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Abstract. We provide new parameters for spreads for which the standard combi-
natorial necessary condition is not sufficient.

Let R be a finite chain ring with |R| = q2, R/RadR ∼= Fq. It is well-known
that every finite module RM over R is isomorphic to a direct sum of cyclic
modules, i.e.

RM ∼=
k⊕

i=1

R/(RadR)λi ,

for some uniquely determined partition λ = (λ1, . . . , λk) ` logq|M |. Here m ≥
λ1 ≥ . . . ≥ λk > 0. The integer k is called the rank, and the partition λ – the
shape of M . The following counting formula gives the number of submodules
of fixed shape µ contained in a module of shape λ [1, 9].

Theorem 1. Let RM be a module of shape λ. For every partition µ satisfying
µ ≤ λ the module RM has exactly

[
λ

µ

]

q

:=
∞∏

i=1

qµ′i+1(λ
′
i−µ′i) ·

[
λ′i − µ′i+1

µ′i − µ′i+1

]

q

(1)

submodules of shape µ. In particular, the number of free rank s submodules of
RM equals

qs(λ′1−s)+···+s(λ′m−1−s) ·
[
λ′m
s

]

q

.
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Here λ′ = (λ′1, λ
′
2, . . .) is the conjugate partition to λ.

Set M = RRn and M∗ = M \ θM , where θ is any generator of RadR. Let
P = {Rx | x ∈ M∗}, and L = {Rx + Ry | x, y linearly independent} be
called the set of points and the set of lines, respectively, with incidence I given
by set-theoretical inclusion. Two points Rx and Ry are called neighbours if
Rx ∩Ry ≤ θM . Two lines K and L are i-th neighbours if for every point x on
K there is a point y on L which is an neighbour to x, and conversely, for every
point y on L there is a point x on K which is an neighbour to y. The relation
neighborhood is an equivalence relation on P, as well as on L. The incidence
structure (P,L, I), together with the neighbourhood relations defined above, is
called a left projective Hjelmslev space over the chain ring R and is denoted by
PHG(RRn).

A set of points H in Π = PHG(RRn) is called a Hjelmslev subspace if for any
two points x, y ∈ H there is at least one line incident with x and y which is
entirely contained in H. Equivalently, the pointset H is an Hjelmslev subspace
if it contains all free rank 1 submodules in a free submodule of RRn. The
intersection of Hjelmslev subspaces is not necessarily a Hjelmslev subspace. A
nonempty set of points S in Π is called a subspace if it contains all points (free
rank 1 submodules) in any (not necessarily free) submodule of RRn. A subspace
consisting of the points in a submodule of type λ is called a subspace of type
λ. The intersection of two subspaces of RRn is again a subspace. The neighbor
relations defined above can be extended to any two subspaces of the same type
in an obvious way.

In order to save space we refer to [2, 4, 6, 7, 10, 11] for a more detailed in-
troduction to finite chain rings, modules over finite chain rings, and projective
spaces over such rings.

Let Π = PHG(RRn) and let λ = λ1, . . . , λk), k ≤ n, be a k tuple of integers with
m ≥ λ1 ≥ . . . ≥ λk > 0. For the sake of convenience we set λ = (λ1, . . . , λn)
with λk+1 = . . . = λn = 0. A λ-spread of Π is a set S of subspaces of type
λ in PHG(RRn) which form a partition of the pointset of Π. It is obvious
that if a λ-spread exists the number of points in a subspace of type λ should
divide the number of points in Π, i.e.

[
λ

m1

]
qm

divides
[
mn

m1

]
qm

. It is known that
for λ = mk this condition is also sufficient, in full analogy with the classical
theorem on spreads in finite projective spaces (cf. [3]). In other words, a spread
of (k−1)-dimensional Hjelmslev subspaces exists if and only if k divides n [5, 8].

It has been pointed out in [5] that this necessary condition is not always suffi-
cient.
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Theorem 2. Let R be a chain ring of nilpotency index 2. Let n ≥ 4 be
even and Π = PHG(RRn). There exists no λ-spread of Π = PHG(RRn) with
λ = (2, . . . , 2︸ ︷︷ ︸

n/2

, 1, . . . , 1︸ ︷︷ ︸
n/2−1

, 0).

In this note we generalize this result by extending the set of the shapes for
which the necessary condition is not sufficient.

Theorem 3. Let R be a finite chain ring of nilpotency index 2 and let Π =
PHG(RRn) be the corresponding (left) projective Hjelmslev space. There exists
no λ-spread of Π = PHG(RRn) with λ = (2, . . . , 2︸ ︷︷ ︸

n/2

, 1, . . . , 1︸ ︷︷ ︸
n/2−a

, 0, . . . , 0︸ ︷︷ ︸
a

), where

1 ≤ a ≤ n
2 − 1.

