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Abstract. We construct a lot of new [n,5,d]s codes to determine the exact value
of n5(5,d) or to improve the known upper bound on ns5(5,d), where ng(k,d) is the
minimum length n for which an [n, k, d]4 code exists.

1 Introduction

Let Fy denote the vector space of n-tuples over Fy, the field of ¢ elements. An
[n, k,d], code C is alinear code of length n, dimension k& and minimum Hamming
distance d over F,. The weight distribution of C is the list of numbers A; which
is the number of codewords of C with weight i. The weight distribution with
(Ag, Ag,...) = (1, ,...) is also expressed as 0'd®---. A fundamental problem in
coding theory is to find ng(k, d), the minimum length n for which an [n, k,d,
code exists ([2]). There is a natural lower bound on ny(k,d), the so-called
Griesmer bound: ng(k,d) > gq(k,d) = Zi‘:ol [d/q"] , where [2] denotes the
smallest integer greater than or equal to z. The values of ny(k, d) are determined
for all d only for some small values of ¢ and k. For linear codes over F5, ns(k, d)
is known for k£ < 4 for all d except the four cases d = 81,82,161, 162 for k = 4.
As for the case k = 5, the value of ns(5,d) is unknown for many integer d,
see [5] and [7]. In this paper, we construct new codes to determine ns(5,d) for
some open cases for d < 625.

Theorem 1. (1) There exist [g5(5,d)+1,5,d]s codes for d = 300, 350, 380, 385,
390, 395, 400, 430, 435, 440, 445, 450, 455, 460, 465, 470, 475.

(2) There exist [g5(5,d) +2,5,d]5 codes for d = 131,155,281, 287,305, 310, 315,
320, 330, 335, 340, 355, 360, 365, 370, 375, 405, 410, 415, 420, 425, 485.

Corollary 2. (1) n5(5,d) = g5(5,d)+1 for d € {206-300, 346-350, 394, 395, 398-
400, 426-475}.
(2) n5(5,d) = g5(5,d) + 2 for 373 < d < 375.
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(3) n5(5,d) = g5(5,d) or g5(5,d) + 1 for 376 < d < 393.
(4) n5(5,d) = g5(5,d)+1 or g5(5,d) +2 for d € {151-155, 301-320, 326-340, 351-
372,411-425,481-485}.

2 Construction methods

We denote by PG(r,q) the projective geometry of dimension r over F,. The
O-flats, 1-flats, 2-flats, 3-flats, (r — 2)-flats and (r — 1)-flats are called points,
lines, planes, solids, secundums and hyperplanes respectively. We denote by
F; the set of j-flats of PG(r, ¢) and by 6; the number of points in a j-flat, i.e.
0; = (@'~ 1)/(g - 1).

Let C be an [n, k, d], code having no coordinate which is identically zero. The
columns of a generator matrix of C can be considered as a multiset of n points in
¥ = PG(k — 1, q) denoted also by C. We see linear codes from this geometrical
point of view. An i-point is a point of ¥ which has multiplicity ¢ in C. Denote
by 7o the maximum multiplicity of a point from ¥ in C and let C; be the set of i-
pointsin X, 0 < ¢ < g. For any subset S of X2 we define the multiplicity of S with
respect to C, denoted by me(S), as me(S) = >°°, 4:|SNC;|, where |T'| denotes
the number of elements in a set 7. A line [ with ¢t = m¢(l) is called a t-line. A
t-plane, a t-solid and so on are defined similarly. Then we obtain the partition
¥ = U}, Ci such that n = m¢(E) and n — d = max{me(n) | 7 € Fy_2}. Such
a partition of ¥ is called an (n,n — d)-arc of . Conversely an (n,n — d)-arc of
¥ gives an [n, k, d], code in the natural manner. Denote by a; the number of
i-hyperplanes in . The list of the values a; is called the spectrum of C. Note
that a; = Ap—i/(g—1) for 0 <i <n—d.

For a non-zero element o € Fy, let R = Fylz]/(z" — «) be the ring of
polynomials over F; modulo 2N —a. We associate the vector (ag, a1, ...,an_1) €

