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On the structure of binary orthogonal arrays with small covering radius

Orthogonal array

H(n, 2) - binary Hamming space of dimension n.

An orthogonal array, or equivalently, a τ -design C in H(n, 2) is
an M × n matrix of a code C such that every M × τ submatrix
contains all ordered τ -tuples of H(τ, 2), each one exactly |C |2τ

times as rows.

τ = d⊥(C )− 1.

We consider H(n, 2) with the inner product

〈x , y〉 = 1− 2d(x , y)

n
, (1)

where d(x , y) is the Hamming distance between x and y .
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On the structure of binary orthogonal arrays with small covering radius

Orthogonal array

De�nition 1. A code C ⊂ H(n, 2) is a τ -design in H(n, 2) if and
only if every real polynomial f (t) of degree at most τ and every
point y ∈ H(n, 2) satisfy∑

x∈C

f (〈x , y〉) = f0|C |, (2)

where f0 is the �rst coe�cient in the expansion f (t) =
n∑

i=1
fiQ

(n)
i (t),

Q
(n)
i (t) are the normalized Krawtchouk polynomials.
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On the structure of binary orthogonal arrays with small covering radius

Covering radius

De�nition 2. The number ρ(C ) = max
y∈H(n,2)

min
x∈C

d(x , y) is called

covering radius of C .

we work with the covering radius in terms of the inner
products as tc = 1− 2ρ(C)

n = min
y∈H(n,2)

max
x∈C
〈x , y〉.

Fazekas-Levenshtein [2,Theorem 2] obtain the following lower
bound on tc (i.e. upper bound on ρ(C )):
if C is a (2k − ε)-design, then

tc ≥ tFL = t0,1−ε
k , (3)

where t0,1−ε
k is the largest zero of a certain polynomial.
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On the structure of binary orthogonal arrays with small covering radius

Bounds on pc(y)

pc(y) = |{x |x ∈ C : tc = 〈x , y〉}|, where y is a point in
H(n, 2) where the covering radius is attained.

For every real number a we denote:

[a](n) = min{−1 + 2`
n , ` ∈ {0, 1, . . . , n}, which is greater than

or equal to a}
[a](n) = max{−1 + 2`

n , ` ∈ {0, 1, . . . , n}, which is less than or
equal to a}.
Therefore the Fazekas-Levenshtein bound (3) states
tc ≥ [tFL]

(n).

For example if τ = 5, tFL =
√

3n−2
n .

n = 7, tFL =
√

19
7 ≈ 0.6227, [tFL]

(n) = 5
7 ≈ 0.714286;

n = 8, tFL =
√

11
4
√

2
≈ 0.586302, [tFL]

(n) = 3
4 = 0.75;

n = 10, tFL =
√

7
5 ≈ 0.52915, [tFL]

(n) = 3
5 = 0.6.
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On the structure of binary orthogonal arrays with small covering radius

Bounds on pc(y)

For y ∈ H(n, 2) we de�ne the (possibly) multiset

I (y) = {〈x , y〉 : x ∈ C} = {t1(y), t2(y), . . . , t|C |(y)},
where −1 ≤ t1(y) ≤ t2(y) ≤ · · · ≤ t|C |(y) ≤ 1. With y as
above, we have t|C |(y) = tc < 1.

Theorem (1)

Let C ⊂ H(n, 2) be a τ -design with covering radius tc = [tFL]
(n).

Let f (t) be a real polynomial of degree at most τ such that

f (t) ≤ 0 for t ∈ [−1, tc − 2
n ] and f (t) is increasing in [tc − 2

n , tc ].
Then

pc(y) ≥ f0|C |
f (tc)

(4)

for every admissible y .
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On the structure of binary orthogonal arrays with small covering radius

Bounds on pc(y)

Proof Theorem 1.

It follows by (2) and the conditions of the theorem that

f0|C | =
|C |∑
i=1

f (ti (y)) ≤ pc(y)f (tc).

