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Abstract. We prove that binary orthogonal arrays of strength 8, length 12 and
cardinality 1536 do not exist. This implies the nonexistence of arrays of parameters
(strength,length,cardinality) = (n, n + 4, 6.2n) for every integer n ≥ 8.

1 Introduction

Let H(n, 2) be the binary Hamming space of dimension n. A binary orthogonal
array (BOA), or equivalently, a τ -design C in H(n, 2), is an M × n matrix of
a code C such that every M × τ submatrix contains all ordered τ -tuples of
H(τ, 2), each one exactly |C|

2τ times as rows.
In [1, 2] the first two authors proposed method of investigation of BOAs

via calculation of all possible distance distributions and then exploiting some
known connections between similar arrays.

In this note we describe our results on the investigation of BOAs of param-
eters (strength,length,cardinality)= (n, n + 4, 6.2n). We prove that such BOAs
do not exist for every n ≥ 8.

Our approach follows the ideas from [2] with one new result which allows
ut to rule out certain last remaining cases.

2 Overview of the method of investigation

We consider BOAs of parameters such that all feasible distance distributions
can be effectively calculated and stored for further use. The possibility for such
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calculations was described firstly by Delsarte [3] (see also [4, 6]). In fact we
solve certain Vandermonde-type systems of linear equations [1].

Let C be a (τ, n, |C| = M) BOA. Having all feasible distance distributions
of C we apply several algorithms to investigate whether certain relation are
satisfied [2]. In fact, two algorithms, A and B, were proposed in [2] to exploit
the connections between the distance distributions of distinct points of C and
its relatives.

Algorithm A investigates what happens with the distance distributions when
we cut one column of the matrix of C deriving some BOA C ′ of parameters
(τ, n−1,M). Distance distributions of C and C ′ are connected and all possible
connections can be described. We apply this in the sequence τ -(τ, M), τ -(τ +
1,M), . . ., τ -(n− 1,M), τ -(n,M) to reduce the number of the feasible distance
distributions of the last entry, say C again.

Algorithm B is applied for investigation of the relations between C and its
relatives derived by simultaneous cut of several columns (defined by the support
of some point). This is further combined with relations which are sometimes
specific for the BOA under consideration.

Here we add one more argument which uses the information from Algorithm
A and one further relation between C and its related BOAs of parameters
(τ − 1, n− 1,M/2).

3 Connections between (τ, n, M) and (τ−1, n−1,M/2)
BOAs

In algorithm A we define the i-block of C, i ∈ {0, 1, . . . , n}, as the set of all rows
of weight i in the matrix of C. Then for fixed column we define the numbers xi

and yi to be the number of 0’s and 1’s, respectively, in the intersection of that
column and the i-blok. The calculation of the numbers xi and yi, i = 0, 1, . . . , n,
is one of the results of Algorithm A.

It is well known (cf. [5]) that if we order the first column of C to begin with
M/2 zeros and cut that column then both the upper and the lower half of the
new matrix constitute BOAs of parameters (τ − 1, n− 1,M/2).

Theorem 1. a) The vector (y0, y1, . . . , yn−1) coincides with some distance
distribution of a point in a BOA of parameters (τ − 1, n− 1, M/2).

b) The vector (x1, x2, . . . , xn) represents some distance distribution of a
point in a BOA of parameters (τ − 1, n − 1,M/2) where the entries are rear-
ranged under certain rule. In particular, when C contains a row of weight one
and the cut column corresponds to the support of that row, then (x1, x2, . . . , xn)
coincides with some distance distribution of a point in a BOA of parameters
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(τ − 1, n− 1,M/2).

Proof. a) Denote by D the upper half after the cut. Then the zero vector
belongs to D. Therefore its distance distribution, which is obviously some
distance distribution of a point in D (a BOA of parameters (τ−1, n−1,M/2)), is
given by the weights in D. However, it is easy to see that the weight distribution
of D is exactly (y0, y1, . . . , yn−1).

b) Denote by E the lower half after the cut. Let u be the first row of
E. For every point v ∈ E at distance j from u and of weight i (this weight
corresponds to weight i+1 in C, i.e. to the (i+1)-block) we have j = d(u, v) =
wt(u)+wt(v)− 2wt(u ∗ v), whence j− i = wt(u)− 2wt(u∗ v). The last formula
defines the rule for rearrangement of the distance distribution of a point in a
BOA of parameters (τ − 1, n− 1,M/2) to give the distance distribution of u in
E. In particular, if wt(u) = 0 (this can be always achieved when C possesses
a point of weight 1) we have j − i = 0, i.e. (x1, x2, . . . , xn) itself is a distance
distribution of a point in a BOA of parameters (τ − 1, n− 1,M/2). ¤

We show below how a) can be used but b) is not used in this note. We
only notice that b) can be very useful for small weights of u. For example, if
wt(u) = 1 then we have j − i = −1 or 1, which means that (x1, x2, . . . , xn) can
be obtained from some distance distribution of a point in a BOA of parameters
(τ − 1, n− 1,M/2) by moving its coordinates by one position.

Theorem 1 combined with the results from Algorithm A allows the following
argument.

1. Calculate all possible distance distributions of the targeted BOA (τ, n, M).
Apply Algorithm A to reduce them. Collect the information of Algorithm A
for the remaining distance distributions.

2. Calculate all possible distance distributions of BOA of parameters (τ −
1, n− 1,M/2). Apply Algorithm A to reduce them.

