\forall 1 \leq i \leq r$.

In the case of
$$r = q-1$$
, $f_s(x_1, \dots, x_n) = \sum_{j=1}^n \sum_{i=0}^{q-1} A_{sj}^{(i)} x_j \left[\sum_{m=0}^{q-1} t_i^{q-1-m} x_j^{pm} - 1 \right]$.

Proof. If $A^{(i)} = (A_1^{(i)} \dots A_n^{(i)})$ with $A_j^{(i)} \in Mat_{(n-k)\times 1}(\mathbb{F}_q)$ then the polynomial family of points $H_j(x_j) = \sum_{i=0}^r A_j^{(i)} L_i(x_j^p) \in Mat_{(n-k)\times 1}(\mathbb{F}_q[x_j])$ passes through $H_j(\Phi_p^{-1}(t_i)) = A_j^{(i)}$ for $\forall 0 \leq i \leq r$. According to $\frac{\partial(x_j L_i(x_j^p))}{\partial x_j} = L_i(x_j^p)$, the Jacobian matrix $\frac{\partial(f_1, \dots, f_{n-k})}{\partial(x_1, \dots, x_n)} = (H_1(x_1) \dots H_n(x_n))$ and the fibers $J(f_1, \dots, f_{n-k})_{(\Phi_p^{-1}(t_i)), \dots, \Phi_p^{-1}(t_i))} = C_i$ for $\forall 0 \leq i \leq r$.

$$\begin{split} & L_i(x_j^p), \text{ the Jacobian matrix } \frac{\partial(f_1, \dots, f_{n-k})}{\partial(x_1, \dots, x_n)} = (H_1(x_1) \dots H_n(x_n)) \text{ and the fibers} \\ & J(f_1, \dots, f_{n-k})_{\left(\Phi_p^{-1}(t_i), \dots, \Phi_p^{-1}(t_i)\right)} = C_i \text{ for } \forall 0 \leq i \leq r. \\ & \text{ In the case of } r = q-1, \text{ the elementary symmetric polynomials } \sigma_s = \\ & \sum_{0 \leq i_1 < \dots < i_s \leq q-1} t_{i_1} \dots t_{i_s}, 1 \leq s \leq q \text{ of } t_0, t_1, \dots, t_{q-1} \text{ and the elementary symmetric polynomials } \sigma_s = \\ & \sum_{0 \leq i_1 < \dots < i_s \leq q-1} t_{i_1} \dots t_{i_s}, 1 \leq s \leq q \text{ of } t_0, t_1, \dots, t_{q-1} \text{ and the elementary symmetric polynomials } \sigma_s = \\ & \sum_{0 \leq i_1 < \dots < i_s \leq q-1} t_{i_1} \dots t_{i_s}, 1 \leq s \leq q-1 \text{ of } t_0, \dots, t_{i-1}, t_{i+1}, \dots, t_{q-1} \text{ satisfy the equalities } \sigma_1 = \tau_1 + t_1 \text{ and } \sigma_s = \tau_s + t_i \tau_{s-1} \\ & \text{ for } 2 \leq s \leq q-1. \text{ Then } x^q - x = \prod_{\nu=0}^{q-1} (x - t_\nu) = x^q + \sum_{m=0}^{q-1} (-1)^{q-m} \sigma_{q-m} x^m \\ & \text{ specifies that } \sigma_1 = \dots = \sigma_{q-2} = 0, \ \sigma_{q-1} = (-1)^q, \ \sigma_q = 0. \text{ By an induction on } 1 \leq s \leq q-2, \text{ there holds } \tau_s = (-t_i)^s \text{ for } \forall 1 \leq s \leq q-2. \\ & \text{ Combining with } \tau_{q-1} = (-1)^{q-1} (t_i^{q-1} - 1), \text{ one gets } \Lambda_i(x) = \prod_{j \neq i} (x - t_j) = x^{q-1} + \sum_{m=0}^{q-2} (-1)^{q-1-m} \tau_{q-1-m} x^m = \sum_{m=0}^{q-1} t_i^{q-1-m} x^m - 1. \text{ Thus, } \Lambda_i(t_i) = -1 \text{ and} \end{split}$$

Kasparian, Velikova

$$-L_i(x) = -\frac{\Lambda_i(x)}{\Lambda_i(t_i)} = \Lambda_i(x) = \sum_{m=0}^{q-1} t_i^{q-1-m} x^m - 1.$$
 One can replace f_s by $-f_s$.

