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C - binary linear [n,k,d] code

C - self-orthogonal code ifC ⊆C⊥

C - self-dual code ifC = C⊥

Any self-dual code has dimensionk = n/2

All codewords in a binary self-orthogonal code have
even weights

Doubly-even code - all its weights are divisible by 4

Singly-even self-dual code - if it contains a
codeword of weightw ≡ 2 (mod 4)
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Extremal self-dual codes

If C is a binary self-dual[n,n/2,d] code then

d ≤ 4[n/24]+4

except whenn ≡ 22 (mod 24) when

d ≤ 4[n/24]+6

Whenn is a multiple of 24, any code meeting the bound
must be doubly-even.
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Optimal self-dual codes

A self-dual code is called optimal if it has the largest
minimum weight among all self-dual codes of that
length.

Any extremal self-dual code is optimal.

For some lengths, no extremal self-dual codes exist!

There are no extremal self-dual codes of lengths 2,
4, 6, 10, 26, 28, 30, 34, 50, 52, 54, 58, ...

Conjecture: The optimal self-dual codes of lengths
24m+ r for r = 2, 4, 6, and 10 are not extremal.
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The shadow of a singly even code

C - singly even self-dual[n,k = n/2,d] code
C0 - its doubly even subcode:

C0 = {v ∈C | wt(v) ≡ 0 (mod 4)}

dimC0 = k−1

C2 = {v ∈C | wt(v) ≡ 2 (mod 4)}

C = C0∪C2

⇒C⊥
0 = C0∪C1∪C2∪C3

S = C⊥
0 \C = C1∪C3 - the shadow ofC
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Properties of the shadow

u,v ∈Ci ⇒ u+ v ∈C0, i = 0,1,2,3;

u ∈C1,v ∈C3 ⇒ u+ v ∈C2;

if n ≡ 2 (mod 4) thenC2 = 1+C0;

if n ≡ 0 (mod 4) then1 ∈C0.
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Singly-even self-dual codes

If

W (x,y) =
[n/8]

∑
j=0

a j(x
2+ y2)n/2−4 j(xy(x2− y2))2 j

then

S(x,y) =
[n/8]

∑
j=0

(−1) ja j2
n/2−6 j(xy)n/2−4 j(x4− y4)2 j
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Weight enumerators

S(x,y) = ∑Bix
n−iyi

Bi = Bn−i;

B0 = 0;

Br = 0 for all r 6≡ n/2 (mod 4);

Br ≤ 1 for r < d/2;

Bd/2 ≤ 2n/d, Bd/2 6= 2n/d −1;

if n ≡ 2 (mod 4) thenBd/2 ≤ 2.
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Example - [50,25,10] codes

S(y) =
1

2048
a6y+(−

1
32

a5−
3

512
a6)y

5+ · · ·

⇒ a6 = 2048 or 0

S(y) = y+196y9+ · · · W (y) = 1+196y10+ · · ·

a6 = 0, a5 = −32β

S(y) = βy5+(250−10β)y9+(42800+45β)y13+ · · ·

W (y) = 1+(580−32β)y10+(7400+160β)y12+ · · ·

⇒ 0≤ β ≤ 2
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Example - [50,25,10] codes

Let C be a [50,25,10] SD code with

S(y) = y+196y9+ · · · W (y) = 1+196y10+ · · ·

Then all the codewords of weight 10 inC share a
common nonzero coordinate and the deletion of that
coordinate gives a[49,25,9] code whose minimum
weight codewords support a quasi-symmetric 2-(49,9,6)
design.
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t − (v,k,λ) designs

A t − (v,k,λ) design is:

a set ofv pointsP ;

a family of blocksB = {B ⊂ P , |B| = k};

an incidence relation between them such that
v = |P |, every block is incident with preciselyk
points, and everyt distinct points are incident withλ
blocks.

Any t-design is also as− (v,k,λs) design fors ≤ t:

λs =
(v− s)
(k− s)

λs+1(s = 1, . . . , t −1), λt = λ
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Assmus-Mattson Theorem

Binary case:

C - [n,k,d] binary linear code;

C⊥ - its orthogonal[n,n− k,d⊥] code;

t - an integer, 0< t < d, such thatC⊥ has not more than
d − t nonzero weightsw ≤ n− t.