3. Fix a distance distribution of the targeted BOA (τ, n, M) and consider
all distance distributions of its derived (τ, n − 1,M) BOA (by cut of a col-
umn). Rule out all distance distributions of the derived BOA whose vectors
(y0, y1, . . . , yn−1) from the results of 1. do not appear as results of 2.

4. Rule out the considered distance distribution of the targeted BOA
(τ, n, M) if the results of 3. contradict to the results of Algorithm A (for exam-
ple, if Algorithm A states that some distance distributions of the (τ, n− 1,M)
BOA should appear but 3. rules out that distance distribution).
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4 Application for (8, 12, 1536) BOA and consequences

We describe how the above algorithm works in the case of BOA of parameters
(8, 12, 1536). The existence of such BOAs is mentioned as undecided in Table
12.3 from the book [5].

1. We calculate all feasible distance distributions of (8,12,1536) and apply
Algorithm A. This results in 5 remaining distance distributions, namely

W1 = (1, 0, 36, 80, 135, 432, 168, 432, 135, 80, 36, 0, 1),
W2 = (1, 0, 38, 63, 198, 300, 336, 306, 177, 92, 18, 7, 0),
W3 = (1, 0, 39, 54, 234, 216, 462, 180, 261, 56, 27, 6, 0),
W4 = (1, 1, 29, 99, 114, 426, 210, 390, 141, 101, 17, 7, 0),
W5 = (1, 1, 30, 90, 150, 342, 336, 264, 225, 65, 26, 6, 0),

For every Wi we know all possible distance distributions of BOA of parameters
(8,11,1536) which can appear after cut of a column and, moreover, we know
how many times appears each of them. Explicitly, we have again 5 possibilities:

V1 = (1, 5, 59, 69, 354, 210, 462, 186, 141, 41, 7, 1),
V2 = (1, 6, 50, 105, 270, 336, 336, 270, 105, 50, 6, 1),
V3 = (1, 7, 41, 141, 186, 462, 210, 354, 69, 59, 5, 1),
V4 = (1, 8, 33, 168, 138, 504, 210, 312, 117, 32, 13, 0),
V5 = (2, 0, 60, 120, 180, 504, 168, 360, 90, 40, 12, 0),

2. We calculate all feasible distance distributions of (7,11,768) and apply
Algorithm A. This results in 5 remaining distance distributions, namely

U1 = (1, 0, 30, 60, 90, 252, 84, 180, 45, 20, 6, 0),
U2 = (1, 0, 31, 52, 118, 196, 154, 124, 73, 12, 7, 0),
U3 = (1, 0, 32, 45, 138, 168, 168, 138, 45, 32, 0, 1),
U4 = (1, 1, 25, 65, 110, 182, 182, 110, 65, 25, 1, 1),
U5 = (1, 2, 18, 85, 82, 196, 196, 82, 85, 18, 2, 1),

3.1. For W1 Algorithm A gives V1, V2 and V3 as possibilities but V3 has
vector (y0, y1, . . . , y11) which is not in the list U1, . . . , U5. Now V1 and V2 corre-
spond to a unique solution which shows that V1 can not appear but V2 appears
after cut of every column of the targeted (8,12,1536). Thus W1 remains for
further consideration.
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3.2. For W2 Algorithm A gives V1, V2 and V4 as possibilities but V1 has
vector (y0, y1, . . . , y11) which is not in the list U1, . . . , U5. On the other hand,
V1, V2 and V4 correspond to a unique solution which shows that all of them
must appear after cut of a column of the targeted (8,12,1536). Therefore W2 is
ruled out.

3.3. For W3 Algorithm A gives V1, V2, V3 and V4 as possibilities. Now V1

and V2 have vectors (y0, y1, . . . , y11) which are not in the list U1, . . . , U5. On the
other hand, V1, V2, V3 and V4 correspond to a unique solution which shows that
V1 must appear after cut of 6 columns of the targeted (8,12,1536). Therefore
W3 is ruled out.

3.4. For W4 Algorithm A gives V1, V2, V4 and V5 as possibilities. Now V2,
V4 and V5 have vectors (y0, y1, . . . , y11) which are not in the list U1, . . . , U5. On
the other hand, V1, V2, V4 and V5 correspond to a unique solution which shows
that all of them must appear after cut of a column of the targeted (8,12,1536).
Therefore W5 is ruled out.

3.5. For W5 Algorithm A gives V1, V2, V3, V4 and V5 as possibilities but
V1, V3 and V4 have vectors (y0, y1, . . . , y11) which are not in the list U1, . . . , U5.
On the other hand, V1, V2, V3, V4 and V5 correspond to a unique solution
which shows that V1 and V4 must appear after cut of a column of the targeted
(8,12,1536). Therefore W5 is ruled our.

Finally, only W1 remains as possible distance distribution in (8, 12, 1536).
However, Algorithm B (cf. [2]) with τ0 = 3 implies that the points of weight 3
in such a BOA must have distance distribution W3, which was ruled out above.

Theorem 2. There exist no binary orthogonal arrays of parameters (n, n+
4, 6.2n) for every integer n ≥ 8.

Proof. The above application of the algorithm from section 3 implies the
nonexistence of BOAs of parameters (8, 12, 1536). Now it is enough to note
that the existence of a BOA of parameters (τ, n,M) imply the existence of a
BOA with parameters (τ − 1, n− 1,M/2) by the construction described in the
beginning of Section 2. ¤
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