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What to do if syndroms are corrupted also?

Grigory Kabatiansky1 kaba@iitp.ru Institute for Information
Transmission Problems (IITP RAS), Moscow 127994, RUSSIA
Serge Vladuts sergevladuts@yandex.ru
Serge Vladuts, Aix-Marseille University and IITP RAS

Dedicated to the memory of Professor Stefan Dodunekov

Abstract. We consider a discrete version of Compressed Sensing Problem when
one has to find an error vector based on its syndrom for a given parity-check matrix
but not all positions of the syndrom are correct. We establish analogs of some well-
known bounds in coding theory and discuss how it can be applied to the original
compressed sensing problem setting.

1 Introduction

The Compressed Sensing Problem [1],[2] is formulated as a problem of recon-
structing of n-dimensional t-sparse vector x ∈ Rn by a few, namely, r linear
measurements si = (hi, x), i.e., finding vector x such that HxT = s and its
Hamming weight, equals to the number of nonzero coordinates of x and de-
noted by wt(x) or ||x||0, is at most t, where H is an r × n matrix, whose rows
are h1, . . . , hr, and syndrom vector s = (s1, . . . , sr).

Formulated in such way the problem resembles the main problem of coding
theory, and it was noted for instance in [3].

We shall consider, as it is clear from our notations, matrix H as a parity-
check matrix of some code. Let us note that the main achievement of Com-
pressed Sensing is that the corresponding algorithm(s) can recover vector x
even if measurements are not exact, i.e. if we know (hi, x) with some errors
e = (e1, . . . , er), what is formulated as solving equation

s = HxT + e (1)

Usual for compressed sensing assumption that vector e has relatively small
Euclidean length has not much sense in discrete, especially in binary, case.
Therefore we replace it on assumption that the Hamming weight of a syndrom
error is not large, namely, wt(e) ≤ l. In order to deal with parity-check matrices
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(as well as with linear codes) we restrict ourselves to the case when q is prime
power. Let Fq be the finite field of q elements and Fn

q be the n-dimensional
Hamming space of all q-ary vectors of length n with the Hamming distance on
them d(x, y) = |{i : xi 6= yi}| = wt(x− y).

Now let us consider a new problem of coding theory:
To reconstruct the vector x of the Hamming weight wt(x) ≤ t if all
but not more than l syndrom’s coordinates are correct.
The corresponding matrix H we call q -ary (t, l)-compressed sensing matrix.
More formally

Definition 1 A q -ary r × n matrix H called a (t, l)-compressed sensing (CS)
matrix iff for any two distinct vectors x, y ∈ Fn

q such that wt(x) ≤ t and wt(y) ≤
t the Hamming distance between the corresponding syndroms is at least 2l + 1,
i.e.

d(HxT ,HyT ) ≥ 2l + 1. (2)

Proposition 2 A q -ary r × n matrix H is a (t, l)-CS matrix iff wt(HzT ) ≥
2l + 1 for any nonzero vector z ∈ Fn

q such that wt(z) ≤ 2t.

Remark 1. In contrary to ordinary coding theory the “redundancy size”
r of CS-matrix could be larger than n.

Remark 2. In particular case t = 1, l = 1 we have got nonadaptive (or
deterministic) version of famous Ulam’s problem on searching with lie, see [5],
and for t = 1 and l arbitrary - a nonadaptive version of Ulam’s problem on
searching with lies.

2 Upper and lower bounds for redundancy of q-ary
CS matrices

The main goal of this section is to prove that for the best (t, l)-compressed
sensing matrices their relative “redundancy” ρ = r/n can’t be too small (an
analog of the ordinary Hamming bound) and to establish the counterpart upper
bound for ρ (an analog of GV-bound).
Let us denote

Vq(n, d) =
i=d∑

i=0

Ci
n(q − 1)i = |{x ∈ Fn

q : wt(x) ≤ d}|

the volume of radius d ball in Fn
q . Denote, as usual, by Aq(n, 2t+1) the maximal

possible cardinality of q-ary code correcting t errors and A
(lin)
q (n; 2t + 1) the
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same value taken over linear codes. Let rq(n, t; l) be the minimal redundancy
r taken over all q -ary r × n (t, l)-CS matrices. Then by definitions

rq(n, t; 0) = n− logq A(lin)
q (n, 2t + 1)

Theorem 3 (Hamming bound). For any q -ary (t, l)-CS r × n-matrix

Aq(r, 2l + 1) ≥ Vq(n, t). (3)

Proof. The proof is obvious. According to Definition 1 the set of syndroms
{HxT : wt(x) ≤ t} forms a code of length r capable to correct l errors, and
hence the number of syndroms cannot be larger than Aq(r, 2l + 1). ¤

The r.h.s. of (3) can be rather tight approximated as qnhq(t/n)+t logq(q−1)

and instead of l.h.s. any upper bound for the cardinality of codes (see [4]) can
be taken. Let us define the corresponding relative values: λ = l/n, τ = t/n,
and denote

ρq(τ, λ) = lim
n→∞ rq(n, t; l)/n.