Then:

the supports of all codewords inC of weightu form
a t-design;

the supports of all codewords inC⊥ of weightw,
d⊥ ≤ w ≤ n− t, form at-design.
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Secret-sharing (n−1 parties)

s ∈ Fq - the secret;

G = (G0G1 . . .Gn−1) - a generator matrix of a code
C of lengthn;

v ∈ F
k
q - the information vector,vG0 = s;

u = vG;

to each party we assignui, i = 1, . . . ,n−1;
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Computing the secret

s is determined by the set of shares{ui1,ui2, . . . ,uim}

⇐⇒ G0 =
m

∑
j=1

x jGi j , 1≤ i1 < · · · < im ≤ n−1

⇐⇒∃(1,0, ...,0,ci1,0, ...,0,cim,0..,0)∈C⊥, (ci1, . . . ,cim) 6= 0

So by solving this linear equation, we findx j and from
then on the secret bys = vG0 = ∑m

j=1x jvGi j = ∑m
j=1x jui j.
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Γ - access structure

If P is the set of parties involved in the secret-sharing,
then

Γ = {A ⊂ P : A can uncover the secret}

A ∈ Γ - minimum access group if

B ∈ Γ andB ⊆ A impliesB = A

Γ = {A | A is a minimum access group}

Γ - the minimum access structure.
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Secret-sharing based on an SD code

C - an SD code with wt(S) = 1

Γ = {A | A is the support of a vectorv ∈C2}.

Any group of size less thand −1 cannot recover the
secret.

There areAi groups of sizei−1 that can recover the
secret.

It is perfect, which means that a group of shares
either determines the secret or gives no information
about the secret.

When the parties come together⌊d−1
2 ⌋ cheaters can

be found.
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Secret-sharing based on an SD code

Di - the 1-design formed from the vectors of weighti

Γ = {A | A is the support of a vectorv ∈C with v0 = 1}.

Any group of size less thand −1 cannot recover the
secret.

There areλ1(Di) groups of sizei−1 that can
recover the secret.

It is perfect, which means that a group of shares
either determines the secret or gives no information
about the secret.

When the parties come together⌊d−1
2 ⌋ cheaters can

be found.
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n = 24m+8l +2, l = 0,1,2, wt(S) = 1

W (y)=
12m+4l+1

∑
j=0

a jy
2 j =

3m+l

∑
i=0

ci(1+y2)4(3m+l−i)+1(y−y3)2i

S(y)=
6m+2l

∑
j=0

b jy
4 j+1 =

3m+l

∑
i=0

(−1)ici
(2y)4(3m+l−i)+1(1− y4)2i

4i

ci =
i

∑
j=0

αi ja j =
3m+l−i

∑
j=0

βi jb j
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n = 24m+8l +2, l = 0,1,2, wt(S) = 1

Theorem 1 Extremal self-dual codes of lengths 24m+2
and 24m+10 with wt(S) = 1 do not exist.

c2m+1 = α2m+1,0 = β2m+1,0

l = 0⇒−
(12m+1)(56m+4)

(2m+1)(m−1)

(

5m−1
m−2

)

=−
96m

2m+1

(

5m
m−1

l = 1⇒−
12m+5
2m+1

(

5m+1
m

)

= −2
3m+1
2m+1

(

5m+1
m

)
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n = 24m+8l +2, l = 0,1,2, wt(S) = 1

Theorem 2 C - optimal [24m+2,12m+1,4m+2] SD
code with wt(S) = 1:

The set of codewords of weight u in C0 without the
common zero coordinate holds a 2-design.

The set of codewords of weight w in C2 without the
common 1-coordinate holds a 2-design.

C - extremal self-dual [24m+18,12m+9,4m+4] code
with wt(S) = 1:

The set of codewords of weight u in C0 without the
common zero coordinate holds a 1-design.

The set of codewords of weight w in C2 without the
common 1-coordinate holds a 1-design.
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One-part secret sharing

Let C be a binary self-dual
[24m+18,12m+9,4m+4] or
[24m+10,12m+5,4m+2] or
[24m+2,12m+1,4m+2] code with wt(S) = 1

Γ = {A | A is the support of a vectorv ∈C2}.
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Two-part secret sharing

Let C be a binary self-dual[24m+2,12m+1,4m+2]
code with wt(S) = 1

Γ1 = {A | A is the support of a vectorv ∈C2}.

Γ2 = {A | A is the support of a vectorv∈C2 with v1 = v2 = 1
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Two-part secret sharing

Let C be a binary self-dual[50,25,10] code with
wt(S) = 1

For the first part of the secret, the access structure
contains 196 groups of size 9.

For the second part we take these 36 blocks ofD that
have 1 in the first position. Without the first point,
the blocks ofD hold 1− (48,8,6) designD1.

We take these 6 blocks ofD1 that have 1 in the first
position. Then, for the second part of the secret, the
access structure consists of 6 groups of size 7.
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Two-part secret sharing

To recover the two-part secret should first be used
the groups of size 7. They recover the second part of
the secret.

After that to recover the other part of the secret we
use these groups (they are of size 8 already) and the
other 30 groups of size 8. We add a new participant
that has ones in these 36 groups (the other entries are
0).

At last, we use the obtained 36 groups of size 9, and
the other 160 groups of size 9 to recover the first part
of the secret.
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