The columns of the check matrices of $[n, k, n-k+1]_q$ -codes consist of homogeneous coordinates of *n*-arcs in $\mathbb{P}^{n-k}(\mathbb{F}_q)$. In order to formulate the counterpart of Proposition 1 for arcs, let us consider the \mathbb{F}_q^* -action on $\mathbb{F}_q[x_1, \ldots, x_n]^{n-k}$ by $(\lambda, (f_1, \ldots, f_{n-k})) \mapsto (\lambda f_1, \ldots, \lambda f_{n-k})$ for $\lambda \in \mathbb{F}_q^*$, $f_1, \ldots, f_{n-k} \in \mathbb{F}_q[x_1, \ldots, x_n]$ and the orbit space $\mathbb{F}_q[x_1, \ldots, x_n]^{n-k}/\mathbb{F}_q^* \ni [f_1 : \ldots : f_{n-k}]$. If $p = \operatorname{char}(\mathbb{F}_q)$ then the derivations

$$\frac{\partial}{\partial x_j} \left(\sum_{\alpha} c_{\alpha} x_1^{\alpha_1} \dots x_j^{\alpha_j} \dots x_n^{\alpha_n} \right) = \sum_{\alpha} c_{\alpha} x_1^{\alpha_1} \dots [\alpha_j (\text{mod } p)] x_j^{\alpha_j - 1} \dots x_n^{\alpha_n},$$

 $1 \leq j \leq n$ commute with the \mathbb{F}_q^* -action and descend to maps

$$\frac{\partial}{\partial x_j}: \mathbb{F}_q[x_1, \dots, x_n]^{n-k} / \mathbb{F}_q^* \longrightarrow \mathbb{F}_q[x_1, \dots, x_n]^{n-k} / \mathbb{F}_q^*.$$

For any $a \in \mathbb{F}_q^n$ let

$$\mathcal{E}_a: \mathbb{F}_q[x_1, \dots, x_n]^{n-k} / \mathbb{F}_q^* \longrightarrow \mathbb{F}_q^{n-k} / \mathbb{F}_q^* = \mathbb{P}^{n-k}(\mathbb{F}_q) \cup \{[0:\dots:0]\},\$$

 $\mathcal{E}_a([f_1:\ldots:f_{n-k}]) = [f_1(a):\ldots:f_{n-k}(a)]$ be the evaluation map at a

Corollary 1. Any n-arcs $\mathcal{A}_i = \{P_1^{(i)}, \ldots, P_n^{(i)}\} \subset \mathbb{P}^{n-k}(\mathbb{F}_q), 1 \leq i \leq r \leq q$ admit an integrable polynomial interpolation. Namely, there exists some $f = [f_1 : \ldots : f_{n-k}] \in \mathbb{F}_q[x_1, \ldots, x_n]^{n-k} / \mathbb{F}_q^*$ with $(\mathcal{E}_{(\Phi_p^{-1}(t_i), \ldots, \Phi_p^{-1}(t_i))} \circ \frac{\partial}{\partial x_j})(f) = P_j^{(i)}$ for $\forall 1 \leq j \leq n, \forall \leq i \leq r, \mathbb{F}_q = \{t_1, \ldots, t_q\}$ and $\Phi_p : \mathbb{F}_q \to \mathbb{F}_q, \Phi_p(t) = t^p$.

