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Abstract. Let [n, k, d]q-code be a linear code of length n, dimension k and min-
imum Hamming distance d over GF (q). One of the most important problems in
coding theory is to construct codes with best possible minimum distances. In this
paper, thirty two codes over GF (4) are constructed, which improve the best known
lower bounds on minimum distance. Some codes are quasi-cyclic and other are
obtained by Construction X.

1 Introduction

Let GF (q) denote the Galois field of q elements. A linear code C over GF (q) of
length n, dimension k and minimum Hamming distance d is called an [n, k, d]q-
code.

A code C is said to be quasi-cyclic (QC or p-QC) if a cyclic shift of a
codeword by p positions results in another codeword. A cyclic shift of an m-
tuple (x0, x1, . . . , xm−1) is the m-tuple (xm−1, x0, . . . , xm−2). The blocklength,
n , of a p-QC code is a multiple of p , so that n = pm.

A matrix B of the form

B =




b0 b1 b2 · · · bm−2 bm−1

bm−1 b0 b1 · · · bm−3 bm−2

bm−2 bm−1 b0 · · · bm−4 bm−3
...

...
...

...
...

b1 b2 b3 · · · bm−1 b0




, (1)

is called a circulant matrix. A class of QC codes can be constructed from m×m
circulant matrices. In this case, the generator matrix, G , can be represented
as

G = [B1, B2, ... , Bp] , (2)

where Bi is a circulant matrix.
The algebra of m ×m circulant matrices over GF (q) is isomorphic to the al-
gebra of polynomials in the ring GF (q)[x]/(xm − 1) if B is mapped onto the
polynomial, b(x) = b0+b1x+b2x

2+· · ·+bm−1x
m−1, formed from the entries in
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the first row of B. The bi(x) associated with a QC code are called the defining
polynomials.

If the defining polynomials bi(x) contain a common factor which is also a
factor of xm − 1, then the QC code is called degenerate.

The dimension k of the QC code is equal to the degree of h(x), where [4]

h(x) =
xm − 1

gcd{xm − 1, b0(x), b1(x), · · · , bp−1(x)} . (3)

If the polynomial h(x) has degree m , the dimension of the code is m , and
(2) is a generator matrix. If deg(h(x)) = k < m, a generator matrix for the
code can be constructed by deleting m− k rows of (2).

Let the defining polynomials of the code C be in the next form

d1(x) = g(x), d2(x) = f2(x)g(x), · · · , dp(x) = fp(x)g(x), (4)

where g(x)|(xm−1), g(x), fi(x) ∈ GF (q)[x]/(xm−1), (fi(x), (xm−1)/g(x)) =
1 and deg fi(x) < m−deg g(x) for all 1 ≤ i ≤ p. Then C is a degenerate QC
code, which is one-generator QC code (see [4],[2]) and for this code n = mp,
and k = m− deg g(x).

In this paper we consider one-generator QC codes. A well-known result
regarding the one-generator QC codes is:

Theorem 1 [4],[2]: Let C be a one-generator QC code over GF (q) of
length n = pm. Then, a generator g(x) ∈ (GF (q)[x]/(xm − 1))p of C has
the following form

g(x) = (f1(x)g1(x), f2(x)g2(x), · · · , fp(x)gp(x))

where gi(x)|(xm − 1) and (fi(x), (xm − 1)/gi(x)) = 1 for all 1 ≤ i ≤ p.

Theorem 2(construction X)Let C2 = [n, k − l, d + s]q code be a subcode
of the code C1 = [n, k, d]q and let C3 = [a, l, s]q be a third code. Then there
exists an C = [n + a, k, d + s]q code.

In this paper, new one-generator QC codes (p ≥ 2) are constructed using
a algebraic-combinatorial computer search, similar to that in [3] and [5]. For
convenience, the elements of GF (4) are given as integers: 2 = α, 3 = α2 where
α is a root of the binary primitive polynomial y2 + y + 1. The codes presented
here improve the respective lower bounds on the minimum distance in [1].

2 The New QC Codes

We have restricted our search to one-generator QC codes with a generator of
the form as in Theorem 1, where g1(x) = g2(x) = . . . = gp(x) = g(x) and
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Table 1: A search for [102, 8, 68]4 quasi-cyclic code

p 17p fp d dgr p 17p fp d dgr

2 34 1013 18 19 5 85 300301 54 56
3 51 1133 30 32 6 102 1120101 68 66
4 68 121312 42 44 7 119 22201 78 79

Table 2: A search for [119, 8, 80]4 quasi-cyclic code

p 17p fp d dgr p 17p fp d dgr

2 34 1013 18 19 5 85 3310101 54 56
3 51 1133 30 32 6 102 11231 66 66
4 68 121312 42 44 7 119 300301 80 79

f1(x) = 1. The main aim in our search is to find good g(x), which gives better
minimum distance for p = 2. After that with the given m and g(x) we
search for fp(x), p = 3, 4, . . . . Depending of the degree of g(x), we obtain
improvements on minimum distances for some dimensions.

We illustrate the search method in the following example.
Let m = 17 and q = 4. Then the gcd(m, q) = 1 and the splitting field of xm− 1
is GF (ql) where l is the smallest integer such that m|(ql− 1). In our case l = 4
and so splitting field is GF (44). Using Berlekamp’s algorithm we factorize

x17− 1 = (x4 + x3 + 2x2 + x + 1)(x4 + x3 + 3x2 + x + 1)(x4 + 2x3 + x2 + 2x + 1)

(x4 + 3x3 + x2 + 3x + 1)(x + 1)

Let now k=8. There are six possibilities to obtain g(x) of degree nine. By this
reason, we can use exhaustive search. By g(x) = x9 + 3x8 + 3x7 + 2x5 + 2x4 +
3x2 + 3x + 1, we obtain f2(x) = x3 + x + 3 and quasi-cyclic code [34, 8, 18]4.
After that we make search for fp(x), p = 3, 4 . . . , 7. It should be noticed, there
is a possibility to go one or more steps back. The results are given in Table 1
and Table 2.