First we state without proof two easy lemmas which will be used in the proof
of our main theorem.

Lemma 4. Let Π = PHG(RRn) and let x be a point in Π. For a sub-
space U of codimension a, 1 ≤ a ≤ n/2 − 1, and a subspace S of type
λ = (2, . . . , 2︸ ︷︷ ︸

n/2

, 1, . . . , 1︸ ︷︷ ︸
n/2−a

, 0, . . . , 0︸ ︷︷ ︸
a

), [x] ∩ S ⊆ [x] ∩ U implies S ⊆ [U ].

Lemma 5. Let Π = PHG(RRn) and let x be a point in Π. Then the nonemty
sets [x]∩S, S ∈ S, form a parallel class of affine subspaces of codimension a in
[x] ∼= AG(n− 1, q).

Proof. (Theorem 3) Assume for a contradiction that such a spread S does exist.
Let us count in two different ways the number of pairs (S, [U ]), where S ∈ S,
[U ] is a neighbour class of Hjelmslev subspaces of codimension a and S ⊂ [U ]
(as sets of points). There are |S| possibilities for the subspace S where

|S| =
qn−1

[
n
1

]
q

qn−2
[
n/2
1

]
q

= q(qn/2 + 1).

On the other hand, the number of neighbour classes of Hjelmslev subspaces of
codimension a containing a fixed subspace S of type λ is equal to

[
n/2
a

]
q

(cf.
Theorem 1). Therefore the number of pairs (S, [U ]) with S ⊂ [U ] is equal to

q · (qn/2 + 1)
[
n/2
a

]

q

. (2)
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Let x ∩ S ∩ [U ], S ∈ S, S ∩ [U ] 6= ∅, be an arbitrary point. The incidence
structure formed by the points [x] ∩ V 6= ∅, V ∈ [U ], and hyperplanes the
subspaces from [U ], is isomorphic to PG(n − 1, q) from which a subspace of
(projective) dimension a−1 is deleted. We denote this geometry by ∆U . Denote
the missing part by Z∞, The points of ∆ contained in S form a subspace of
dimension n/2− 1. Clearly 〈Z∞, S〉 is a (n/2 + a− 1)-dimensional subspace of
∆. Consider another subspace T ∈ S.

We shall estimate the number of point classes [x] such that [x] ∩ S 6= ∅, and
[y] ∩ T 6= ∅. We claim that the number of such point classes [x] is at most
(qa − 1)/(q − 1). Otherwise, there exist classes [x] and [y] such that

[x] ∩ S 6= ∅, [y] ∩ S 6= ∅, [x] ∩ T 6= ∅, [y] ∩ T 6= ∅,

and such that the lines

〈[x] ∩ S, [x] ∩ T 〉, and 〈[y] ∩ S, [y] ∩ T 〉
meet Z∞ in the same point. Then

〈[x] ∩ S, [y] ∩ S〉, and 〈[x] ∩ T, [y] ∩ T 〉
are coplanar and hence meet outside Z∞. This contradicts the fact that S and
T belong to a spread.

Now the number of λ-subspaces contained in the class [U ] which has at least
one λ-subspace from the spread S, S say. Let [x] be a neighbor class of points
with [x] ∩ S 6= ∅. By Lemma 5 each of the qa − 1 segments parallel to [x] ∩ S
must lie in some subspace from the spread. Moreover each subspace contains
no more than (qa − 1)/(q − 1) segments. Hence the number of λ-subspaces in
[U ] is at least

1 + (qa − 1)
qn/2 − 1
q − 1

· q − 1
qa − 1

= qn/2.

This is a partial spread of ∆U with exactly one subspace missing. The missing
part contains Z∞. So, the number of λ-subspaces from S in [U ] is exactly qn/2

and hence a neighbour class [U ] of subspaces of codimension a contains either
qn/2 or 0 subspaces from S. It follows that qn/2 divides q · (qn/2 + 1)

[
n/2
a

]
q
, a

contradiction to n ≥ 4.
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Scientific, 2009, 60–123.

[5] M. Kiermaier, I. Landjev, Designs in projective Hjelmslev spaces, in: Con-
temporary Mathematics vol. 579, Theory and Applications of Finite Fields
(eds. M. Lavrauw et al.), AMS, 2012, 111–122.

erasures in random network coding, IEEE Trans. Inf. Th. 54(2008), 3579–
3591.
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