Example 1. Let $S_d = S_d(x_1, \ldots, x_{n-1}) = \sum_{\nu=1}^{n-1} x_{\nu}^d$. Consider $\Sigma_i = S_{(i-1)p+1}$ for $1 \leq i \leq n-k-1$, $\Sigma_{n-k} = S_{(n-k-1)p+1} + x_n$ and $J(\Sigma_1, \ldots, \Sigma_{n-k}) \to \mathbb{F}_q^n$ for some $1 \leq n \leq q+1$. The fibers $J(\Sigma_1, \ldots, \Sigma_{n-k})_a$ with $a_i \neq a_j$ for all $1 \leq i < j \leq n-1$ are $[n, k, n-k+1]_q$ -codes. If $a' = (a_1, \ldots, a_{n-1}) \in \mathbb{F}_q^{n-1}$ has $n-k \leq t \leq n-2$ different components then $J(\Sigma_1, \ldots, \Sigma_{n-k})_{(a',a_n)}$ is an $[n, k, 2]_q$ code for $\forall a_n \in \mathbb{F}_q$. When $a' \in \mathbb{F}_q^{n-1}$ has $1 \leq t < n-k$ different components, the fiber $J(\Sigma_1, \ldots, \Sigma_{n-k})_{(a',a_n)}$ is an $[n, n-t, 2]_q$ -code with n-t > k.

Towards an explanation of Example 1, let us note that the Jacobian matrix

$$\frac{\partial(\Sigma_1,\ldots,\Sigma_{n-k})}{\partial(x_1,\ldots,x_n)} = \begin{pmatrix} 1 & \ldots & 1 & 0\\ x_1^p & \ldots & x_{n-1}^p & 0\\ \vdots & \ddots & \ddots & \vdots\\ x_1^{(n-k-2)p} & \ldots & x_{n-1}^{(n-k-2)p} & 0\\ x_1^{(n-k-1)p} & \ldots & x_{n-1}^{(n-k-1)p} & 1 \end{pmatrix}.$$

The projectivizations of the columns of the above matrix belong to a rational normal curve in $\mathbb{P}^{n-k}(\mathbb{F}_q)$ and form an arc for different $x_1, \ldots, x_{n-1} \in \mathbb{F}_q$.

2 The MDS-families as Zariski tangent bundles

If $X = V(f_1, \ldots, f_{n-k}) \subset \overline{\mathbb{F}_q}^n$ is of dim X = k and $J(f_1, \ldots, f_{n-k})$ if of constant rank k, then $J(f_1, \ldots, f_{n-k})_a = T_a^{\mathbb{F}_q} X$ for $\forall a \in X^{\text{smooth}}(\mathbb{F}_q)$ with an eventually strict inclusion $\langle f_1, \ldots, f_{n-k} \rangle \subseteq I(X)$. The next proposition realizes $J(f_1, \ldots, f_{n-k}) \to \mathbb{F}_q^n$ as an \mathbb{F}_q -Zariski tangent bundle for arbitrary dim $V(f_1, \ldots, f_{n-k}) \ge k$.

Proposition 2. Suppose that $J(f_1, \ldots, f_{n-k}) \to \mathbb{F}_q^n$ has $\dim_{\mathbb{F}_q} J(f_1, \ldots, f_{n-k}) = k$ for $\forall a \in S_o \subseteq \mathbb{F}_q^n$, $D = \max(\deg(f_1), \ldots, \deg(f_{n-k}))$, $p = \operatorname{char}(\mathbb{F}_q)$ and $g_s = f_s + x_s^{pD}$ for $1 \leq s \leq n-k$. Then $X = V(g_1, \ldots, g_{n-k})$ is an affine variety of $\dim X = k$, $S_o \cap X = S_o \cap X(\mathbb{F}_q)$ is contained in $X^{\operatorname{smooth}}(\mathbb{F}_q)$ and $J(f_1, \ldots, f_{n-k})_a = J(g_1, \ldots, g_{n-k})_a = T_a^{\mathbb{F}_q}X$ for $\forall a \in S_o \cap X$.