Theorem 3: There exist new one-generator quasi-cyclic codes with param-
eters:

[102,8,68]4 [105,8,69]4 [119,8,80]4 [76,9,28]4 [95,9,60]4
[36,10,18]4 [60,10,34]4 [66,10,26]4 [140,10,90]4 [36,11,17]4

[115,11,70]4 [161,11,102]4 [51,12,26]4 [69,12,38]4 [184,12,116]4
[189,12,120]4 [60,14,29]4
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Proof. The coefficients of the defining polynomials of the codes are as fol-
lows:
A [105, 8, 69]4-code:

112310112202310000000,203100122303221321000,302123330331111122110,

303002112301213211000,221031020210230201000;

A [76, 9, 48]4-code:

1233010223100000000,2133021210332100000,3113332321211133100,1331133011331130310;

A [140, 10, 90]4-code:

10220221130133022322231031000000000,23333032132323021203012032220110000,

11322111010313212220303210312311000,23222011333001320330011323032221000;

A [184, 12, 116]4-code:

11000111010100000000000,31102023222223102100000,21332320311011032221000,

20213001211023021010000,23322210221021323010000,31310230032031323320100,

23230111212332313100000,21332103103203023310000;

Remark: The defining polynomials of the QC codes, which are missing in Theorem 3, are

given in [1]. All defining polynomials, generator matrices and weight enumerators are avail-

able on request from the author.

In process of search for new quasi-cyclic codes, we obtain many good codes.
Some of these codes are extendable. Below are given the parameters of new
linear codes, which are constructed using extension. The same codes are pre-
sented by trivial construction X in [1].

Theorem 4: There exist new linear codes with parameters:

[32,10,16]4 [51,10,28]4 [43,11,22]4 [31,12,13]4 [72,12,40]4
[143,12,88]4 [43,13,19]4 [46,13,21]4 [52,13,25]4 [43,15,18]4

Proof. The coefficients of defining polynomials of good quasi-cyclic codes
are presented. The column vectors, which are added to the generator matrices,
are given.
A [30, 10, 14]4-code:

3230131101,3100211331,1002010101;

(1010101010)T , (0101010101)T ;

A [50, 10, 27]4-code:

3313300021,1311103311,1211120310,2100232231,3303010001;

(1111111111)T ;

A [42, 11, 21]4-code:

101010110010000000000,3023110220313223101003;

(32132132132)T ;

A [30, 12, 12]4-code:

203100000000000,221120300331000;

(231231231231)T ;

A [70, 12, 38]4-code:
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Table 3: New linear codes obtained by Construction X

C1 C2 C3 C

[45,10,24]4 [45,8,26]4 [3,2,2]4 [48,10,26]4
[140,10,90]4 [140,7,92]4 [4,3,2]4 [144,10,92]4
[126,11,78]4 [126,8,82]4 [6,3,4]4 [132,11,82]4
[126,16,70]4 [126,10,78]4 [15,6,8]4 [141,16,78]4

13120020310031030023210100000000000,10221132220100010222330312331010000;

(111111111111)T , (222222222222)T ;

A [140, 12, 85]4-code:

13120020310031030023210100000000000,23113101211132303001120113110000000,

11201021102123032223023302320100000,20303101202202301233022112323030100;

Three columns (111111111111)T ;

A [42, 13, 18]4-code:

210233331000000000000,310330322333310110000;

(3213213213213)T ;

A [45, 13, 20]4-code:

221000000000000,211220312100000,200110031221000;

(1111111111111)T ;

A [51, 13, 24]4-code:

11211000000000000,23130230332301000,31103133122210000;

(1111111111111)T ;

A [42, 15, 17]4-code:

122322100000000000000,322023230031012100000;

(321321321321321)T

The code [105, 8, 69]4(see Theorem 3) is triple extendable. The respective columns
are (10110110)T , (01101101)T , (11011011)T .

Theorem 5: There exist new linear codes with parameters:

[48,10,26]4 [144,10,92]4 [132,11,82]4 [141,16,70]4

Proof. In Table 3 is showed the connection between the codes C1, C2, C3 and
C, according to Theorem 2. For clearness, the defining polynomials of codes C1

and C2 are given:
1.A [45, 10, 24]4-code:

301021000000000,202232032013100,122011101030310;

1.B [45, 8, 26]4-code:

220302110000000,113011203211001,221310122332110;

2.A [140, 10, 90]4-code: (see Theorem 3)

2.B [140, 7, 92]4-code:
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33131012101030132321220202323000000,13012001232012000201330112020213330,

30103011000221110130332121322121133,13312021133021132012210100031023213;

3.A [126, 11, 78]4-code:

130203303031312233132012112013223210331030020213212310000000000,

310003311132300021300020111031231220113332302120312331112100000;

3.B [126, 8, 82]4-code:

232000230230132023322003200121130110011310203232323332010000000,

130011011010130331203333323032323103120233333202113203103321100;

4.A [126, 16, 70]4-code:

121000001021111203322023302003121100032231222031000000000000000,

112200020302031022222210322323201031201300113223213131000000000;

4.B [126, 10, 78]4-code:

322322132312212200203230220202100121133130221231003121000000000,

302033311022312333122110102033101300203033303020233032103021000;

One generator matrix of code C is constructed by the indicated way:

G =




G2 | 0
−−−
∗ | G3


 ,

where G2 and G3 are generator matrices of codes C2 and C3 respectively, and

(∗) denotes l linear independent codewords of code C1.
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