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Abstract. We construct a lot of new [n, 5, d]5 codes to determine the exact value
of n5(5, d) or to improve the known upper bound on n5(5, d), where nq(k, d) is the
minimum length n for which an [n, k, d]q code exists.

1 Introduction

Let Fn
q denote the vector space of n-tuples over Fq, the field of q elements. An

[n, k, d]q code C is a linear code of length n, dimension k and minimum Hamming
distance d over Fq. The weight distribution of C is the list of numbers Ai which
is the number of codewords of C with weight i. The weight distribution with
(A0, Ad, ...) = (1, α, ...) is also expressed as 01dα · · · . A fundamental problem in
coding theory is to find nq(k, d), the minimum length n for which an [n, k, d]q
code exists ([2]). There is a natural lower bound on nq(k, d), the so-called
Griesmer bound: nq(k, d) ≥ gq(k, d) =

∑k−1
i=0

⌈
d/qi

⌉
, where dxe denotes the

smallest integer greater than or equal to x. The values of nq(k, d) are determined
for all d only for some small values of q and k. For linear codes over F5, n5(k, d)
is known for k ≤ 4 for all d except the four cases d = 81, 82, 161, 162 for k = 4.
As for the case k = 5, the value of n5(5, d) is unknown for many integer d,
see [5] and [7]. In this paper, we construct new codes to determine n5(5, d) for
some open cases for d ≤ 625.

Theorem 1. (1) There exist [g5(5, d)+1, 5, d]5 codes for d = 300, 350, 380, 385,
390, 395, 400, 430, 435, 440, 445, 450, 455, 460, 465, 470, 475.
(2) There exist [g5(5, d) + 2, 5, d]5 codes for d = 131, 155, 281, 287, 305, 310, 315,
320, 330, 335, 340, 355, 360, 365, 370, 375, 405, 410, 415, 420, 425, 485.

Corollary 2. (1) n5(5, d) = g5(5, d)+1 for d ∈ {296-300, 346-350, 394, 395, 398-
400, 426-475}.
(2) n5(5, d) = g5(5, d) + 2 for 373 ≤ d ≤ 375.
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(3) n5(5, d) = g5(5, d) or g5(5, d) + 1 for 376 ≤ d ≤ 393.
(4) n5(5, d) = g5(5, d)+1 or g5(5, d)+2 for d ∈ {151-155, 301-320, 326-340, 351-
372, 411-425, 481-485}.

2 Construction methods

We denote by PG(r, q) the projective geometry of dimension r over Fq. The
0-flats, 1-flats, 2-flats, 3-flats, (r − 2)-flats and (r − 1)-flats are called points,
lines, planes, solids, secundums and hyperplanes respectively. We denote by
Fj the set of j-flats of PG(r, q) and by θj the number of points in a j-flat, i.e.
θj = (qj+1 − 1)/(q − 1).

Let C be an [n, k, d]q code having no coordinate which is identically zero. The
columns of a generator matrix of C can be considered as a multiset of n points in
Σ = PG(k− 1, q) denoted also by C. We see linear codes from this geometrical
point of view. An i-point is a point of Σ which has multiplicity i in C. Denote
by γ0 the maximum multiplicity of a point from Σ in C and let Ci be the set of i-
points in Σ, 0 ≤ i ≤ γ0. For any subset S of Σ we define the multiplicity of S with
respect to C, denoted by mC(S), as mC(S) =

∑γ0
i=1 i·|S∩Ci|, where |T | denotes

the number of elements in a set T . A line l with t = mC(l) is called a t-line. A
t-plane, a t-solid and so on are defined similarly. Then we obtain the partition
Σ =

⋃γ0
i=0 Ci such that n = mC(Σ) and n− d = max{mC(π) | π ∈ Fk−2}. Such

a partition of Σ is called an (n, n− d)-arc of Σ. Conversely an (n, n− d)-arc of
Σ gives an [n, k, d]q code in the natural manner. Denote by ai the number of
i-hyperplanes in Σ. The list of the values ai is called the spectrum of C. Note
that ai = An−i/(q − 1) for 0 ≤ i ≤ n− d.

For a non-zero element α ∈ Fq, let R = Fq[x]/(xN − α) be the ring of
polynomials over Fq modulo xN−α. We associate the vector (a0, a1, ..., aN−1) ∈
FN

q with polynomial a(x) =
∑N−1

i=0 aix
i ∈ R. For g = (g1(x), · · · , gs(x)) ∈ Rs,

Cg = {(r(x)g1(x), · · · , r(x)gs(x)) | r(x) ∈ R}
is called the 1-generator quasi-twisted (QT) code with generator g. Cg is usu-
ally called quasi-cyclic (QC) when α = 1. Cg is also called degenerate if
g1(x), · · · , gs(x) have a common factor dividing xN − α. When s = 1, Cg

is called pseudo-cyclic or constacyclic. All of these codes are generalizations of
cyclic codes (α = 1, s = 1). Take a monic polynomial g(x) = xk−∑k−1

i=0 aix
i in

Fq[x] dividing xN−α with non-zero α ∈ Fq, and let T be the companion matrix
of g(x). Let τ be the projectivity of PG(k − 1, q) defined by T . We denote by
[gn] or by [a0a1 · · · an

k−1] the k × n matrix [P, TP, T 2P, ..., Tn−1P ], where P is
the column vector (1, 0, 0, · · · , 0)T (hT stands for the transpose of a row vector
h). Then [gN ] generates an α−1-cyclic code. Hence one can construct a cyclic
or pseudo-cyclic code from an orbit of τ . We denote the matrix