Since f (tc) > 0, it follows that pc(y) ≥ f0|C |
f ([tFL](n))

.
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Bounds on pc(y)

Theorem (2)

Let C ⊂ H(n, 2) be a τ -design with covering radius tc ≥ [tFL]
(n).

Let f (t) be a real polynomial of degree at most τ such that

f (t) ≥ 0 for t ∈ [−1, 1] and f (t) is increasing in [[tFL]
(n), 1]. Then

pc(y) ≤ f0|C |
f (tc)

(5)

for every admissible y .
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On the structure of binary orthogonal arrays with small covering radius

Some applications

Let τ = 5.

We apply Theorem 1 with polynomials
f (t) = (t − [tFL]

(n) + 2
n )(t2 + at + b)2 and maximize the

function F (a, b) = f0|C |
f (tc )

= 1− 2k
n , tc = [tFL]

(n). The

maximum is obtained for

a1 =
4(n − 1)(n − 2k − 2)(n − 2k − 1)(n − 2k)

A
,

b1 = −(6 + 8k + 4k2 − 7n − 4kn + n2)(2 + 4k2 − 3n − 4kn + n2)

A
,

where A = n(n4 − 4n3(2k + 1) + n2(24k2 + 24k + 5)−
2n(16k3 + 24k2 + 4k + 1) + 8k(2k3 + 4k2 + k − 1).
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On the structure of binary orthogonal arrays with small covering radius

Some applications

We consider Theorem 2 for polynomials
f (t) = (t + 1)(t2 + at + b)2 and minimize the function

G (a, b) = f0|C |
f (tc )

, tc = 1− 2k
n .

a2 =
4k(n − 2k)

n(2 + 4k + 4k2 − 3n − 4kn + n2)
,

b2 = − (n − 2)(2 + 4k2 − 3n − 4kn + n2)

n2(2 + 4k + 4k2 − 3n − 4kn + n2)

and is equal to

G (a2, b2) =
n(n − 1)(n − 2)|C |

(n − k)B
,

where B = n4 − 4n3(2k + 1) + n2(24k2 + 24k + 7)−
8n(4k3 + 6k2 + 2k + 1) + 4(4k4 + 8k3 + 4k2 + 1).
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On the structure of binary orthogonal arrays with small covering radius

Some applications

We obtain lower and upper bounds for pc . Such bounds can be
used for reducing the number of di�erent cases in the following
approach.
We set f (t) = 1, t, . . . , t5 in (2) and obtain a system of linear
equations with unknowns � the numbers of the distance distribution
of C with respect to y .
There are �nitely many candidates for solutions of this system and
their number is substantially reduced by using the restrictions on pc .
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On the structure of binary orthogonal arrays with small covering radius

Some applications

One preliminary step reduces the possible values of
ptc−2/n(y) = |{x ∈ C : 〈x , y〉 = tc − 2

n}| by using the inequality

f0|C | =
|C |∑
i=0

f (ti (y)) ≥ ptc−2/n(y)f (tc −
2

n
) + pc(y)f (tc),

where f (t) = (t + 1)(t2 + at + b)2 is as in Theorem 2. This implies

ptc−2/n(y) ≤ f0|C | − pc(y)f (tc)

f (tc − 2/n)
.

For example, for n = 10 and |C | = 192 (this is open case), under
the assumption tc = [tFL]

(n) = 3
5 , we obtain 16 ≤ pc ≤ 21 by the

above calculations (applications of Theorems 1 and 2).
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Some applications

The corresponding systems for pc = 16, 17 and 21 do not have
integer solutions and we conclude that 18 ≤ pc ≤ 20. In these
cases we obtain six solutions in total.

One solution is:
pc = p 3

5
= 18; p 2

5
= 13;

p 1
5

= 24; p0 = 87;

p− 1
5

= 10; p− 2
5

= 27;

p− 3
5

= 12; p− 4
5

= 1; p−1 = 0.

In particular, we obtain no solutions with inner product −1,
which means that −y 6∈ C for any choice of y .
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Thank you for your attention!
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