New 5-dimensional linear codes over \mathbb{F}_5^{-1}

YUUKI KAGEYAMA st301011@mi.s.osakafu-u.ac.jp TATSUYA MARUTA maruta@mi.s.osakafu-u.ac.jp Department of Mathematics and Information Sciences

Osaka Prefecture University, Sakai, Osaka 599-8531, Japan

Dedicated to the memory of Professor Stefan Dodunekov

Abstract. We construct a lot of new $[n, 5, d]_5$ codes to determine the exact value of $n_5(5, d)$ or to improve the known upper bound on $n_5(5, d)$, where $n_q(k, d)$ is the minimum length n for which an $[n, k, d]_q$ code exists.

1 Introduction

Let \mathbb{F}_q^n denote the vector space of *n*-tuples over \mathbb{F}_q , the field of *q* elements. An $[n, k, d]_q$ code \mathcal{C} is a linear code of length *n*, dimension *k* and minimum Hamming distance *d* over \mathbb{F}_q . The weight distribution of \mathcal{C} is the list of numbers A_i which is the number of codewords of \mathcal{C} with weight *i*. The weight distribution with $(A_0, A_d, \ldots) = (1, \alpha, \ldots)$ is also expressed as $0^1 d^{\alpha} \cdots$. A fundamental problem in coding theory is to find $n_q(k, d)$, the minimum length *n* for which an $[n, k, d]_q$ code exists ([2]). There is a natural lower bound on $n_q(k, d)$, the so-called Griesmer bound: $n_q(k, d) \geq g_q(k, d) = \sum_{i=0}^{k-1} \left\lceil d/q^i \right\rceil$, where $\lceil x \rceil$ denotes the smallest integer greater than or equal to *x*. The values of $n_q(k, d)$ are determined for all *d* only for some small values of *q* and *k*. For linear codes over \mathbb{F}_5 , $n_5(k, d)$ is known for $k \leq 4$ for all *d* except the four cases d = 81, 82, 161, 162 for k = 4. As for the case k = 5, the value of $n_5(5, d)$ is unknown for many integer *d*, see [5] and [7]. In this paper, we construct new codes to determine $n_5(5, d)$ for some open cases for $d \leq 625$.

Theorem 1. (1) There exist $[g_5(5, d) + 1, 5, d]_5$ codes for d = 300, 350, 380, 385, 390, 395, 400, 430, 435, 440, 445, 450, 455, 460, 465, 470, 475.

(2) There exist $[g_5(5,d) + 2, 5, d]_5$ codes for d = 131, 155, 281, 287, 305, 310, 315, 320, 330, 335, 340, 355, 360, 365, 370, 375, 405, 410, 415, 420, 425, 485.

Corollary 2. (1) $n_5(5,d) = g_5(5,d) + 1$ for $d \in \{296-300, 346-350, 394, 395, 398-400, 426-475\}$.

(2) $n_5(5,d) = g_5(5,d) + 2$ for $373 \le d \le 375$.

¹This research is partially supported by Grant-in-Aid for Scientific Research of Japan Society for the Promotion of Science under Contract Number 24540138.

(3) $n_5(5,d) = g_5(5,d)$ or $g_5(5,d) + 1$ for $376 \le d \le 393$. (4) $n_5(5,d) = g_5(5,d) + 1$ or $g_5(5,d) + 2$ for $d \in \{151-155, 301-320, 326-340, 351-372, 411-425, 481-485\}$.

2 Construction methods

We denote by PG(r, q) the projective geometry of dimension r over \mathbb{F}_q . The 0-flats, 1-flats, 2-flats, 3-flats, (r-2)-flats and (r-1)-flats are called *points*, *lines*, *planes*, *solids*, *secundums* and *hyperplanes* respectively. We denote by \mathcal{F}_j the set of j-flats of PG(r, q) and by θ_j the number of points in a j-flat, i.e. $\theta_j = (q^{j+1}-1)/(q-1)$.