Proof. Note that $J(f_1 + x_1^{pD}, \ldots, f_{n-k} + x_{n-k}^{pD})_a = J(f_1, \ldots, f_{n-k})_a$ for $\forall a \in \mathbb{F}_q^n$ by $\frac{\partial (f_1 + x_1^{pD}, \ldots, f_{n-k} + x_{n-k}^{pD})}{\partial (x_1, \ldots, x_n)} \equiv \frac{\partial (f_1, \ldots, f_{n-k})}{\partial (x_1, \ldots, x_n)}$. Let $I := \langle g_1, \ldots, g_s \rangle_{\mathbb{F}_q}$, X = V(I), $I(X) = \langle h_1, \ldots, h_m \rangle_{\mathbb{F}_q}$. Then $T^{\mathbb{F}_q}X := \bigcup_{a \in X(\mathbb{F}_q)} T_a^{\mathbb{F}_q}X = J(h_1, \ldots, h_m)|_{X(\mathbb{F}_q)}$ and $I \subseteq I(X)$ implies the fiberwise inclusion $T^{\mathbb{F}_q}X \subseteq J(f_1, \ldots, f_{n-k})|_{X(\mathbb{F}_q)}$. It suffices to show that dim X = k towards $T_a^{\mathbb{F}_q}X = J(f_1, \ldots, f_{n-k})_a$ for all $a \in S_o \cap X = S_o \cap X(\mathbb{F}_q)$ and $S_o \cap X \subseteq X^{\mathrm{smooth}}(\mathbb{F}_q)$.

For any $\Sigma \subseteq \mathbb{F}_q[x_1, \ldots, x_n]$ let $\Sigma^{(s)} := \{f \in \Sigma | \deg f \leq s\}$. By Prop.3, p.428 [1] and Prop.4, p.428 [1], for sufficiently large *s* the function $HP_{I(X)}(s) := \dim_{\mathbb{F}_q} \mathbb{F}_q[x_1, \ldots, x_n]^{(s)} - \dim_{\mathbb{F}_q} I(X)^{(s)}$ is a polynomial of *s*, called the Hilbert polynomial of *X*. Thm.6, p.451 [1] and Def.7, p.430 [1] imply that dim $X = \deg HP_{I(X)}$. Prop.6, p.430. [1] provides $HP_{I(X)}(s) = HP_I(s)$, whereas dim $X = \deg HP_I(s)$. Let \succ be the graded monomial order with respect to which $x^{\alpha} \succ x^{\beta}$ if and only if $\sum_{i=1}^n \alpha_i > \sum_{i=1}^n \beta_i$ or $\sum_{i=1}^n \alpha_i = \sum_{i=1}^n \beta_i$, $\alpha_1 = \beta_1, \ldots, \alpha_{j-1} = \beta_{j-1}, \alpha_j > \beta_j$ for some $1 \leq j \leq n$. The ideal $LT(I) := \langle LT(f) | f \in I \rangle_{\mathbb{F}_q}$ of the leading terms of *I* has Hilbert polynomial $HP_{LT(I)}(s) = HP_I(s)$ by Prop.4, p.421 [1]. According to Prop.6, p.430 and Def.7, p.430, dim $X = \deg HP_{LT(I)} = \deg HP_{I(V(LT(I)))} = \dim V(LT(I))$. However, $LT(g_s) = x_s^{pD} \in LT(I)$, $\forall 1 \leq s \leq n-k$ implies $V(LT(I)) \subseteq V(x_1^{pD}, \ldots, x_{n-k}^{pD}) \simeq \mathbb{F}_q^k$, so that dim $X = \dim V(LT(I)) \leq k$ and dim X = k.

Kasparian, Velikova

Corollary 2. Suppose that $J(f_1, \ldots, f_{n-k}) \to \mathbb{F}_q^n$ has $\dim_{\mathbb{F}_q} J(f_1, \ldots, f_{n-k})_a = k$ for $\forall a \in S_o \subseteq \mathbb{F}_q^n$ and $[n, k, n-k+1]_q$ -fibers $J(f_1, \ldots, f_{n-k})_{a^{(\lambda)}}, 1 \leq \lambda \leq r \leq q$. If $a_{j_s}^{(1)}, \ldots, a_{j_s}^{(r)} \in \mathbb{F}_q^*$ are different for $\forall j_s \in \{j_1, \ldots, j_{n-k}\}, j_1 < \ldots < j_{n-k}$ and $\{a^{(1)}, \ldots, a^{(r)}\} \notin V(f_{\nu}), \forall 1 \leq \nu \leq n-k$, then one can find polynomials $g_s =$ $f_s + \sum_{i=1}^{D+r-1} c_{s,\delta} x_{j_s}^{p\delta} \in \mathbb{F}_q[x_1, \dots, x_n], \ 1 \le s \le n-k, \ cutting \ a \ k-dimensional \ affine$ variety $X = V(g_1, \ldots, g_{n-k}) \subset \overline{\mathbb{F}_q}^n$, defined over \mathbb{F}_q , with $a^{(1)}, \ldots, a^{(r)} \in S_o \cap X$ and $J(f_1, \ldots, f_{n-k})_a = J(g_1, \ldots, g_{n-k})_a = T_a^{\mathbb{F}_q} X$ for all $a \in S_o \cap X$.

