
Seventh International Workshop on Optimal Codes and Related Topics
September 6-12, 2013, Albena, Bulgaria pp. 113-118

MDS Deformations of linear codes1

Azniv Kasparian kasparia@fmi.uni-sofia.bg
Section of Algebra, Department of Mathematics and Informatics,
Kliment Ohridski University of Sofia
Evgeniya Velikova velikova@fmi.uni-sofia.bg
Section of Algebra, Department of Mathematics and Informatics,
Kliment Ohridski University of Sofia

Dedicated to the memory of Professor Stefan Dodunekov

Abstract. For any Fq-linear code C0 ⊂ Fn
q and any [n, k, n − k + 1]q-codes

C1, . . . , Cr ⊂ Fn
q , r ≤ q − 1, we find a family J(f1, . . . , fn−k) → Fn

q of Fq-linear
codes, depending on f1, . . . , fn−k ∈ Fq[x1, . . . , xn] and containing C0, C1, . . . , Cr as
some of its fibers. For any family J(f1, . . . , fn−k) → Fn

q with k-dimensional fibers
is shown the existence of an affine variety X ⊂ Fq

n
, defined over Fq, whose Fq-

Zariski tangent bundle T Fq X|Xsmooth(Fq) coincides with J(f1, . . . fn−k)|Xsmooth(Fq)

over the smooth Fq-rational locus Xsmooth(Fq) of X. The variety X can be chosen
in such a way that to require T Fq X|Xsmooth(Fq) to pass through r ≤ q MDS-fibers of

J(f1, . . . , fn−k). If T Fq X|Xsmooth(Fq) has an MDS-member T
Fq
a X ' Fk

q then all the

projections of X ⊂ Fq
n

in the k-dimensional coordinate subspaces of Fq
n

have to
be dominant. This global geometric property of X is proved to be sufficient for the

presence of an MDS-fiber T
Fqm

a X over a sufficiently large extension Fqm ⊇ Fq.

All codes, considered in the present note are linear. We say that C is an
[n, k, d]q-code if C ⊂ Fn

q is of length n, dimension k and minimum distance d.
Singleton bound asserts that d ≤ n + 1 − k. A code C is referred to as an
MDS-one (Maximum Distance Separable) if d = n + 1− k.

For ∀f1, . . . , fn−k ∈ Fq[x1, . . . , xn], ∀a ∈ Fn
q consider the Jacobian matrix

∂(f1, . . . , fn−k)
∂(x1, . . . , xn)

=




∂f1

∂x1
. . . ∂f1

∂xn

. . . . . . . . .
∂fn−k

∂x1
. . .

∂fn−k

∂xn




and the solution space J(f1, . . . , fn−k)a ⊂ Fn
q of the homogeneous linear system

with matrix ∂(f1,...,fn−k)
∂(x1,...,xn) (a). The Jacobian family J(f1, . . . , fn−k) → Fn

q is the
union J(f1, . . . , fn−k) := ∪a∈Fn

q
J(f1, . . . , fn−k)a.

If Fq = ∪∞m=1Fqm is the algebraic closure of Fq and g1, . . . , gm ∈ Fq[x1, . . . , xn],
then X = V (g1, . . . , gm) := {a ∈ Fq

n | gi(a1, . . . , an) = 0, ∀1 ≤ i ≤ m} is
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called an affine variety, defined over Fq and X(Fq) := X ∩ Fn
q is the set of

the Fq-rational points of X. One defines the Fq-Zariski tangent space to X

at a ∈ X(Fq) as T
Fq
a X = J(h1, . . . , hs)a for any generating set h1, . . . , hs of

I(X) := {h ∈ Fq[x1, . . . , xn] |h(a) = 0 for ∀a ∈ X} ⊇ 〈g1, . . . , gm〉Fq .

1 Existence of MDS-deformations

Proposition 1. Let Fq = {t0 = 0, t1, . . . , tq−1}, A(0) ∈ Mat(n−k)×n(Fq) be a
check matrix of a code C0 ⊂ Fn

q and A(1), . . . , A(r) ∈ Mat(n−k)×n(Fq) be check
matrices of [n, k, n − k + 1]q-codes C1, . . . , Cr for some r ≤ q − 1. If Li(x) =
(x−t0)...(x−ti−1)(x−ti+1)...(x−tr)

(ti−t0)...(ti−ti−1)(ti−ti+1)...(ti−tr) , 0 ≤ i ≤ r are the Lagrange basis polynomials
and Φp : Fq → Fq, Φp(t) = tp is the Frobenius automorphism then the Jacobian

family J(f1, . . . , fn−k) → Fn
q of fs(x1, . . . , xn) =

n∑
j=1

r∑
i=0

A
(i)
sj xjLj(x

p
j ), 1 ≤ s ≤

n−k is a deformation of J(f1, . . . , fn−k)(0,...,0) = C0 with [n, k, n−k+1]q-fibers
J(f1, . . . , fn−k)(Φ−1

p (ti),...,Φ
−1
p (ti))

= Ci for ∀1 ≤ i ≤ r.