Let \mathcal{C} be an $[n, k, d]_q$ code having no coordinate which is identically zero. The columns of a generator matrix of \mathcal{C} can be considered as a multiset of n points in $\Sigma = \mathrm{PG}(k-1,q)$ denoted also by \mathcal{C} . We see linear codes from this geometrical point of view. An *i*-point is a point of Σ which has multiplicity i in \mathcal{C} . Denote by γ_0 the maximum multiplicity of a point from Σ in \mathcal{C} and let C_i be the set of ipoints in Σ , $0 \leq i \leq \gamma_0$. For any subset S of Σ we define the multiplicity of S with respect to \mathcal{C} , denoted by $m_{\mathcal{C}}(S)$, as $m_{\mathcal{C}}(S) = \sum_{i=1}^{\gamma_0} i \cdot |S \cap C_i|$, where |T| denotes the number of elements in a set T. A line l with $t = m_{\mathcal{C}}(l)$ is called a t-line. A t-plane, a t-solid and so on are defined similarly. Then we obtain the partition $\Sigma = \bigcup_{i=0}^{\gamma_0} C_i$ such that $n = m_{\mathcal{C}}(\Sigma)$ and $n - d = \max\{m_{\mathcal{C}}(\pi) \mid \pi \in \mathcal{F}_{k-2}\}$. Such a partition of Σ is called an (n, n - d)-arc of Σ . Conversely an (n, n - d)-arc of Σ gives an $[n, k, d]_q$ code in the natural manner. Denote by a_i the number of *i*-hyperplanes in Σ . The list of the values a_i is called the spectrum of \mathcal{C} . Note that $a_i = A_{n-i}/(q-1)$ for $0 \leq i \leq n-d$.

For a non-zero element $\alpha \in \mathbb{F}_q$, let $R = \mathbb{F}_q[x]/(x^N - \alpha)$ be the ring of polynomials over \mathbb{F}_q modulo $x^N - \alpha$. We associate the vector $(a_0, a_1, ..., a_{N-1}) \in \mathbb{F}_q^N$ with polynomial $a(x) = \sum_{i=0}^{N-1} a_i x^i \in R$. For $\mathbf{g} = (g_1(x), \cdots, g_s(x)) \in R^s$,

$$C_{\mathbf{g}} = \{ (r(x)g_1(x), \cdots, r(x)g_s(x)) \mid r(x) \in R \}$$

is called the 1-generator quasi-twisted (QT) code with generator \mathbf{g} . $C_{\mathbf{g}}$ is usually called quasi-cyclic (QC) when $\alpha = 1$. $C_{\mathbf{g}}$ is also called degenerate if $g_1(x), \dots, g_s(x)$ have a common factor dividing $x^N - \alpha$. When s = 1, $C_{\mathbf{g}}$ is called pseudo-cyclic or constacyclic. All of these codes are generalizations of cyclic codes ($\alpha = 1, s = 1$). Take a monic polynomial $g(x) = x^k - \sum_{i=0}^{k-1} a_i x^i$ in $\mathbb{F}_q[x]$ dividing $x^N - \alpha$ with non-zero $\alpha \in \mathbb{F}_q$, and let T be the companion matrix of g(x). Let τ be the projectivity of $\mathrm{PG}(k-1,q)$ defined by T. We denote by $[g^n]$ or by $[a_0a_1 \cdots a_{k-1}^n]$ the $k \times n$ matrix $[P, TP, T^2P, \dots, T^{n-1}P]$, where P is the column vector $(1, 0, 0, \dots, 0)^{\mathrm{T}}$ (h^{T} stands for the transpose of a row vector h). Then $[g^N]$ generates an α^{-1} -cyclic code. Hence one can construct a cyclic or pseudo-cyclic code from an orbit of τ . We denote the matrix

$$[P, TP, T^2P, ..., T^{n_1-1}P; P_2, TP_2, ..., T^{n_2-1}P_2; \cdots; P_s, TP_s, ..., T^{n_s-1}P_s]$$

Kageyama, Maruta

by $[g^{n_1}] + P_2^{n_2} + \cdots + P_s^{n_s}$. Then, the matrix $[g^N] + P_2^N + \cdots + P_s^N$ defined from s orbits of τ of length N generates a QC or QT code, see [8]. It is shown in [8] that many good codes can be constructed from orbits of projectivities.

An $[n, k, d]_q$ code is called *m*-divisible if all codewords have weights divisible by an integer m > 1. It sometimes happens that QC or QT codes are divisible or can be extended to divisible codes.