Proof. By the proof of Proposition 2, $\dim X = k$ under the presence of at least one $c_{s,\delta} \neq 0$ for any $1 \leq s \leq n-k$. Towards $a^{(\lambda)} \in S_o \cap X$ for $\forall 1 \leq \lambda \leq r$, the undetermined coefficients $c_{s,\delta} \in \mathbb{F}_q$ have to satisfy $\sum_{\delta=D}^{D+r-1} c_{s,\delta}(a_{j_s}^{(\lambda)})^{p\delta} = -f_s(a^{(\lambda)}),$ $1 \leq \lambda \leq r.$ The coefficient matrix of that linear system has determinant $(a_{j_s}^{(1)} \dots a_{j_s}^{(r)})^{pD} \prod_{r \geq \lambda > \mu \geq 1} \left[\left(a_{j_s}^{(\lambda)} \right)^p - \left(a_{j_s}^{(\mu)} \right)^p \right] \neq 0,$ as far as $\Phi_p(a_{j_s}^{(\lambda)}) \neq \Phi_p(a_{j_s}^{(\mu)})$ for $a_{j_s}^{(\lambda)} \neq a_{j_s}^{(\mu)} \dots A_{j_s}^{(\mu)}$ for $a_{j_s}^{(\lambda)} \neq a_{j_s}^{(\mu)}$ for $a_{j_s}^{(\lambda)} \neq a_{j_s}^{(\mu)}$. for $a_{j_s}^{(\lambda)} \neq a_{j_s}^{(\mu)}$ and $\Phi_p(t) = t^p, t \in \mathbb{F}_q$.

Assume that C_0 from Proposition 1 is an $[n, k, n - k + 1]_q$ -code. Then Corollary 2 applies to $J(f_1, \ldots, f_{n-k}) \to \mathbb{F}_q^n$ and provides an affine variety X, defined over \mathbb{F}_q with at least $r \leq q \mathbb{F}_q$ -Zariski tangent spaces, which are MDScodes.

Let $\mathbb{F}_q = \{t_0 = 0, t_1, \dots, t_{q-1}\}, \zeta = (0, 1, \dots, q-1) \in \text{Sym}(q) \text{ and } b_i = (t_{\zeta^i(0)}, \dots, t_{\zeta^i(n-2)}, \theta_i), 1 \le i \le q \text{ for some } \theta_i \in \mathbb{F}_q$. The application of Corollary 2 to $J(\Sigma_1, \ldots, \Sigma_{n-k})$ from Example 1 and its fibers over b_1, \ldots, b_q implies the existence of an affine variety X, defined over \mathbb{F}_q with at least $q \mathbb{F}_q$ -Zariski tangent spaces, which are MDS-codes.

Proposition 3. Let $X = V(I) \subset \overline{\mathbb{F}_q}^n$, $I \triangleleft \mathbb{F}_q[x_1, \ldots, x_n]$ be an irreducible affine variety of dim X = k, defined over \mathbb{F}_q . For any $i = (i_1, \ldots, i_k)$ with $1 \leq i_1 < \ldots < i_k \leq n$, $\{j_1, \ldots, j_{n-k}\} = \{1, \ldots, n\} \setminus \{i_1, \ldots, i_k\}$, $1 \leq j_1 < \ldots < j_{n-k} \leq n$ consider the projection $\Pi_i : X \to \overline{\mathbb{F}_q}^k$, $\Pi_i(x_1, \ldots, x_n) = (x_{i_1}, \ldots, x_{i_k})$ and a Groebner basis G_i of $I \triangleleft \mathbb{F}_q[x_1, \ldots, x_n]$ with respect to the lexicographic order \succ of $\mathbb{F}_q[x_1, \ldots, x_n]$ with $x_{j_1} \succ \ldots \succ x_{j_{n-k}} \succ x_{i_1} \succ \ldots \succ x_{i_k}$.