In the case of r = q−1, fs(x1, . . . , xn) =
n∑

j=1

q−1∑
i=0

A
(i)
sj xj

[
q−1∑
m=0

tq−1−m
i xpm

j − 1
]
.

Proof. If A(i) = (A(i)
1 . . . A

(i)
n ) with A

(i)
j ∈ Mat(n−k)×1(Fq) then the polyno-

mial family of points Hj(xj) =
r∑

i=0
A

(i)
j Li(x

p
j ) ∈ Mat(n−k)×1(Fq[xj ]) passes

through Hj(Φ−1
p (ti)) = A

(i)
j for ∀0 ≤ i ≤ r. According to

∂(xjLi(x
p
j ))

∂xj
=

Li(x
p
j ), the Jacobian matrix ∂(f1,...,fn−k)

∂(x1,...,xn) = (H1(x1) . . . Hn(xn)) and the fibers
J(f1, . . . , fn−k)(Φ−1

p (ti),...,Φ
−1
p (ti))

= Ci for ∀0 ≤ i ≤ r.
In the case of r = q − 1, the elementary symmetric polynomials σs =∑

0≤i1<...<is≤q−1 ti1 . . . tis , 1 ≤ s ≤ q of t0, t1, . . . , tq−1 and the elementary
symmetric polynomials τs =

∑
i1<...<is,i6∈{i1,...,is}

ti1 . . . tis , 1 ≤ s ≤ q − 1 of

t0, . . . , ti−1, ti+1, . . . , tq−1 satisfy the equalities σ1 = τ1 + t1 and σs = τs + tiτs−1

for 2 ≤ s ≤ q − 1. Then xq − x =
q−1∏
ν=0

(x − tν) = xq +
q−1∑
m=0

(−1)q−mσq−mxm

specifies that σ1 = . . . = σq−2 = 0, σq−1 = (−1)q, σq = 0. By an in-
duction on 1 ≤ s ≤ q − 2, there holds τs = (−ti)s for ∀1 ≤ s ≤ q − 2.
Combining with τq−1 = (−1)q−1(tq−1

i − 1), one gets Λi(x) =
∏
j 6=i

(x − tj) =

xq−1 +
q−2∑
m=0

(−1)q−1−mτq−1−mxm =
q−1∑
m=0

tq−1−m
i xm − 1. Thus, Λi(ti) = −1 and
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−Li(x) = − Λi(x)
Λi(ti)

= Λi(x) =
q−1∑
m=0

tq−1−m
i xm − 1. One can replace fs by −fs.

The columns of the check matrices of [n, k, n−k+1]q-codes consist of homo-
geneous coordinates of n-arcs in Pn−k(Fq). In order to formulate the counterpart
of Proposition 1 for arcs, let us consider the F∗q-action on Fq[x1, . . . , xn]n−k by
(λ, (f1, . . . , fn−k)) 7→ (λf1, . . . , λfn−k) for λ ∈ F∗q , f1, . . . , fn−k ∈ Fq[x1, . . . , xn]
and the orbit space Fq[x1, . . . , xn]n−k/F∗q 3 [f1 : . . . : fn−k]. If p = char(Fq)
then the derivations

∂

∂xj

(∑
α

cαxα1
1 . . . x

αj

j . . . xαn
n

)
=

∑
α

cαxα1
1 . . . [αj(mod p)]xαj−1

j . . . xαn
n ,

1 ≤ j ≤ n commute with the F∗q-action and descend to maps

∂

∂xj
: Fq[x1, . . . , xn]n−k/F∗q −→ Fq[x1, . . . , xn]n−k/F∗q .

For any a ∈ Fn
q let

Ea : Fq[x1, . . . , xn]n−k/F∗q −→ Fn−k
q /F∗q = Pn−k(Fq) ∪ {[0 : . . . : 0]},

Ea([f1 : . . . : fn−k]) = [f1(a) : . . . : fn−k(a)] be the evaluation map at a

Corollary 1. Any n-arcs Ai = {P (i)
1 , . . . , P

(i)
n } ⊂ Pn−k(Fq), 1 ≤ i ≤ r ≤ q

admit an integrable polynomial interpolation. Namely, there exists some f =
[f1 : . . . : fn−k] ∈ Fq[x1, . . . , xn]n−k/F∗q with (E(Φ−1

p (ti),...,Φ
−1
p (ti))

◦ ∂
∂xj

)(f) = P
(i)
j

for ∀1 ≤ j ≤ n, ∀ ≤ i ≤ r, Fq = {t1, . . . , tq} and Φp : Fq → Fq, Φp(t) = tp.

