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Abstract. We consider the points of weight 3 on the putative binary orthogonal
arrays of strength 4, length 9 and cardinality 96 of minimum distance 1. We obtain
some restrictions which reduce the possibilities for the structure of such arrays.

1 Introduction

For basic definitions and results on orthogonal arrays (or designs in Hamming
spaces) we refer to [5, 6]. More specific results and approaches are given in
[2]. In this note we continue investigations from [2] by adding certain new
necessary conditions. We conjecture that any (4, 9, 96) binary orthogonal array
(if it exists) must have minimum distance of 2.

2 Overview of the method of investigation

Let C be a BOA of parameters (strength,length,cardinality) = (4, 9, 96) whose
existence is mentioned as undecided in Table 12.1 from the book [5]. In [2]
we described some advance on the investigation od such BOA. We start with
calculation of all feasible distance distributions and then reduce the possibilities
by certain algorithms, called A and B in [2], and some ad hoc arguments.

In particular, Algorithm A gives all possible types of columns in the tar-
geted BOA by calculation of vectors (x(s)
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where x
(s)
i and y

(s)
i are the numbers of 1’s and 0’s, respectively, in the inter-

section of that column (the notation s is for the column) and the i-block (the
i-block, i ∈ {0, 1, . . . , n}, as the set of all rows of weight i in the matrix of
our BOA). Algorithm B is applied for investigation of the relations between C
and its relatives derived by simultaneous cut of several columns (defined by the
support of some point t ∈ C). In particular, Algorithm B gives the numbers
pi,j(t), equal to the number of the points of C of weight j and at distance i from
t. Furthermore, in every specific situation we are able to calculate the numbers
pε,s

i,j (t), ε = 0, 1, equal to the number of points of C of weight j and at distance
i from t which are intersected by the s-th column in the symbol ε.

Assume that the minimum distance of C is 1. The investigation in [2] in
this case leave only two possible distance distributions for any two points at
distance 1. Here we complete this case therefore proving that the minimum
distance of C is 2. The results in [2] come, in some sense, from considerations
of the i-blocks for i = 0, 1, 2. Here we add further arguments to investigate the
3-block of C.

3 Investigations of the points of weight 3

Let t ∈ C be a point of weight 3 and (i1, i2, i3) be its support. We know the
types of the columns i1, i2 and i3 and all possible distance distributions of t
from Algorithm B with τ0 = 3 (more precisely, we know the numbers pi,j(t)).

Theorem 1. The identities

x
(i1)
i + x

(i2)
i + x

(i3)
i = pi+1,i(t) + 2pi−1,i(t) + 3pi−3,i(t)

hold true for every i = 3, 4, . . . , 9.

Proof. Denote by N the numbers of the 1’s in the intersection of the i-block
and the columns i1, i2 and i3. Then clearly N = x

(i1)
i + x

(i2)
i + x

(i3)
i .

Let u be an arbitrary point from the i-block of C. Then we have wt(t∗u) ∈
{0, 1, 2, 3} for every u from the i-block. Therefore out count includes exactly
three terms: one 1 for every u at distance i + 1 from t (there are pi+1,i(t) such
points), two 1’s for every u at distance i− 1 from t and three 1’s for every u at
distance i− 3 from t which results in pi+1,i(t) + 2pi−1,i(t) + 3pi−3,i(t) = N . ¤

For fixed point t ∈ C denote by p
(1,s)
i,j (t) the number of the points of C of

weight j (i.e. from the j-block) at distance i from t whose intersection with the
column s is 1.
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Theorem 2. Let t ∈ C be a point of weight 3. Then the identities

pk+1,k(t) = p
(1,i1)
k+1,k(t) + p

(1,i2)
k+1,k(t) + p

(1,i3)
k+1,k(t)

hold true for every k = 3, 4, . . . , 8.

Proof. Let z ∈ C have weight k and distance k+1 from t. Then the equality
d(z, t) = wt(z) + wt(t) − 2wt(z ∗ t) implies that wt(z ∗ t) = 1, i.e. exactly one
of the columns determined by the support of t, intersects z in 1. ¤

Remark. Of course, analogous assertion is true for other weight of t.
We also use the following assertion which was proved for the 2-block in [2]

and analogous proof follows for the 3-block.
We consider the point t′ ∈ C ′, obtained from t after cutting one column of

C (so C ′ is the resulting (4, 8, 96) BOA) which passes through an 1 from the
support of t. Then we apply Algorithm B for t′ in C ′ and compare the results
as follows. Denote by Ri,j the set of the points of C ′ of weight j and at distance
i from t′ and let |Ri,j | = ri,j(t). The numbers ri,j(t) will now come from two
directions to be compared – from Algorithm B for C ′ and t′ and the relations
between t′ and t.

Theorem 3. The numbers ri,j from Algorithm B also satisfy the equalities
ri,j(t) = p

(0)
i+1,j(t) + p

(1)
i,j+1(t) for every i, j ∈ {0, 1, . . . , 8}.

We use Theorems 1-3 in the following way. In the beginning we consider all(
9
3

)
= 84 points of weight 3. All 14 points at distance 1 from y1 or y2 should

be removed because there are no points of C at distance 1 to y1 nor to y2.
Then we partition the remaining 70 points into subclasses according to their
supports. For every subclass we apply Theorems 1-3 to decide if that subclass
is admissible.