(i) If $a \in X^{\text{smooth}}(\mathbb{F}_q)$ has smooth images $\Pi_i(a) \in \Pi_i(X)$ for $\forall i$ and $T_a^{\mathbb{F}_q}X$ is an $[n, k, n - k + 1]_q$ -code, then $G_i \cap \mathbb{F}_q[x_{i_1}, \dots, x_{i_k}] = \emptyset$ for $\forall i = (i_1, \dots, i_k)$. (ii) If $G_i \cap \mathbb{F}_q[x_{i_1}, \dots, x_{i_k}] = \emptyset$ for $\forall i$ then there is $N \in \mathbb{N}$, depending on the embedding of X in $\overline{\mathbb{F}_q}^n$, such that for $\forall m \in \mathbb{N}$ with $q^m > N$ at least one \mathbb{F}_{a^m} -Zariski tangent space $T_a^{\mathbb{F}_{q^m}}X$, $a \in X^{\text{smooth}}(\mathbb{F}_{q^m})$ is an $[n, k, n-k+1]_q$ -code.

Proof. A morphism $\varphi: Y \to Z$ is dominant when $\varphi(Y)$ is not contained in a proper affine subvariety of Z. We claim that $\Pi_i: X \to \overline{\mathbb{F}_q}^k$, $\Pi_i(x_1, \ldots, x_n) = (x_{i_1}, \ldots, x_{i_k})$ is dominant if and only if $G_i \cap \mathbb{F}_q[x_{i_1}, \ldots, x_{i_k}] = \emptyset$. To this end, let $I_j := I \cap \mathbb{F}_q[x_{i_1}, \ldots, x_{i_k}]$ and note that $V(I_j)$ is the Zariski closure of $\Pi_i(X)$ by the proof of Thm.3, p.123 [1]. The Elimination Thm.2, p.114 [1] asserts that $G_i \cap \mathbb{F}_q[x_{i_1}, \ldots, x_{i_k}]$ is a Groebner basis of I_j . Thus, $G_i \cap \mathbb{F}_q[x_{i_1}, \ldots, x_{i_k}] = \emptyset$ is equivalent to $I_j = \{0\}$ which, in turn, holds exactly when $V(I_j) = \overline{\mathbb{F}_q}^k$. A morphism $\varphi: Y \to \varphi(Y)$ is etale at $a \in Y$ if $d\varphi_p: T_p^{\mathbb{F}_q}Y \to T_{\varphi(p)}^{\mathbb{F}_q}\varphi(Y)$ is

A morphism $\varphi: Y \to \varphi(Y)$ is etale at $a \in Y$ if $d\varphi_p: T_p^{\mathbb{F}_q}Y \to T_{\varphi(p)}^{\mathbb{F}_q}\varphi(Y)$ is an \mathbb{F}_q -linear isomorphism. Thus, $T_a^{\mathbb{F}_q}X$, $a \in X^{\text{smooth}}(\mathbb{F}_q)$ is an $[n, k, n-k+1]_q$ code exactly when Π_i are etale at a for $\forall i$. More precisely, $T_a^{\mathbb{F}_q}X$ is an MDS-code if an only if for any i there exist homogeneous linear functions $v_{j_r}(v_{i_1}, \ldots, v_{i_k})$, $1 \leq r \leq n-k$ with $T_a^{\mathbb{F}_q}X = \{v = (v_1, \ldots, v_n) \mid \forall (v_{i_1}, \ldots, v_{i_k}) \in \mathbb{F}_q^k\}$. The last condition is equivalent to the invertibility of $d_a\Pi_i: T_a^{\mathbb{F}_q}X \to \mathbb{F}_q^k$ for $\forall i$.