Example 1. Let Sd = Sd(x1, . . . , xn−1) =
n−1∑
ν=1

xd
ν . Consider Σi = S(i−1)p+1

for 1 ≤ i ≤ n − k − 1, Σn−k = S(n−k−1)p+1 + xn and J(Σ1, . . . , Σn−k) → Fn
q

for some 1 ≤ n ≤ q + 1. The fibers J(Σ1, . . . ,Σn−k)a with ai 6= aj for all
1 ≤ i < j ≤ n− 1 are [n, k, n− k + 1]q-codes. If a′ = (a1, . . . , an−1) ∈ Fn−1

q has
n−k ≤ t ≤ n−2 different components then J(Σ1, . . . ,Σn−k)(a′,an) is an [n, k, 2]q-
code for ∀an ∈ Fq. When a′ ∈ Fn−1

q has 1 ≤ t < n − k different components,
the fiber J(Σ1, . . . , Σn−k)(a′,an) is an [n, n− t, 2]q-code with n− t > k.

Towards an explanation of Example 1, let us note that the Jacobian matrix

∂(Σ1, . . . , Σn−k)
∂(x1, . . . , xn)

=




1 . . . 1 0
xp

1 . . . xp
n−1 0

. . . . . . . . . . . .

x
(n−k−2)p
1 . . . x

(n−k−2)p
n−1 0

x
(n−k−1)p
1 . . . x

(n−k−1)p
n−1 1




.
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The projectivizations of the columns of the above matrix belong to a rational
normal curve in Pn−k(Fq) and form an arc for different x1, . . . , xn−1 ∈ Fq.

2 The MDS-families as Zariski tangent bundles

If X = V (f1, . . . , fn−k) ⊂ Fq
n is of dimX = k and J(f1, . . . , fn−k) if of

constant rank k, then J(f1, . . . , fn−k)a = T
Fq
a X for ∀a ∈ Xsmooth(Fq) with

an eventually strict inclusion 〈f1, . . . , fn−k〉 ⊆ I(X). The next proposition
realizes J(f1, . . . , fn−k) → Fn

q as an Fq-Zariski tangent bundle for arbitrary
dimV (f1, . . . , fn−k) ≥ k.

Proposition 2. Suppose that J(f1, . . . , fn−k) → Fn
q has dimFq J(f1, . . . , fn−k) =

k for ∀a ∈ So ⊆ Fn
q , D = max(deg(f1), . . . ,deg(fn−k)), p = char(Fq) and

gs = fs + xpD
s for 1 ≤ s ≤ n − k. Then X = V (g1, . . . , gn−k) is an affine

variety of dimX = k, So ∩ X = So ∩ X(Fq) is contained in Xsmooth(Fq) and
J(f1, . . . , fn−k)a = J(g1, . . . , gn−k)a = T

Fq
a X for ∀a ∈ So ∩X.

Proof. Note that J(f1 +xpD
1 , . . . , fn−k +xpD

n−k)a = J(f1, . . . , fn−k)a for ∀a ∈ Fn
q

by
∂(f1+xpD

1 ,...,fn−k+xpD
n−k)

∂(x1,...,xn) ≡ ∂(f1,...,fn−k)
∂(x1,...,xn) . Let I := 〈g1, . . . , gs〉Fq , X = V (I),

I(X) = 〈h1, . . . , hm〉Fq . Then T FqX := ∪a∈X(Fq)T
Fq
a X = J(h1, . . . , hm)|X(Fq)

and I ⊆ I(X) implies the fiberwise inclusion T FqX ⊆ J(f1, . . . , fn−k)|X(Fq).

