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Abstract. A general platform for Generalized concatenated code (GCC) encoding
and decoding based on multidimensional Fourier transform is considered. A descrip-
tion of product codes (PC) sets that are embedded into a GCC and vice-versa is
given. The rules for transition from a layer of GCC to embedded PC and from a
definite PC layer to embedded layers of GCC are defined. We demonstrate how it
is possible to use the transition rules for advanced decoding of a GCC and how it is
reasonable to combine an iterative decoding of embedded PC layers with a standard
steps for GCC decoding.

1 Introduction

Let us start with well known definition of Reed-Solomon (RS) codes [1]. Let
the data be a sequence of k symbols, interpreted as coefficients of a polynomial
U (x) =

∑k−1
i=0 Uix

i of the degree k−1 (or less) over a finite Galois Field GF (q) ,
n|(q−1). The transmitted codeword is then a sequence of n > k values attained
by this polynomial in n district points: C = [U (x0) , U (x1) , ..., U (xN−1)].
Two distinct codewords can agree in at most k − 1 points, since the difference
polynomial can have at most k−1 roots. An equivalent definition is just inverse
Fourier Transform of the vector U = (U0, ..., UN−1).

Thus we have C = UΦ−1 , where Φ is the Fourier Transform matrix. In the
canonic form Φ =

(
αij

)
, i, j = 0, 1, . . . , n − 1, where αn = 1 be an element of

order n of a finite field, Φ = (Φ)T . The inverse Fourier transform is given with
matrix Φ−1 =

(
α−ij

)
, i, j = 0, 1, . . . , n−1. It is clear that CΦ = UΦ−1Φ = U.

It also evident that the given definition gives us the set of embedded RS codes
for any k = 1, 2, ..., n.

Theory of Concatenated Codes opened by Forney in [5] was generalized later
to theory of Generalized Concatenated Codes (GCC) in [2] and [3], see also [6].
One special case was described in [1] as two-dimensional Fourier Transform
over GF (q) . Here we consider GCC as two-dimensional Fourier Transform
over GF (q) and demonstrate same special properties of the construction that
are useful for advanced decoding. The first of them is symmetry (in row-column
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space) and the second one is great freedom in decomposition of the general GCC
on a serially embedded subcodes.

Most of problems of optimal designing and decoding of GCC was formulated
and analyzed in [4]. Here we going to open (explain) new possibilities without
detailed comparison and complexity analysis.

2 The structure of Generalized Concatenated Code
(GCC) based on Fourier Transform

A codeword of GCC over GF (q) is defined as n × n matrix calculated as
two-dimensional Fourier Transform over GF (q) of information symbols matrix
I =(ai,j) bounded by k rows and k columns, i, j = 1, ..., k < n− 1,

C = Φ−1IΦ−1

We use here a symmetric (square) form of I just as a simplest example. The
infilling configuration of I can be different. If it is complete square then we get
after two-dimensional Fourier Transform a Product Code (PC) of the length n2

and dimension k2 with the code distance (n− k + 1)2. If it is upper triangular
form then we get a GCC of the length n2 and dimension

(
k2 − k

)
/2 with the

code distance maxi (n− i + 1) (k − i + 1) . There are number of intermedium
variants for I configurations. Formally, all infilling configurations are available.
At this point it is important that all possible configurations of I give us different
codes that all are embedded in the Product Code (PC) of the length n2 and
dimension k2.

Let us define the parameter k as level of the two-dimensional code. So,
Ck= Φ−1IkΦ−1 . In a general case form of I matrix can be any rectangular.
In that case level of a code has be different on row and on column direction.
Let we have a code Ck embedded in PC of the level k . Now we can expand
the given code to GCC of the level k + 1 as follows. Define an n × n matrix
∆k = (δij) the only nonzero elements of which are δik, i < k , and/or δk,j , j < k
.

Ck+1= Ck + Φ−1∆k+1Φ−1 = Φ−1 (I+∆k+1)Φ−1

The last equation can be used recursively and it gives the way for decompo-
sition of a given Ck on a sequence of embedded PC and/or GCC. In dependence
on form of ∆i, i < k , here can be a square or rectangular forms of a resulting
codes. So, to make a transition from Ck to an embedded code Ck−1 it is enough
to find the ∆k matrix and substract its two-dimensional Fourier Transform. We
call the matrix Φ−1∆kΦ−1 as k -th layer of GCC or PC.

Consider the step by step encoding of a GCC.
The first one (the first Fourier Transform) can be like this
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ARow = IkΦ−1 =
[

Ak×n

0n−k×n

]
,

or
ACol = Φ−1Ik = [An×k0n×n−k] .

The second one (the second Fourier Transform) must be like this:

C =
(
Φ−1

)T
IkΦ−1 = Φ−1ARow = AColΦ−1 ∈ PC. (1)

According to usual terminology, we call the rows of ARow as codewords of
outer row codes or columns of ACol as codewords of outer column codes. In
the case of PC encoding all the outer codes have equal parameters. In GCC
case parameters of outer codes must be different. After the second step all rows
and columns belong to the inner code (row or column) with the parameters n
- length, and k - dimension.

