A note on the existence of spreads in projective Hjelmslev spaces

Nevyana Georgieva

New Bulgarian University, 21 Montevideo str., 1618 Sofia, BULGARIA
IVAN LaNDJEV i.landjev@nbu.bg
New Bulgarian University, 21 Montevideo str., 1618 Sofia, BULGARIA

Dedicated to the memory of Professor Stefan Dodunekov

Abstract

We provide new parameters for spreads for which the standard combinatorial necessary condition is not sufficient.

Let R be a finite chain ring with $|R|=q^{2}, R / \operatorname{Rad} R \cong \mathbb{F}_{q}$. It is well-known that every finite module ${ }_{R} M$ over R is isomorphic to a direct sum of cyclic modules, i.e.

$$
{ }_{R} M \cong \bigoplus_{i=1}^{k} R /(\operatorname{Rad} R)^{\lambda_{i}}
$$

for some uniquely determined partition $\lambda=\left(\lambda_{1}, \ldots, \lambda_{k}\right) \vdash \log _{q}|M|$. Here $m \geq$ $\lambda_{1} \geq \ldots \geq \lambda_{k}>0$. The integer k is called the rank, and the partition λ - the shape of M. The following counting formula gives the number of submodules of fixed shape μ contained in a module of shape $\lambda[1,9]$.
Theorem 1. Let ${ }_{R} M$ be a module of shape λ. For every partition μ satisfying $\mu \leq \lambda$ the module ${ }_{R} M$ has exactly

$$
\left[\begin{array}{c}
\lambda \tag{1}\\
\mu
\end{array}\right]_{q}:=\prod_{i=1}^{\infty} q^{\mu_{i+1}^{\prime}\left(\lambda_{i}^{\prime}-\mu_{i}^{\prime}\right)} \cdot\left[\begin{array}{l}
\lambda_{i}^{\prime}-\mu_{i+1}^{\prime} \\
\mu_{i}^{\prime}-\mu_{i+1}^{\prime}
\end{array}\right]_{q}
$$

submodules of shape μ. In particular, the number of free rank s submodules of ${ }_{R} M$ equals

$$
q^{s\left(\lambda_{1}^{\prime}-s\right)+\cdots+s\left(\lambda_{m-1}^{\prime}-s\right)} \cdot\left[\begin{array}{c}
\lambda_{m}^{\prime} \\
s
\end{array}\right]_{q} .
$$

Here $\lambda^{\prime}=\left(\lambda_{1}^{\prime}, \lambda_{2}^{\prime}, \ldots\right)$ is the conjugate partition to λ.
Set $M={ }_{R} R^{n}$ and $M^{*}=M \backslash \theta M$, where θ is any generator of $\operatorname{Rad} R$. Let $\mathcal{P}=\left\{R x \mid x \in M^{*}\right\}$, and $\mathcal{L}=\{R x+R y \mid x, y$ linearly independent $\}$ be called the set of points and the set of lines, respectively, with incidence I given by set-theoretical inclusion. Two points $R x$ and $R y$ are called neighbours if $R x \cap R y \leq \theta M$. Two lines K and L are i-th neighbours if for every point x on K there is a point y on L which is an neighbour to x, and conversely, for every point y on L there is a point x on K which is an neighbour to y. The relation neighborhood is an equivalence relation on \mathcal{P}, as well as on \mathcal{L}. The incidence structure $(\mathcal{P}, \mathcal{L}, I)$, together with the neighbourhood relations defined above, is called a left projective Hjelmslev space over the chain ring R and is denoted by $\operatorname{PHG}\left({ }_{R} R^{n}\right)$.

A set of points H in $\Pi=\operatorname{PHG}\left({ }_{R} R^{n}\right)$ is called a Hjelmslev subspace if for any two points $x, y \in H$ there is at least one line incident with x and y which is entirely contained in H. Equivalently, the pointset H is an Hjelmslev subspace if it contains all free rank 1 submodules in a free submodule of ${ }_{R} R^{n}$. The intersection of Hjelmslev subspaces is not necessarily a Hjelmslev subspace. A nonempty set of points S in Π is called a subspace if it contains all points (free rank 1 submodules) in any (not necessarily free) submodule of ${ }_{R} R^{n}$. A subspace consisting of the points in a submodule of type λ is called a subspace of type λ. The intersection of two subspaces of ${ }_{R} R^{n}$ is again a subspace. The neighbor relations defined above can be extended to any two subspaces of the same type in an obvious way.

In order to save space we refer to $[2,4,6,7,10,11]$ for a more detailed introduction to finite chain rings, modules over finite chain rings, and projective spaces over such rings.