F(]IV with polynomial a(z) = Zi]\if)l a;x' € R. For g = (g1(x), - ,gs(x)) € R?,

Cg ={(r(@)g1(2),- -, r(z)gs(z)) | 7(x) € R}

is called the 1-generator quasi-twisted (QT) code with generator g. Cyg is usu-
ally called quasi-cyclic (QC) when o = 1. Cg is also called degenerate if
g1(z), -+ ,gs(z) have a common factor dividing " — a. When s = 1, Cg
is called pseudo-cyclic or constacyclic. All of these codes are generalizations of
cyclic codes (a = 1, s = 1). Take a monic polynomial g(z) = z* — Zi':ol a;x’ in
F,[z] dividing ¥ — a with non-zero a € F;, and let T be the companion matrix
of g(z). Let 7 be the projectivity of PG(k — 1,¢) defined by T. We denote by
[g"] or by [agay - -aP_,] the k x n matrix [P, TP, T*P,...,T" "1 P], where P is
the column vector (1,0,0,---,0)T (hT stands for the transpose of a row vector
h). Then [¢"V] generates an a~!-cyclic code. Hence one can construct a cyclic
or pseudo-cyclic code from an orbit of 7. We denote the matrix

[P,TP,T*P, ..., T"" " 'P; Py, TP,,.... T ' Py;--- ; P,,TP,, ..., T" ' P,

N
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by [¢"t] + Py? +- - -+ P". Then, the matrix [¢"] + P +- - 4+ P defined from
s orbits of 7 of length N generates a QC or QT code, see [8]. It is shown in [§]
that many good codes can be constructed from orbits of projectivities.

An [n, k,d], code is called m-divisible if all codewords have weights divisible
by an integer m > 1. It sometimes happens that QC or QT codes are divisible
or can be extended to divisible codes.

Lemma 1 ([9]). Let C be an m-divisible [n,k,d], code with ¢ = p", p prime,
whose spectrum is

(an—d—(w—l)ma Ap—d—(w—2)m> """ s An—d—m; anfd) = (aw—17 Qyy—2, "+, 01, 040),

where m = p" for some 1 < r < h(k —2) satisfying Ao > 0. Then there exists a
t-divisible [n*, k,d*], code C* with t = ¢*=2/m, n* = Z;‘U:_ol jaj =ntq— %9/{717
d* =n* —nt+ L0,_5 = ((n — d)g — n)t whose spectrum is

(an*fd*f’y()tv an*fd*f(’yofl)h cr A —dr—t, an*,d*) = ()"707 )\’yo—lv e 7)\17 )‘0)

Note that a generator matrix for C* is given by considering (n — d — jm)-
hyperplanes as j-points in the dual space ¥* of ¥ for 0 < j <w —1[9]. C* is
called the projective dual of C, see also [1].

Lemma 2 ([6]). Let C be an [n,k,d], code and let U}°,C; be the partition of
¥ =PG(k —1,q) obtained from C. If U;>1C; contains a t-flat I1 and if d > ¢,
then there exists an [n — 0y, k,d — q'], code C'.

C' in Lemma 2 can be constructed from C by removing the ¢-flat II from the
multiset for C. In general, the method to construct new codes from a given
[n, k,d], code by deleting the coordinates corresponding to some geometric ob-
ject in PG(k — 1, ¢) is called geometric puncturing, see [4].

3 Proof of Theorem 1

Lemma 3. There exist QC codes with parameters [169,5,131]5 and [198,5,155]5.
Proof. See Table 1. O

Table 1. Generator matrices of QC codes in Lemma 3

parameters generator matrix

[169,5,131]5 | [10320'3] + 110003 + 310003 + 211003 + 231003 + 34100"3
+3201013 + 3111013 + 12110% + 42110%3 4 1221013 + 2221013

+21310"3

[198,5,155]5 | [1241111] + 11000 + 31000 + 10100 + 31100t + 30010'*
+31010* 4 22010 + 14010 + 44110 + 30210 + 43210
+34210M" + 123101 4 13310 + 411011 4 32201 + 330111
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Lemma 4. There exist [377,5,300]5, [385,5,305]5, [391,5,310]5, [397, 5, 315]
and [403,5,320]5 codes.

Proof. Let C; be the [53,5,40]5 code with generator matrix

00011111110001111111001111111100111111110011111111110
11111133441111113344111233334411111144441112333344000
G1 = | 01101304040240141234241013340413114400220323011401241 |,
00110100440100110044444421213333333322224444112233000
40444310243122104020113200044010132404343303431121042

which is from [3]. Then C; has weight distribution 0140172945130050104 " Apply-
ing Lemma 1, as the projective dual of C;, one can get a [377,5,300]5 code C;
with generator matrix G whose weight distribution is 0300291232522,

Let Ca be the [26,4,20]5 code with generator matrix

00142323230023014140231414
00002233112344122334001144
10111111222222333333444444
01111111111111111111111111

Then Cy has weight distribution 01205292594, Now, let II be the hyperplane
(10000, 00100, 00010,02001) = V(3x; — z4), where zox; --- x4 stands for the
point P(zg,z1 -+ ,x4) of ¥ = PG(4,5) represented by a vector (zg,z; -+ ,x4).
Define the mapping ¢ : PG(3,5) — II for P(zg, z1, x2,23) € PG(3,5) by

Go =

o(P(zo, x1,x2,23)) = P(z0, 21, 22, 23, 321).