Lemma 1 ([9]). Let C be an *m*-divisible $[n, k, d]_q$ code with $q = p^h$, p prime, whose spectrum is

$$(a_{n-d-(w-1)m}, a_{n-d-(w-2)m}, \cdots, a_{n-d-m}, a_{n-d}) = (\alpha_{w-1}, \alpha_{w-2}, \cdots, \alpha_1, \alpha_0),$$

where $m = p^r$ for some $1 \le r < h(k-2)$ satisfying $\lambda_0 > 0$. Then there exists a t-divisible $[n^*, k, d^*]_q$ code \mathcal{C}^* with $t = q^{k-2}/m$, $n^* = \sum_{j=0}^{w-1} j\alpha_j = ntq - \frac{d}{m}\theta_{k-1}$, $d^* = n^* - nt + \frac{d}{m}\theta_{k-2} = ((n-d)q - n)t$ whose spectrum is

 $(a_{n^*-d^*-\gamma_0 t}, a_{n^*-d^*-(\gamma_0-1)t}, \cdots, a_{n^*-d^*-t}, a_{n^*-d^*}) = (\lambda_{\gamma_0}, \lambda_{\gamma_0-1}, \cdots, \lambda_1, \lambda_0).$

Note that a generator matrix for C^* is given by considering (n - d - jm)-hyperplanes as *j*-points in the dual space Σ^* of Σ for $0 \le j \le w - 1$ [9]. C^* is called the *projective dual* of C, see also [1].

Lemma 2 ([6]). Let C be an $[n, k, d]_q$ code and let $\bigcup_{i=0}^{\gamma_0} C_i$ be the partition of $\Sigma = \mathrm{PG}(k-1,q)$ obtained from C. If $\bigcup_{i\geq 1} C_i$ contains a t-flat Π and if $d > q^t$, then there exists an $[n - \theta_t, k, d - q^t]_q$ code C'.

 \mathcal{C}' in Lemma 2 can be constructed from \mathcal{C} by removing the *t*-flat Π from the multiset for \mathcal{C} . In general, the method to construct new codes from a given $[n, k, d]_q$ code by deleting the coordinates corresponding to some geometric object in $\mathrm{PG}(k-1,q)$ is called *geometric puncturing*, see [4].

3 Proof of Theorem 1

Lemma 3. There exist QC codes with parameters $[169, 5, 131]_5$ and $[198, 5, 155]_5$. *Proof.* See Table 1.

parameters	generator matrix
$[169, 5, 131]_5$	$ [10320^{13}] + 11000^{13} + 31000^{13} + 21100^{13} + 23100^{13} + 34100^{13} $
	$+32010^{13} + 31110^{13} + 12110^{13} + 42110^{13} + 12210^{13} + 22210^{13}$
	$+21310^{13}$
$[198, 5, 155]_5$	$[12411^{11}] + 11000^{11} + 31000^{11} + 10100^{11} + 31100^{11} + 30010^{11}$
	$+31010^{11} + 22010^{11} + 14010^{11} + 44110^{11} + 30210^{11} + 43210^{11}$
	$+34210^{11} + 12310^{11} + 13310^{11} + 41101^{11} + 32201^{11} + 33011^{11}$

Table 1. Generator matrices of QC codes in Lemma 3

Lemma 4. There exist $[377, 5, 300]_5$, $[385, 5, 305]_5$, $[391, 5, 310]_5$, $[397, 5, 315]_5$ and $[403, 5, 320]_5$ codes.

Proof. Let C_1 be the $[53, 5, 40]_5$ code with generator matrix

which is from [3]. Then C_1 has weight distribution $0^1 40^{1720} 45^{1300} 50^{104}$. Applying Lemma 1, as the projective dual of C_1 , one can get a $[377, 5, 300]_5$ code C_1^* with generator matrix G_1^* whose weight distribution is $0^1 300^{2912} 325^{212}$. Let C_2 be the $[26, 4, 20]_5$ code with generator matrix