Then, for instance, taking the Plotkin bound, namely, logq(Aq(r, 2l + 1)) ≤
r − 2q

q−1 l + O(1) leads to the following asymptotic bound

ρq(τ, λ) ≥ 2q

q − 1
λ + hq(τ) + τ logq(q − 1), (4)

where hq(x) = −(x logq x + (1− x) logq(1− x)). In the binary case it gives

ρq(τ, λ) ≥ 4λ + h2(τ) (5)

On the other hand, there is the following analog of the Gilbert-Varshamov
bound.

Theorem 4 (G-V bound).

rq(n, t; l) ≤ logq Vq(n, 2t) + logq Vq(r, 2l). (6)

Proof. Consider random q-ary r × n-matrix H which entries are taken as ran-
dom independent uniformly distributed variables from Fq. Then for any given
nonzero vector z ∈ Fn

q its syndrom HzT is a random variable uniformly dis-
tributed on Fr

q. Hence the probability that wt(HzT ) ≤ 2l equals to q−rVq(r, 2l).
And by union bound the probability that for random matrix H the Proposition
1 is not true is at most (Vq(n, 2t)− 1)q−rVq(r, 2l). ¤
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Remark. One can use Varshamov procedure of ”exausting” the space Fn
q

of matrix H columns and then get slightly better bound, namely,

rq(n, t; l) ≤ logq Vq(n, 2t− 1) + logq Vq(r, 2l). (7)

Asymptotically we have (in both cases) the following lower bound on r for
2τ < q−1

q , 2λ < q−1
q

ρq(τ, λ) ≤ 2 logq(q − 1)(τ + λ) + hq(2τ) + ρ(τ, λ)hq(2λ), (8)

and in the binary case for τ < 1/4, λ < 1/4

ρ(τ, λ) ≤ h(2τ)
1− h(2λ)

(9)

3 Real Compressed Sensing - no small errors case
and slightly beyond

First papers on Compressed Sensing contained some exclamations that this
new technique (application of l1 minimization instead of l0) allows to recover
information vector x ∈ Rn in case when not many coordinates of x were affected
by errors. For instance, in [3] “one can introduce errors of arbitrary large
sizes and still recover the input vector exactly by solving a convenient linear
program...”. To achieve such performance some special restriction on matrix
H was placed, called Restricted Isometry Property (RIP), as follows

(1− δD)||x||2 ≤ ||HxT ||2 ≤ (1 + δD)||Hx||2, (10)

for any vector x ∈ Rn : ||x||0 ≤ D, where 0 < δD < 1. The smallest possible δD

called the isometry constant.
Then typical result looks like this (Th. 1.1 from [3])
“if δ3t +3δ4t < 2 then the solution of linear programming problem is unique and
equal to x”
Let us note that the condition δ3t + 3δ4t < 2 implies δ4t < 2/3 (of course, it
implies that δ4t < 1/2, but for us enough to have δ4t < 1). Hence HxT 6= 0 for
any nonzero x with wt(x) ≤ 4t, or saying in other words, an error-correcting
code (over reals) corresponding to such parity-check matrix H has the minimal
distance at least 4t+1 and can correct 2t errors (instead of t). So we lost twice in
error-correction capability but maybe linear programming provides more easier
way for decoding?
In fact, NOT, since it is well known in coding theory that such problem can
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be solved rather easily (in complexity) over any infinite field by usage of the
corresponding Reed-Solomon codes and known decoding algorithms. In case of
real number or complex number fields one can use just RS code with Fourier
parity-check matrix, namely, hj,p = exp(2πi jp

n ), where p ∈ {1, 2, ..., n} and
”roots” j = a, a+d, a+2d, . . . , a+(r−1)d for complex numbers, and “reversible”
RS-matrix H for real numbers with j ∈ {−f,−f + 1, . . . , 0, 1, . . . , f} and r =
2f + 1.
Fortunately, matrices with RIP property allow correct not only sparse errors but
also additionally errors with arbitrary support but relatively small Euclidean
norm. Again, RIP property is good for linear programming decoding but too
strong in general. Indeed, if the following weaker property

λ2t||z||2 ≤ ||HzT ||2, (11)

with λ2t > 0 is valid for any z ∈ Rn : ||z||0 ≤ 2t then the equation (1) has
a unique solution for errors e such that 2||e||2 < λ2t||x||2. Let us note that
for “reversible” RS-matrix H any r columns are linear independent and hence
λ2t > 0. Unfortunately λ2t tends to zero when n grows and code rate is fixed.
To find better class codes over reals is an open problem!
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