Let $\Pi=\operatorname{PHG}\left({ }_{R} R^{n}\right)$ and let $\left.\lambda=\lambda_{1}, \ldots, \lambda_{k}\right), k \leq n$, be a k tuple of integers with $m \geq \lambda_{1} \geq \ldots \geq \lambda_{k}>0$. For the sake of convenience we set $\lambda=\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ with $\lambda_{k+1}=\ldots=\lambda_{n}=0$. A λ-spread of Π is a set \mathcal{S} of subspaces of type λ in $\operatorname{PHG}\left({ }_{R} R^{n}\right)$ which form a partition of the pointset of Π. It is obvious that if a λ-spread exists the number of points in a subspace of type λ should divide the number of points in Π, i.e. $\left[\begin{array}{c}\lambda \\ \boldsymbol{m}_{1}\end{array}\right]_{q^{m}}$ divides $\left[\begin{array}{c}\boldsymbol{m}_{n} \\ \boldsymbol{m}_{1}\end{array}\right]_{q^{m}}$. It is known that for $\lambda=\boldsymbol{m}_{k}$ this condition is also sufficient, in full analogy with the classical theorem on spreads in finite projective spaces (cf. [3]). In other words, a spread of $(k-1)$-dimensional Hjelmslev subspaces exists if and only if k divides $n[5,8]$.

It has been pointed out in [5] that this necessary condition is not always sufficient.

Theorem 2. Let R be a chain ring of nilpotency index 2 . Let $n \geq 4$ be even and $\Pi=\operatorname{PHG}\left({ }_{R} R^{n}\right)$. There exists no λ-spread of $\Pi=\operatorname{PHG}\left({ }_{R} R^{n}\right)$ with $\lambda=(\underbrace{2, \ldots, 2}_{n / 2}, \underbrace{1, \ldots, 1}_{n / 2-1}, 0)$.

In this note we generalize this result by extending the set of the shapes for which the necessary condition is not sufficient.

Theorem 3. Let R be a finite chain ring of nilpotency index 2 and let $\Pi=$ $\operatorname{PHG}\left({ }_{R} R^{n}\right)$ be the corresponding (left) projective Hjelmslev space. There exists no λ-spread of $\Pi=\operatorname{PHG}\left({ }_{R} R^{n}\right)$ with $\lambda=(\underbrace{2, \ldots, 2}_{n / 2}, \underbrace{1, \ldots, 1}_{n / 2-a}, \underbrace{0, \ldots, 0}_{a})$, where $1 \leq a \leq \frac{n}{2}-1$.

First we state without proof two easy lemmas which will be used in the proof of our main theorem.

Lemma 4. Let $\Pi=\operatorname{PHG}\left({ }_{R} R^{n}\right)$ and let x be a point in Π. For a subspace U of codimension $a, 1 \leq a \leq n / 2-1$, and a subspace S of type $\lambda=(\underbrace{2, \ldots, 2}_{n / 2}, \underbrace{1, \ldots, 1}_{n / 2-a}, \underbrace{0, \ldots, 0}_{a}),[x] \cap S \subseteq[x] \cap U$ implies $S \subseteq[U]$.

Lemma 5. Let $\Pi=\operatorname{PHG}\left({ }_{R} R^{n}\right)$ and let x be a point in Π. Then the nonemty sets $[x] \cap S, S \in \mathcal{S}$, form a parallel class of affine subspaces of codimension a in $[x] \cong \operatorname{AG}(n-1, q)$.

Proof. (Theorem 3) Assume for a contradiction that such a spread \mathcal{S} does exist. Let us count in two different ways the number of pairs $(S,[U])$, where $S \in \mathcal{S}$, $[U]$ is a neighbour class of Hjelmslev subspaces of codimension a and $S \subset[U]$ (as sets of points). There are $|\mathcal{S}|$ possibilities for the subspace S where

$$
|\mathcal{S}|=\frac{q^{n-1}\left[\begin{array}{c}
n \\
1
\end{array}\right]_{q}}{q^{n-2}\left[\begin{array}{c}
n / 2 \\
1
\end{array}\right]_{q}}=q\left(q^{n / 2}+1\right)
$$

On the other hand, the number of neighbour classes of Hjelmslev subspaces of codimension a containing a fixed subspace S of type λ is equal to $\left[\begin{array}{c}n / 2 \\ a\end{array}\right]_{q}$ (cf. Theorem 1). Therefore the number of pairs $(S,[U])$ with $S \subset[U]$ is equal to

$$
q \cdot\left(q^{n / 2}+1\right)\left[\begin{array}{c}
n / 2 \tag{2}\\
a
\end{array}\right]_{q}
$$

Let $x \cap S \cap[U], S \in \mathcal{S}, S \cap[U] \neq \varnothing$, be an arbitrary point. The incidence structure formed by the points $[x] \cap V \neq \varnothing, V \in[U]$, and hyperplanes the subspaces from $[U]$, is isomorphic to $\mathrm{PG}(n-1, q)$ from which a subspace of (projective) dimension $a-1$ is deleted. We denote this geometry by Δ_{U}. Denote the missing part by Z_{∞}, The points of Δ contained in S form a subspace of dimension $n / 2-1$. Clearly $\left\langle Z_{\infty}, S\right\rangle$ is a $(n / 2+a-1)$-dimensional subspace of Δ. Consider another subspace $T \in \mathcal{S}$.