Then C_2 has weight distribution $0^1 20^{520} 25^{104}$. Now, let Π be the hyperplane $\langle 10000, 00100, 00010, 02001 \rangle = V(3x_1 - x_4)$, where $x_0 x_1 \cdots x_4$ stands for the point $\mathbf{P}(x_0, x_1 \cdots, x_4)$ of $\Sigma = \mathrm{PG}(4, 5)$ represented by a vector $(x_0, x_1 \cdots, x_4)$. Define the mapping $\varphi : \mathrm{PG}(3, 5) \to \Pi$ for $\mathbf{P}(x_0, x_1, x_2, x_3) \in \mathrm{PG}(3, 5)$ by

 $\varphi(\mathbf{P}(x_0, x_1, x_2, x_3)) = \mathbf{P}(x_0, x_1, x_2, x_3, 3x_1).$

Let \bar{G}_2 be the 26-set in PG(3,5) defined by the columns of G_2 , and let G'_2 be the matrix whose columns consist of the image of \bar{G}_2 by φ . Then

Let \mathcal{C}'_2 and \mathcal{C} be the codes generated by $[G'_2]$ and $[G^*_1, G'_2]$, respectively. Then \mathcal{C} is a $[403, 5, d]_5$ code. Since $m_{\mathcal{C}_1^*}(\Pi) = 52$ and $m_{\mathcal{C}_2'}(\Pi) = 26$, we have $m_{\mathcal{C}}(\Pi) = 78$. It follows from $\max\{m_{\mathcal{C}_1^*}(\pi) \mid \pi \in \mathcal{F}_{k-2} \setminus \Pi\} = 77$ and $\max\{m_{\mathcal{C}_2'}(\pi) \mid \pi \in \mathcal{F}_{k-2} \setminus \Pi\} = 6$ that $\max\{m_{\mathcal{C}}(\pi) \mid \pi \in \mathcal{F}_{k-2} \setminus \Pi\} = 83$. Thus $d = n - \max\{m_{\mathcal{C}}(\pi) \mid \pi \in \mathcal{F}_{k-2}\} = 403 - 83 = 320$. Hence, \mathcal{C} is a $[403, 5, 320]_5$ code. It can be checked that the multiset for \mathcal{C} has mutually disjoint three lines $\langle 12100, 31011 \rangle$, $\langle 42100, 01021 \rangle$, $\langle 23100, 23021 \rangle$. Hence, we get $[385, 5, 305]_5$, $[391, 5, 310]_5$, $[397, 5, 315]_5$ codes by deleting the lines (Lemma 2). **Lemma 5.** There exist $[416, 5, 330]_5$, $[422, 5, 335]_5$ and $[428, 5, 340]_5$ codes.

Proof. Let \mathcal{C} be the $[66, 5, 50]_5$ code with generator matrix $G = [12411^{11}] + 11000^{11} + 41100^{11} + 21010^{11} + 30210^{11} + 22310^{11}$. Then \mathcal{C} has weight distribution $0^150^{1584}55^{1320}60^{220}$. Applying Lemma 1, as the projective dual of \mathcal{C} , one can get a $[440, 5, 350]_5$ code \mathcal{C}^* with weight distribution $0^1350^{2860}375^{264}$. It can be checked that the multiset for \mathcal{C}^* has mutually disjoint four lines

 $\langle 20100, 21011 \rangle$, $\langle 31100, 43021 \rangle$, $\langle 13100, 11011 \rangle$, $\langle 02010, 40201 \rangle$.

Hence, we get $[416, 5, 330]_5$, $[422, 5, 335]_5$, $[428, 5, 340]_5$ codes by Lemma 2.

5		
${\mathcal C}$	\mathcal{C}^*	
5-divisible $[41, 5, 30]_5$	25-divisible $[439, 5, 350]_5$	
5-divisible $[60, 5, 45]_5$	25-divisible $[471, 5, 375]_5$	
5-divisible $[54, 5, 40]_5$	25-divisible $[502, 5, 400]_5$	
5-divisible $[73, 5, 55]_5$	25-divisible $[534, 5, 425]_5$	
5-divisible $[42, 5, 30]_5$	25-divisible $[564, 5, 450]_5$	

 Table 2. Projective duals

A $[439, 5, 350]_5$ code can be constructed as the projective dual of a known 5divisible $[41, 5, 30]_5$ code (Table 2). The following four lemmas can be obtained from the $[471, 5, 375]_5$, $[502, 5, 400]_5$, $[534, 5, 425]_5$ and $[564, 5, 450]_5$ codes in Table 2, respectively, by deleting some lines from the multiset for C^* as puncturing. The codes for C in Table 2 are from [3].