[P, TP, T 2P, ..., Tn1−1P ;P2, TP2, ..., T
n2−1P2; · · · ;Ps, TPs, ..., T

ns−1Ps]
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by [gn1 ]+Pn2
2 + · · ·+Pns

s . Then, the matrix [gN ]+PN
2 + · · ·+PN

s defined from
s orbits of τ of length N generates a QC or QT code, see [8]. It is shown in [8]
that many good codes can be constructed from orbits of projectivities.

An [n, k, d]q code is called m-divisible if all codewords have weights divisible
by an integer m > 1. It sometimes happens that QC or QT codes are divisible
or can be extended to divisible codes.

Lemma 1 ([9]). Let C be an m-divisible [n, k, d]q code with q = ph, p prime,
whose spectrum is

(an−d−(w−1)m, an−d−(w−2)m, · · · , an−d−m, an−d) = (αw−1, αw−2, · · · , α1, α0),

where m = pr for some 1 ≤ r < h(k − 2) satisfying λ0 > 0. Then there exists a
t-divisible [n∗, k, d∗]q code C∗ with t = qk−2/m, n∗ =

∑w−1
j=0 jαj = ntq− d

mθk−1,

d∗ = n∗ − nt + d
mθk−2 = ((n− d)q − n)t whose spectrum is

(an∗−d∗−γ0t, an∗−d∗−(γ0−1)t, · · · , an∗−d∗−t, an∗−d∗) = (λγ0 , λγ0−1, · · · , λ1, λ0).

Note that a generator matrix for C∗ is given by considering (n − d − jm)-
hyperplanes as j-points in the dual space Σ∗ of Σ for 0 ≤ j ≤ w − 1 [9]. C∗ is
called the projective dual of C, see also [1].

Lemma 2 ([6]). Let C be an [n, k, d]q code and let ∪γ0
i=0Ci be the partition of

Σ = PG(k − 1, q) obtained from C. If ∪i≥1Ci contains a t-flat Π and if d > qt,
then there exists an [n− θt, k, d− qt]q code C′.
C′ in Lemma 2 can be constructed from C by removing the t-flat Π from the
multiset for C. In general, the method to construct new codes from a given
[n, k, d]q code by deleting the coordinates corresponding to some geometric ob-
ject in PG(k − 1, q) is called geometric puncturing, see [4].

3 Proof of Theorem 1

Lemma 3. There exist QC codes with parameters [169, 5, 131]5 and [198, 5, 155]5.

Proof. See Table 1.

Table 1. Generator matrices of QC codes in Lemma 3
parameters generator matrix
[169, 5, 131]5 [1032013] + 1100013 + 3100013 + 2110013 + 2310013 + 3410013

+3201013 + 3111013 + 1211013 + 4211013 + 1221013 + 2221013

+2131013

[198, 5, 155]5 [1241111] + 1100011 + 3100011 + 1010011 + 3110011 + 3001011

+3101011 + 2201011 + 1401011 + 4411011 + 3021011 + 4321011

+3421011 + 1231011 + 1331011 + 4110111 + 3220111 + 3301111
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Lemma 4. There exist [377, 5, 300]5, [385, 5, 305]5, [391, 5, 310]5, [397, 5, 315]5
and [403, 5, 320]5 codes.

Proof. Let C1 be the [53, 5, 40]5 code with generator matrix

G1 =




00011111110001111111001111111100111111110011111111110
11111133441111113344111233334411111144441112333344000
01101304040240141234241013340413114400220323011401241
00110100440100110044444421213333333322224444112233000
40444310243122104020113200044010132404343303431121042




,

which is from [3]. Then C1 has weight distribution 0140172045130050104. Apply-
ing Lemma 1, as the projective dual of C1, one can get a [377, 5, 300]5 code C∗1
with generator matrix G∗

1 whose weight distribution is 013002912325212.
Let C2 be the [26, 4, 20]5 code with generator matrix

G2 =




00142323230023014140231414
00002233112344122334001144
10111111222222333333444444
01111111111111111111111111


.

Then C2 has weight distribution 012052025104. Now, let Π be the hyperplane
〈10000, 00100, 00010, 02001〉 = V (3x1 − x4), where x0x1 · · ·x4 stands for the
point P(x0, x1 · · · , x4) of Σ = PG(4, 5) represented by a vector (x0, x1 · · · , x4).
Define the mapping ϕ : PG(3, 5) → Π for P(x0, x1, x2, x3) ∈ PG(3, 5) by

ϕ(P(x0, x1, x2, x3)) = P(x0, x1, x2, x3, 3x1).