We consider three cases according to the results from [2]. In every case the
0-, 1- and 2-blocks of C are

0 = 000000000
x = 100000000

y1 = 011000000
y2 = 000110000,

but the distance distributions of the points 0, x, y1 and y2 are different.
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We shall use the following notation for distance distributions

W1 = (1, 1, 2, 23, 26, 15, 18, 9, 1, 0),
W2 = (1, 1, 3, 19, 31, 15, 13, 13, 0, 0),
U1 = (1, 0, 5, 22, 21, 20, 19, 6, 2, 0),
U2 = (1, 0, 6, 18, 26, 20, 14, 10, 1, 0)

(the i-th coordinate gives the number of the points of C which are at distance
i− 1).

In all cases the distance distribution of 0 is W1.
Case 1. The distance distributions of x, y1 and y2 are W1, U1 and U1,

respectively.
We first consider the points of the 3-block with respect to their first coordi-

nate – 0 or 1. Since x
(1)
3 = 2, there are only 2 out of 28 such points belonging

to the 3-block.
Eleven points fail to pass the test: 110100000 (for all possibilities for one 1 in

coordinates 2-3, one 1 in coordinate 4-5, 4 such points in total), 100001001 (for
all possibilities for one 1 in coordinates 6-7-8, 3 such points in total), 100001100
(all possibilities for two 1’s in coordinates 6-7-8, 3 such points in total) and the
point 000001110.

The points below pass the test of Theorem 1 and thus 23 of them constitute
the 3-block of C. More precisely, the 3-block consists of 2 points from A1-2 and
21 points from B1-5.

A1. The points 110001000, all possibilities for one 1 in coordinates 2-3-4-5,
one 1 in coordinates 6-7-8, 12 such points in total.

A2. The points 110000001, all possibilities for one 1 in coordinates 2-3-4-5,
4 such points in total. the points 000001101 (all possibilities for the two 1’s in
coordinates 6-7-8, 3 such points in total),

B1. The points 010101000, all possibilities for one 1 in coordinates 2-3, one
1 in coordinates 4-5, one 1 in coordinates 6-7-8, 12 such points in total.

B2. The points 010001100, all possibilities for one 1 in coordinates 2-3-4-5,
two 1’s in coordinates 6-7-8, 12 such points in total.

B3. The points 010100001, all possibilities for one 1 in coordinates 2-3, one
in coordinates 4-5, 4 such points in total.

B4. The points 010001001, all possibilities for one 1 in coordinates 2-3-4-5,
one 1 in coordinates 6-7-8, 12 such points in total.

B5. The points 000001101, all possibilities for 2 ones in coordinates 6-7-8,
3 such points in total.
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Denote by ai, i = 1, 2, and bj , j = 1, 2, . . . , 5, the number of the points in
Ai. and Bi, respectively. These numbers satisfy the following equalities:

a1 + a2 + b1 + b2 + b3 + b4 + b5 = 23 (the size of the 3-block);

a1 + a2 = 2 (follows from x
(1)
3 = 2);

a1+a2+2b1+b2+2b3+b4 = 4.7 = 28 (follows from x
(i)
3 = 7 for i = 2, 3, 4, 5);

a1 + b1 + 2b2 + b4 + 2b5 = 3.10 = 30 (follows from x
(i)
3 = 10 for i = 6, 7, 8);

a2 + b3 + b4 + b5 = 9 (follows from x
(9)
3 = 9).

Further, we write a1 = a1,1 + a1,2, a2 = a2,1 + a2,2, b2 = b2,1 + b2,2 and
b4 = b4,1 + b4,2, where a1,1 and a1,2 correspond to one’s in coordinates 2-3 and
4-5, respectively, and analogously for a2 = a2,1, a2,2, b2,1, b2,2, b4,1, b4,2. Then
our knowledge of the structure of the 3-block gives further equations:

a1,1 + a2,1 + b1 + b2,1 + b3 + b4,1 = p3,3(y1) = 14;
a1,2 + a2,2 + b1 + b2,2 + b3 + b4,2 = p3,3(y2) = 14;

a1,1 + a2,1 = p
(1,1)
3,3 (y1) = 1

a2,1 + b3 + b4,1 = p
(1,9)
3,3 (y1) ∈ {4, 5} and a2,2 + b3 + b4,2 = p

(1,1)
3,3 (y2) ∈ {4, 5};

a1,1 + b1 + 2b2,1 + b4,1 = p
(1,6)
3,3 (y1) + p

(1,7)
3,3 (y1) + p

(1,8)
3,3 (y1) ∈ {12, 13, . . . , 18};

a1,2 + b1 + 2b2,2 + b4,2 = p
(1,6)
3,3 (y2) + p

(1,7)
3,3 (y2) + p

(1,8)
3,3 (y2) ∈ {12, 13, . . . , 18}.

b1 + b3 = p
(1,4)
3,3 + p

(1,5)
3,3 ∈ {6, 7, 8, 9, 10}.

The above unknowns are nonnegative integer and satisfy the following in-
equalities: a1,1 ≤ a1 ≤ 2, a1,2 ≤ a1 ≤ 2, a2,1 ≤ a2 ≤ 2, a2,2 ≤ a2 ≤ 2, b1 ≤ 12,
b2,1 ≤ 6, b2,2 ≤ 6, b3 ≤ 4, b4,1 ≤ 6, b4,2 ≤ 6 and b5 ≤ 3. Unfortunately these
conditions are still not enough for contradiction and we obtained 48 solutions.

We also need to consider two cases coming from the results from [2] by
investigations of the 1- and 2-blocks.

Case 2. The distance distributions of x, y1 and y2 are W2, U1 and U2,
respectively.

Case 3. The distance distributions of x, y1 and y2 are W2, U1 and U1,
respectively.
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