Lemma 6. There exist $[g_5(5, d) + 2, 5, d]_5$ codes for d = 355, 360, 365, 370.

Lemma 7. There exist $[g_5(5, d) + 1, 5, d]_5$ codes for d = 380, 385, 390, 395.

Lemma 8. There exist $[g_5(5, d) + 2, 5, d]_5$ codes for d = 405, 410, 415, 420.

Lemma 9. There exist $[g_5(5, d) + 1, 5, d]_5$ codes for d = 430, 435, 440, 445.

Lemma 10. There exist $[571, 5, 455]_5$, $[577, 5, 460]_5$, $[583, 5, 465]_5$, $[589, 5, 470]_5$ and $[595, 5, 475]_5$ codes.

Proof. Let C be the $[36, 5, 25]_5$ code with generator matrix $G = [10000^5] + 11000^5 + 34100^5 + 11310^5 + 33410^5 + 31411^5 + 24121^5 + 11111$. Then C has weight distribution $0^1 25^{804} 30^{2260} 35^{60}$. Applying Lemma 1, as the projective dual of C, one can get a $[595, 5, 475]_5$ code C^* with weight distribution $0^1 475^{2980} 500^{144}$. It can be checked that the multiset for C^* has mutually disjoint four lines

 $\langle 10100, 22011 \rangle$, $\langle 30100, 23011 \rangle$, $\langle 21100, 20011 \rangle$, $\langle 31100, 11011 \rangle$.

Hence, we get $[571, 5, 455]_5$, $[577, 5, 460]_5$, $[583, 5, 465]_5$, $[589, 5, 470]_5$ codes by deleting the lines from the multiset for C^* as puncturing.

Lemma 11. There exist $[609, 5, 485]_5$ code.

Proof. Let C be the $[55, 5, 40]_5$ code with generator matrix $G = [12411^{11}] + 11000^{11} + 20100^{11} + 31100^{11} + 40010^{11}$. Then C has weight distribution $0^140^{880} 45^{1980}50^{264}$. Applying Lemma 1, as the projective dual of C, one can get a $[627, 5, 500]_5$ code C^* with weight distribution $0^{1}500^{2904}525^{220}$. It can be checked that the multiset for C^* has mutually disjoint three lines

(30100, 33010), (11100, 30010), (21100, 31001).

Hence, we get $[609, 5, 485]_5$ codes by deleting the three lines from the multiset for \mathcal{C}^* as puncturing.

References

- [1] A.E. Brouwer, M. van Eupen, The correspondence between projective codes and 2-weight codes, *Des. Codes Cryptogr.* **11**, 261–266, 1997.
- [2] R. Hill, Optimal linear codes, in *Cryptography and Coding II*, C. Mitchell, Ed., Oxford Univ. Press, Oxford, 1992, 75–104.
- [3] A. Kohnert, Best linear codes, http://www.algorithm.uni-bayreuth.de/en/research/Coding_Theory /Linear_Codes_BKW/index.html.
- [4] T. Maruta, Construction of optimal linear codes by geometric puncturing, Serdica J. Computing, to appear.
- [5] T. Maruta, Griesmer bound for linear codes over finite fields, http://www.mi.s.osakafu-u.ac.jp/~maruta/griesmer.htm.
- [6] T. Maruta, Y. Oya, On optimal ternary linear codes of dimension 6, Adv. Math. Commun., 5, 505–520, 2011.
- [7] T. Maruta, M. Shinohara, A. Kikui, On optimal linear codes over \mathbb{F}_5 , *Discrete Math.*, **309**, 1255–1272, 2009.
- [8] T. Maruta, M. Shinohara, M. Takenaka, Constructing linear codes from some orbits of projectivities, *Discrete Math.*, 308, 832–841, 2008.
- [9] M. Takenaka, K. Okamoto, T. Maruta, On optimal non-projective ternary linear codes, *Discrete Math.*, 308, 842–854, 2008.

112