Let Ḡ2 be the 26-set in PG(3,5) defined by the columns of G2, and let G
′
2 be

the matrix whose columns consist of the image of Ḡ2 by ϕ. Then

G
′
2 =




00142332410014014410232332
00002222222222222222002222
10111144442311133224443322
01111144221433211443112233
00001111111111111111001111




.

Let C′2 and C be the codes generated by [G
′
2] and [G∗

1, G
′
2], respectively. Then C is

a [403, 5, d]5 code. Since mC∗1 (Π) = 52 and mC′2(Π) = 26, we have mC(Π) = 78.
It follows from max{mC∗1 (π) | π ∈ Fk−2 \ Π} = 77 and max{mC′2(π) | π ∈
Fk−2 \ Π} = 6 that max{mC(π) | π ∈ Fk−2 \ Π} = 83. Thus d = n −
max{mC(π) | π ∈ Fk−2} = 403 − 83 = 320. Hence, C is a [403, 5, 320]5 code.
It can be checked that the multiset for C has mutually disjoint three lines
〈12100, 31011〉, 〈42100, 01021〉, 〈23100, 23021〉. Hence, we get [385, 5, 305]5,
[391, 5, 310]5, [397, 5, 315]5 codes by deleting the lines (Lemma 2).
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Lemma 5. There exist [416, 5, 330]5, [422, 5, 335]5 and [428, 5, 340]5 codes.

Proof. Let C be the [66, 5, 50]5 code with generator matrix G = [1241111] +
1100011+4110011+2101011+3021011+2231011. Then C has weight distribution
0150158455132060220. Applying Lemma 1, as the projective dual of C, one can
get a [440, 5, 350]5 code C∗ with weight distribution 013502860375264. It can be
checked that the multiset for C∗ has mutually disjoint four lines

〈20100, 21011〉, 〈31100, 43021〉, 〈13100, 11011〉, 〈02010, 40201〉.
Hence, we get [416, 5, 330]5, [422, 5, 335]5, [428, 5, 340]5 codes by Lemma 2.

Table 2. Projective duals
C C∗

5-divisible [41, 5, 30]5 25-divisible [439, 5, 350]5
5-divisible [60, 5, 45]5 25-divisible [471, 5, 375]5
5-divisible [54, 5, 40]5 25-divisible [502, 5, 400]5
5-divisible [73, 5, 55]5 25-divisible [534, 5, 425]5
5-divisible [42, 5, 30]5 25-divisible [564, 5, 450]5

A [439, 5, 350]5 code can be constructed as the projective dual of a known 5-
divisible [41, 5, 30]5 code (Table 2). The following four lemmas can be obtained
from the [471, 5, 375]5, [502, 5, 400]5, [534, 5, 425]5 and [564, 5, 450]5 codes in Ta-
ble 2, respectively, by deleting some lines from the multiset for C∗ as puncturing.
The codes for C in Table 2 are from [3].

Lemma 6. There exist [g5(5, d) + 2, 5, d]5 codes for d = 355, 360, 365, 370.

Lemma 7. There exist [g5(5, d) + 1, 5, d]5 codes for d = 380, 385, 390, 395.

Lemma 8. There exist [g5(5, d) + 2, 5, d]5 codes for d = 405, 410, 415, 420.

Lemma 9. There exist [g5(5, d) + 1, 5, d]5 codes for d = 430, 435, 440, 445.

Lemma 10. There exist [571, 5, 455]5, [577, 5, 460]5, [583, 5, 465]5, [589, 5, 470]5
and [595, 5, 475]5 codes.

Proof. Let C be the [36, 5, 25]5 code with generator matrix G = [100005] +
110005+341005+113105+334105+314115+241215+11111. Then C has weight
distribution 01258043022603560. Applying Lemma 1, as the projective dual of C,
one can get a [595, 5, 475]5 code C∗ with weight distribution 014752980500144. It
can be checked that the multiset for C∗ has mutually disjoint four lines

〈10100, 22011〉, 〈30100, 23011〉, 〈21100, 20011〉, 〈31100, 11011〉.
Hence, we get [571, 5, 455]5, [577, 5, 460]5, [583, 5, 465]5, [589, 5, 470]5 codes by
deleting the lines from the multiset for C∗ as puncturing.
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Lemma 11. There exist [609, 5, 485]5 code.

Proof. Let C be the [55, 5, 40]5 code with generator matrix G = [1241111] +
1100011 + 2010011 + 3110011 + 4001011. Then C has weight distribution 0140880

45198050264. Applying Lemma 1, as the projective dual of C, one can get
a [627, 5, 500]5 code C∗ with weight distribution 015002904525220. It can be
checked that the multiset for C∗ has mutually disjoint three lines

〈30100, 33010〉, 〈11100, 30010〉, 〈21100, 31001〉.
Hence, we get [609, 5, 485]5 codes by deleting the three lines from the multiset
for C∗ as puncturing.
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