It suffices to show that dimX = k towards T
Fq
a X = J(f1, . . . , fn−k)a for all

a ∈ So ∩X = So ∩X(Fq) and So ∩X ⊆ Xsmooth(Fq).
For any Σ ⊆ Fq[x1, . . . , xn] let Σ(s) := {f ∈ Σ| deg f ≤ s}. By Prop.3,

p.428 [1] and Prop.4, p.428 [1], for sufficiently large s the function HPI(X)(s) :=
dimFq Fq[x1, . . . , xn](s) − dimFq I(X)(s) is a polynomial of s, called the Hilbert
polynomial of X. Thm.6, p.451 [1] and Def.7, p.430 [1] imply that dimX =
deg HPI(X). Prop.6, p.430. [1] provides HPI(X)(s) = HPI(s), whereas dimX =
deg HPI(s). LetÂ be the graded monomial order with respect to which xα Â xβ

if and only if
n∑

i=1
αi >

n∑
i=1

βi or
n∑

i=1
αi =

n∑
i=1

βi, α1 = β1, . . . , αj−1 = βj−1, αj > βj

for some 1 ≤ j ≤ n. The ideal LT (I) := 〈LT (f)|f ∈ I〉Fq of the leading terms of
I has Hilbert polynomial HPLT (I)(s) = HPI(s) by Prop.4, p.421 [1]. According
to Prop.6, p.430 and Def.7, p.430, dimX = deg HPLT (I) = deg HPI(V (LT (I))) =
dimV (LT (I)). However, LT (gs) = xpD

s ∈ LT (I), ∀1 ≤ s ≤ n − k implies
V (LT (I)) ⊆ V (xpD

1 , . . . , xpD
n−k) ' Fk

q , so that dimX = dimV (LT (I)) ≤ k and
dimX = k.
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Corollary 2. Suppose that J(f1, . . . , fn−k) → Fn
q has dimFq J(f1, . . . , fn−k)a =

k for ∀a ∈ So ⊆ Fn
q and [n, k, n−k+1]q-fibers J(f1, . . . , fn−k)a(λ), 1 ≤ λ ≤ r ≤ q.

If a
(1)
js

, . . . , a
(r)
js
∈ F∗q are different for ∀js ∈ {j1, . . . , jn−k}, j1 < . . . < jn−k and

{a(1), . . . a(r)} * V (fν), ∀1 ≤ ν ≤ n − k, then one can find polynomials gs =

fs+
D+r−1∑

δ=D

cs,δx
pδ
js
∈ Fq[x1, . . . , xn], 1 ≤ s ≤ n−k, cutting a k-dimensional affine

variety X = V (g1, . . . , gn−k) ⊂ Fq
n, defined over Fq, with a(1), . . . , a(r) ∈ So∩X

and J(f1, . . . , fn−k)a = J(g1, . . . , gn−k)a = T
Fq
a X for all a ∈ So ∩X.

Proof. By the proof of Proposition 2, dimX = k under the presence of at least
one cs,δ 6= 0 for any 1 ≤ s ≤ n−k. Towards a(λ) ∈ So∩X for ∀1 ≤ λ ≤ r, the un-

determined coefficients cs,δ ∈ Fq have to satisfy
D+r−1∑

δ=D

cs,δ(a
(λ)
js

)pδ = −fs(a(λ)),

1 ≤ λ ≤ r. The coefficient matrix of that linear system has determinant
(a(1)

js
. . . a

(r)
js

)pD
∏

r≥λ>µ≥1

[(
a

(λ)
js

)p
−

(
a

(µ)
js

)p]
6= 0, as far as Φp(a

(λ)
js

) 6= Φp(a
(µ)
js

)

for a
(λ)
js
6= a

(µ)
js

and Φp(t) = tp, t ∈ Fq.

Assume that C0 from Proposition 1 is an [n, k, n − k + 1]q-code. Then
Corollary 2 applies to J(f1, . . . , fn−k) → Fn

q and provides an affine variety X,
defined over Fq with at least r ≤ q Fq-Zariski tangent spaces, which are MDS-
codes.

Let Fq = {t0 = 0, t1, . . . , tq−1}, ζ = (0, 1, . . . , q − 1) ∈ Sym(q) and bi =
(tζi(0), . . . , tζi(n−2), θi), 1 ≤ i ≤ q for some θi ∈ Fq. The application of Corollary
2 to J(Σ1, . . . ,Σn−k) from Example 1 and its fibers over b1, . . . , bq implies the
existence of an affine variety X, defined over Fq with at least q Fq-Zariski
tangent spaces, which are MDS-codes.

Proposition 3. Let X = V (I) ⊂ Fq
n, I /Fq[x1, . . . , xn] be an irreducible affine

variety of dimX = k, defined over Fq. For any i = (i1, . . . , ik) with 1 ≤ i1 <
. . . < ik ≤ n, {j1, . . . , jn−k} = {1, . . . , n} \ {i1, . . . , ik}, 1 ≤ j1 < . . . < jn−k ≤ n

consider the projection Πi : X → Fq
k, Πi(x1, . . . , xn) = (xi1 , . . . , xik) and a

Groebner basis Gi of I /Fq[x1, . . . , xn] with respect to the lexicographic order Â
of Fq[x1, . . . , xn] with xj1 Â . . . Â xjn−k

Â xi1 Â . . . Â xik .