(i) If Π_i is etale at $a \in X^{\text{smooth}}(\mathbb{F}_q)$ then $\mathbb{F}_q^k = d_a \Pi_i(T_a^{\mathbb{F}_q}X) \subseteq T_{\Pi_i(a)}^{\mathbb{F}_q} \Pi_i(X)$ requires $T_{\Pi_i(a)}^{\mathbb{F}_q} \Pi_i(X) = \mathbb{F}_q^k$. For a smooth point $\Pi_i(a) \in \Pi_i(X)^{\text{smooth}}$ that suffices for dim $\Pi_i(X) = k$ and holds exactly when Π_i is dominant.

(ii) The dominant morphism $\Pi_i : X \to \overline{\mathbb{F}_q}^k$ of an irreducible X induces an embedding $\overline{\mathbb{F}_q}(x_{i_1}, \ldots, x_{i_k}) \hookrightarrow \overline{\mathbb{F}_q}(X)$ of the function fields. Due to dim X = k, $[\overline{\mathbb{F}_q}(X) : \overline{\mathbb{F}_q}(x_{i_1}, \ldots, x_{i_k})] < \infty$ and Π_i has finite fibers. If $R_i \subset \overline{\mathbb{F}_q}^k$ is the branch locus of Π_i , then $\Pi_i : \Pi_i^{-1}(\overline{\mathbb{F}_q}^k \setminus R_i) \longrightarrow \overline{\mathbb{F}_q}^k \setminus R_i$ is an etale covering. Let $I^{\overline{\mathbb{F}_q}}(X)$ be the ideal of X over $\overline{\mathbb{F}_q}$. If $\Pi_{j_s,i} : X \to \overline{\mathbb{F}_q}^{k+1}, \Pi_{j_s,i}(x_1, \ldots, x_n) = (x_{j_s}, x_{i_1}, \ldots, x_{i_k}), \pi_{j_s} : \Pi_{j_s,i}(X) \to \Pi_i(X), \pi_{j_s}(x_{j_s}, x_{i_1}, \ldots, x_{i_k}) = (x_{i_1}, \ldots, x_{i_k})$ and R_{j_s} is the branch locus of π_{j_s} then $R_i = \bigcup_{s=1}^{n-k} R_{j_s}$. For $\forall j_s \in \{1, \ldots, n\} \setminus \{i_1, \ldots, i_k\}$ there is $\varphi_{j_s} \in \{\overline{\mathbb{F}_q}[x_{i_1}, \ldots, x_{i_k}][x_{j_s}] \cap I^{\overline{\mathbb{F}_q}}(X)\} \setminus \{0\}$ with $\Pi_{j_s,i}(X) = \{(x_{j_s}, x_{i_1}, \ldots, x_{i_k}) \in \overline{\mathbb{F}_q}^{k+1} \mid \varphi_{j_s}(x_{j_s}) = 0\}$. If $d_{j_s} \in \mathbb{N}$ is the total degree of the discriminant $D(\varphi_{j_s}) \in \overline{\mathbb{F}_q}[x_{i_1}, \ldots, x_{i_k}]$ then $R_{j_s} = \{(x_{i_1}, \ldots, x_{i_k}) \in \overline{\mathbb{F}_q}^k \mid D(\varphi_{j_s})(x_{i_1}, \ldots, x_{i_k}) = 0\}$ has $|R_{j_s}(\mathbb{F}_q m)| \leq d_{j_s}q^{m(k-1)}$. Thus, $|R_i(\mathbb{F}_q m| \leq \sum_{s=1}^{n-k} d_{j_s}) q^{m(k-1)} < q^{mk} = |\mathbb{F}_q^k m|$ for $q^m > N := \sum_{s=1}^{n-k} d_{j_s}$ and $R_i(\mathbb{F}_q m) \subsetneq \mathbb{F}_q^k$.

References

 D. Cox, J. Little and D. O'Shea, Ideals, varieties, and Algorithms - An Introduction to Computational Algebraic Geometry and Commutative Algebra, Springer, 1992.