Let G be the 26-set in PG(3,5) defined by the columns of G, and let G’2 be
the matrix whose columns consist of the image of G2 by ¢. Then

00142332410014014410232332
00002222222222222222002222
G/2 = | 10111144442311133224443322
01111144221433211443112233
00001111111111111111001111

Let Cé and C be the codes generated by [G;] and [G7, GIQ], respectively. Then C is
a [403,5,d]5 code. Since mc:(II) = 52 and mer (IT) = 26, we have m¢(II) = 78.
It follows from max{mec: () | 7 € Fj2 \ lI} = 77 and max{mcé(ﬂ) | ™ €
Fr—o \ II} = 6 that max{me(w) | m € Fr_o \ I} = 83. Thus d = n —
max{me(m) | 7 € Fr_a} = 403 — 83 = 320. Hence, C is a [403, 5, 320]5 code.
It can be checked that the multiset for C has mutually disjoint three lines
(12100,31011), (42100,01021), (23100,23021). Hence, we get [385,5,305]s,
[391, 5,310]5, [397,5,315]5 codes by deleting the lines (Lemma 2). O
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Lemma 5. There exist [416,5,330]5, [422,5,335]5 and [428,5,340]5 codes.

Proof. Let C be the [66,5,50]5 code with generator matrix G = [12411] +
11000 +41100M 421010 +30210' +22310"!. Then C has weight distribution
0150158455132060220 - Applying Lemma 1, as the projective dual of C, one can
get a [440,5,350]5 code C* with weight distribution 013502%¢0375264, Tt can be
checked that the multiset for C* has mutually disjoint four lines

(20100,21011), (31100,43021), (13100,11011), (02010,40201).
Hence, we get [416, 5, 330]5, [422, 5, 335]5, [428, 5, 340]5 codes by Lemma 2. [

Table 2. Projective duals

C c*
5-divisible [41,5,30]5 | 25-divisible [439, 5, 350]5
5-divisible [60, 5,45]5 | 25-divisible [471,5,375]5
5-divisible [54,5,40]5 | 25-divisible [502, 5,400]5
[ ] [ ]
[ | [ ]

5-divisible |73, 5, 55]5 | 25-divisible [534, 5, 425]5
o-divisible (42,5, 30]5 | 25-divisible [564, 5, 450]s5

A [439,5,350]5 code can be constructed as the projective dual of a known 5-
divisible [41, 5,30]5 code (Table 2). The following four lemmas can be obtained
from the [471,5,375]5, [502, 5,400]s5, [534, 5, 425]5 and [564, 5, 450]5 codes in Ta-
ble 2, respectively, by deleting some lines from the multiset for C* as puncturing.
The codes for C in Table 2 are from [3].

Lemma 6. There ezist [g5(5,d) + 2,5,d]5 codes for d = 355,360, 365, 370.

5,d) 4+ 1,5,d]s codes for d = 380,385,390, 395.
Lemma 8. There exist [g5(5,d) + 2,5,d]5 codes for d = 405,410,415, 420.
Lemma 9. There exist [g5(5,d) + 1,5,d]s codes for d = 430,435,440, 445.

Lemma 10. There exist [571,5,455]5, [577,5,460]5, [583, 5, 465]5, [589, 5,470]5
and [595,5,475]5 codes.

Proof. Let C be the [36,5,25]5 code with generator matrix G' = [10000°] +
11000° 4341005 +11310° +33410° +314115+24121°+11111. Then C has weight
distribution 01258943022603550 Applying Lemma 1, as the projective dual of C,
one can get a [595, 5,475]5 code C* with weight distribution 014752980500144, Tt
can be checked that the multiset for C* has mutually disjoint four lines

[
Lemma 7. There exist [g5(5,

[

[

(10100, 22011), (30100,23011), (21100,20011), (31100,11011).

Hence, we get [571,5,455]5, [577,5,460]5, [583,5,465]5, [589,5,470]5 codes by
deleting the lines from the multiset for C* as puncturing. O
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Lemma 11. There exist [609,5,485]5 code.

Proof. Let C be the [55,5,40]5 code with generator matrix G = [12411%] +
11000 + 20100 + 31100 + 40010, Then C has weight distribution 0140880
45198050264 Applying Lemma 1, as the projective dual of C, one can get
a [627,5,500]5 code C* with weight distribution 0'5002°4525220, Tt can be
checked that the multiset for C* has mutually disjoint three lines

(30100, 33010y, (11100,30010), (21100,31001).

Hence, we get [609, 5,485]5 codes by deleting the three lines from the multiset
for C* as puncturing. O
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