(i) If a ∈ Xsmooth(Fq) has smooth images Πi(a) ∈ Πi(X) for ∀i and T
Fq
a X

is an [n, k, n− k + 1]q-code, then Gi ∩ Fq[xi1 , . . . , xik ] = ∅ for ∀i = (i1, . . . , ik).
(ii) If Gi ∩ Fq[xi1 , . . . , xik ] = ∅ for ∀i then there is N ∈ N, depending on

the embedding of X in Fq
n, such that for ∀m ∈ N with qm > N at least one

Fqm-Zariski tangent space T
Fqm

a X, a ∈ Xsmooth(Fqm) is an [n, k, n−k+1]q-code.
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Proof. A morphism ϕ : Y → Z is dominant when ϕ(Y ) is not contained in a
proper affine subvariety of Z. We claim that Πi : X → Fq

k, Πi(x1, . . . , xn) =
(xi1 , . . . , xik) is dominant if and only if Gi ∩ Fq[xi1 , . . . , xik ] = ∅. To this end,
let Ij := I ∩ Fq[xi1 , . . . , xik ] and note that V (Ij) is the Zariski closure of Πi(X)
by the proof of Thm.3, p.123 [1]. The Elimination Thm.2, p.114 [1] asserts that
Gi ∩ Fq[xi1 , . . . , xik ] is a Groebner basis of Ij . Thus, Gi ∩ Fq[xi1 , . . . , xik ] = ∅ is
equivalent to Ij = {0} which, in turn, holds exactly when V (Ij) = Fq

k.
A morphism ϕ : Y → ϕ(Y ) is etale at a ∈ Y if dϕp : T

Fq
p Y → T

Fq

ϕ(p)ϕ(Y ) is

an Fq-linear isomorphism. Thus, T
Fq
a X, a ∈ Xsmooth(Fq) is an [n, k, n−k +1]q-

code exactly when Πi are etale at a for ∀i. More precisely, T
Fq
a X is an MDS-code

if an only if for any i there exist homogeneous linear functions vjr(vi1 , . . . , vik),
1 ≤ r ≤ n − k with T

Fq
a X = {v = (v1, . . . , vn) | ∀(vi1 , . . . , vik) ∈ Fk

q}. The last

condition is equivalent to the invertibility of daΠi : T
Fq
a X → Fk

q for ∀i.
(i) If Πi is etale at a ∈ Xsmooth(Fq) then Fk

q = daΠi(T
Fq
a X) ⊆ T

Fq

Πi(a)Πi(X)

requires T
Fq

Πi(a)Πi(X) = Fk
q . For a smooth point Πi(a) ∈ Πi(X)smooth that

suffices for dim Πi(X) = k and holds exactly when Πi is dominant.
(ii) The dominant morphism Πi : X → Fq

k of an irreducible X induces an
embedding Fq(xi1 , . . . , xik) ↪→ Fq(X) of the function fields. Due to dimX = k,
[Fq(X) : Fq(xi1 , . . . , xik)] < ∞ and Πi has finite fibers. If Ri ⊂ Fq

k is the
branch locus of Πi, then Πi : Π−1

i (Fq
k \ Ri) −→ Fq

k \ Ri is an etale covering.
Let IFq(X) be the ideal of X over Fq. If Πjs,i : X → Fq

k+1, Πjs,i(x1, . . . , xn) =
(xjs , xi1 , . . . , xik), πjs : Πjs,i(X) → Πi(X), πjs(xjs , xi1 , . . . , xik) = (xi1 , . . . , xik)
and Rjs is the branch locus of πjs then Ri = ∪n−k

s=1 Rjs . For ∀js ∈ {1, . . . , n} \
{i1, . . . , ik} there is ϕjs ∈ {Fq[xi1 , . . . , xik ][xjs ]∩ IFq(X)} \ {0} with Πjs,i(X) =
{(xjs , xi1 , . . . , xik) ∈ Fq

k+1 |ϕjs(xjs) = 0}. If djs ∈ N is the total degree
of the discriminant D(ϕjs) ∈ Fq[xi1 , . . . , xik ] then Rjs = {(xi1 , . . . , xik) ∈
Fq

k |D(ϕjs)(xi1 , . . . , xik) = 0} has |Rjs(Fqm)| ≤ djsq
m(k−1). Thus, |Ri(Fqm | ≤(

n−k∑
s=1

djs

)
qm(k−1) < qmk = |Fk

qm | for qm > N :=
n−k∑
s=1

djs and Ri(Fqm)  Fk
qm .
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