We shall estimate the number of point classes $[x]$ such that $[x] \cap S \neq \varnothing$, and $[y] \cap T \neq \varnothing$. We claim that the number of such point classes $[x]$ is at most $\left(q^{a}-1\right) /(q-1)$. Otherwise, there exist classes $[x]$ and $[y]$ such that

$$
[x] \cap S \neq \varnothing,[y] \cap S \neq \varnothing,[x] \cap T \neq \varnothing,[y] \cap T \neq \varnothing,
$$

and such that the lines

$$
\langle[x] \cap S,[x] \cap T\rangle, \quad \text { and }\langle[y] \cap S,[y] \cap T\rangle
$$

meet Z_{∞} in the same point. Then

$$
\langle[x] \cap S,[y] \cap S\rangle, \quad \text { and }\langle[x] \cap T,[y] \cap T\rangle
$$

are coplanar and hence meet outside Z_{∞}. This contradicts the fact that S and T belong to a spread.

Now the number of λ-subspaces contained in the class $[U]$ which has at least one λ-subspace from the spread \mathcal{S}, S say. Let $[x]$ be a neighbor class of points with $[x] \cap S \neq \varnothing$. By Lemma 5 each of the $q^{a}-1$ segments parallel to $[x] \cap S$ must lie in some subspace from the spread. Moreover each subspace contains no more than $\left(q^{a}-1\right) /(q-1)$ segments. Hence the number of λ-subspaces in $[U]$ is at least

$$
1+\left(q^{a}-1\right) \frac{q^{n / 2}-1}{q-1} \cdot \frac{q-1}{q^{a}-1}=q^{n / 2} .
$$

This is a partial spread of Δ_{U} with exactly one subspace missing. The missing part contains Z_{∞}. So, the number of λ-subspaces from \mathcal{S} in $[U]$ is exactly $q^{n / 2}$ and hence a neighbour class $[U]$ of subspaces of codimension a contains either $q^{n / 2}$ or 0 subspaces from \mathcal{S}. It follows that $q^{n / 2}$ divides $q \cdot\left(q^{n / 2}+1\right)\left[\begin{array}{c}n / 2 \\ a\end{array}\right]_{q}$, a contradiction to $n \geq 4$.

Acknowledgements. This research has been supported by Contract Nr. 100/ 19.04.2013 with the Science Research Fund of Sofia University.

References

[1] G. Birkhoff, Subgroups of abelian groups, Proc. of The London Math. Society $38(2)(1934 / 35), 385-401$.
[2] W. E. Clark, D. A. Drake, Finite chain rings, Abh. Math. Sem. der Univ. Hamburg 39(1974), 147-153.
[3] J. W. P. Hirschfeld, Finite Projective Geometries in Three Dimensions, Clarendon Press, Oxford, 1985.
[4] Th. Honold, I. Landjev, Linear Codes over Finite Chain Rings and Projective Hjelmslev Geometries, in: Codes over Rings (ed. P. Solé), World Scientific, 2009, 60-123.
[5] M. Kiermaier, I. Landjev, Designs in projective Hjelmslev spaces, in: Contemporary Mathematics vol. 579, Theory and Applications of Finite Fields (eds. M. Lavrauw et al.), AMS, 2012, 111-122.
erasures in random network coding, IEEE Trans. Inf. Th. 54(2008), 35793591.
[6] A. Kreuzer, Hjelmslev-Räume, Resultate der Mathematik 12(1987), 148156.
[7] A. Kreuzer, Projektive Hjelmslev-Räume, Dissertation, technische Universität München, 1988.
[8] I. Landjev, Spreads in Projective Hjelmslev Geometries, Lect. Note in Comp. Science 5527(2009), 186-194.
[9] I. G. MacDonald, Symmetric Functions and Hall Polynomilas, Oxford University Press, 2nd edition, 1995.
[10] B. R. McDonald, Finite rings with Identity, Marcel Dekker, New york, 1974.
[11] A. A. Nechaev, Finite principal ideal rings, Russian Acad. of Sciences, Sbornik Mathematics 2091973), 364-382.