3 Basic relations

By (1), it holds that
I = ΦCΦ.

Let V be a word for decoding and matrix E be an error-matrix such that

V = C + E.

Clearly,
ΦVΦ = Φ(C + E)Φ = I + ΦEΦ

Two-dimensional transform ΦEΦ of error-matrix gives us all the syndromes
for outer codes (on the positions independent of matrix I), simultaneously. Very
important: these syndromes deal with the projections of a row or column error
of E.

Row or Column Fourier Transform gives the following result

ECol = ΦE =
[ Ek×n

En−k×n

]
, ERow = EΦ = [En×k|En×n−k] ,

where En−k×n and En×n−k are the syndroms of all column inner codes and
all row inner codes, respectively, independent of information matrix I. Very
important: syndromes of row and column inner codes deal with row and column
errors in the error-matrix.

Now we can conclude, that after the first (Row or Column) Fourier Trans-
form we can decode all inner row or column codes alternately and correct some
of errors in E ; after the second Fourier Transform we are able to decode all the
outer codes and find a part of information matrix I , but more important to
decode only the last carrent layer of GCC and make the transition to subcodes.
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4 Decoding algorithms

For simplisity we use here new notations: C for any column codes and R for
any row codes.

Standard GCC decoding

1. Set the starting layer of GCC i = `.

2. Inner code Ci decoding in all columns (results: correction or rejection).

3. Outer code Ri decoding in the i-th row (result: correction or rejection).

4. If the result of Step 3 is rejection then Stop decoding, else transition to the
i− 1 -th layer, i = i− 1 > 0 , of GCC and go to Step 2.

Iterative PC decoding (simple algorithm)

1. Column code C decoding in all columns (results: correction and/or rejec-
tion).

2. Row code R decoding in all rows (results: correction and/or rejection).

3. If no one correction and/or rejection were made on the Step 2 then stop
decoding, else return to Step 1 until additional stop condition is not sat-
isfied,

Iterative GCC decoding (general idea)

1. Set the starting layer of GCC i = `, j = `.

2. Iterative Product Code Ri × Cj decoding (results: correction and/or rejec-
tion).

3. Outer codes Ri and Cj decoding in i-th row and j-th column (result: cor-
rection and/or rejection).

4. If the result of Step 3 is rejection in the both row Ri and column Cj then
Stop decoding, else transition to the i = i− 1( correction in the row) and
/or j = j − 1 (correction in the column) layer of GCC and go to Step 2.

Introduce notations: dcol,i, drow,i are code distances of inner column and row
component codes, Dcol,i, Drow,i are code distances of outer component codes of
GCC.

Lemma 1. Minimal Stop-Set of GCC i-th layer is any configuration with
dcol,i/2 errors in Drow,i columns.

Lemma 2. Minimal Stop-Set of PC is any configuration with dcol/2 errors in
drow columns such that there is no one row of less drow/2 errors.
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Lemma 3. Minimal Stop-Set of GCC i-th layer with using of symmetry Fourier
designed GCC is as follows: any configuration with dcol,i/2 errors in Drow,i

columns and with drow/2 errors in Dcol,i rows.

It is evident that the stop-set of Lemma 3 is a subset of the stop-set of
Lemma 1. A stop-set of Lemma 2 may be a part of stop-sets of Lemmas 1 and
3. If yes, then stop condition will satisfied for GCC decoding algorithms as for
PC decoding. Anyway stop-set of the Lemma 3 is a non minimal stop-set for
PC decoder.

Important property of PC stop-set in comparing with a stop-set of GCC is
shown in the following lemma.

Lemma 4. Not all non minimal stop-sets of GCC (standard or iterative) de-
coder include a PC decoder stop-set.

Proof. Let us expand a minimal stop-set of Lemma reflem3 (for example) adding
one row and one column. Then we get a configuration of Drow,i + 1 rows of
the weight dcol,i/2 and Dcol,i + 1 columns of the weight drow,i/2 . Remove any
one error from this configuration. Then we get one row and one column of the
weight 1 less than others and the rest of the configuration will be a minimal
stop-set for GCC decoder. PC decoder iteratively and alternately finds and
corrects the light column, then corrects all the light rows and so on up to cor-
rection all errors or to a stage when GCC decoder will be able to continue and
finish correction of a rest of error configuration.

There exists a number of different error configurations, correctable by iter-
ative PC decoder with logarithmic of linear (of a configuration size) number of
iterations.

The main result.
The considered configuration will stop both GCC decoding algorithms but,

as a collorary of Lemma 4, the PC decoding can execute few successive itera-
tions, after wards the GCC decoding will be able to finish the error correction
with success. That means that union of PC and GCC decoding will expand a
set of correctable error configurations.

Open problems:

• Estimation of improvements in probability of correct decoding or cardi-
nality of correctable error configurations.

• Estimation of probability of decoding failure (error) because (it is clear)
iterative procedure of PC decoding may increase an error propagation.
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