Sixth International Workshop on Optimal Codes, 16-22 June 2009 Varna, Bulgaria

On the classification of binary self-dual [44, 22, 8] codes with an automorphism of order 3

> St. Bouyuklieva Veliko Tarnovo University, Bulgaria

R. Russeva, N Yankov, N. Ziapkov and M. Nikolova Shumen University, Bulgaria

C - [n, k, d] binary linear code

 \mathcal{C}^{\perp} is **the dual code** of \mathcal{C} under the standard inner product

 \mathcal{C} is a **self-dual** code if $\mathcal{C} = \mathcal{C}^{\perp}$

For SD codes n = 2k and all weights are even

Automorphism of the code \mathcal{C} is a permutation of the coordinates that preserves \mathcal{C}

 $\operatorname{Aut}(\mathcal{C})$ - the group of all automorphisms of \mathcal{C}

$\mathcal C$ - $[44,\,22,\,8]$ SD binary code

p=11,7,5,3 - odd primes dividing $|Aut(\mathcal{C})|$

The codes having automorphisms of prime orders $p \ge 5$ are classified

Yorgov(1993), Yorgov and Russeva(1994) Bouyuklieva(1997,2004), Yankov and Russeva(2008)

We investigate codes with an automorphism of order ${\bf 3}$

 \mathcal{C} - [44, 22, 8] SD code with an automorphism σ of type 3-(c,f)

 σ - with ${\bf c}$ cycles of order 3 and ${\bf f}=44\text{-}3\text{c}$ fixed points in its decomposition

c=6,8,10,12 and 14

c=6 and 14 (Bouyuklieva(2004), Yankov (2007))

We classify all codes with an automorphism of order 3 with **8**, **10 and 12** 3-cycles

We complete the classification of SD [44,22,8] codes with an automorphism of **odd prime order**

Construction Method

 $F_{\sigma}(\mathcal{C}) = \{ v \in \mathcal{C} : v\sigma = v \}$ - the fixed part of \mathcal{C}

 $E_{\sigma}(\mathcal{C})$ - the set of vectors in \mathcal{C} with even weight in each 3-cycle of σ and 0 at the fixed points

 $C = F_{\sigma}(\mathcal{C}) \oplus E_{\sigma}(\mathcal{C})$

$$gen(\mathcal{C}) = \left(\begin{array}{c} gen(F_{\sigma}(\mathcal{C})) \\ gen(E_{\sigma}(\mathcal{C})) \end{array}\right)$$

R. Ruseva et al.

$$\pi: F_{\sigma}(\mathcal{C}) \to F_2^{c+f}$$

$$\pi(v) \text{ - vector of length } c+f \text{ obtained by choosing a coordinate from each cycle and fixed points of } v.$$

$$\pi(F_{\sigma}(\mathcal{C})) \text{ - a binary self-dual } [c+f, \frac{c+f}{2}] \text{ code}$$

R. Ruseva et al.

 $E_{\sigma}(C)^*$ - the code $E_{\sigma}(C)$ with the last f coordinates deleted.

$$\mathcal{P} = \langle x+1 \rangle$$
 - cyclic code of length 3
 $\mathcal{P} \cong F_4$ - set of even weight polynomials
The restriction of $v \in E_{\sigma}(\mathcal{C})$ on any 3-cycle of σ
can be viewed as an element from \mathcal{P}

$$(v_0, v_1, v_2) \to v_0 + v_1 x + v_2 x^2 \in \mathcal{P}$$

 $\varphi: \mathbf{E}_{\sigma}(\mathcal{C})^* \to \mathcal{P}^{\mathbf{c}}.$

R. Ruseva et al.

Theorem 1 A code C with an automorphism σ of order 3 is SD if and only if: i) $\pi(F_{\sigma}(C))$ is a $[c+f, \frac{c+f}{2}]$ binary SD code; ii) $\varphi(E_{\sigma}(C)^*)$ is a quaternary Hermitian SD code of length c

R. Ruseva et al.

Two weight enumerators for [44, 22, 8] SD codes: $W_{44,1}(y) = 1 + (44 + 4\beta)y^8 + (976 - 8\beta)y^{10} + \dots$ for $10 < \beta < 122$ $W_{44,2}(y) = 1 + (44 + 4\beta)y^8 + (1232 - 8\beta)y^{10} + \dots$ for $10 < \beta < 154$ $W_{44,1}$ and $W_{44,2}$ for various β

OC'09

R. Ruseva et al.

Codes with automorphism of type 3 - (8, 20)

 $\varphi(E_{\sigma}(C)^*) = C_{\varphi}$ - unique quaternary [8, 4, 4] code $\pi(F_{\sigma}(C)) = C_{\pi}$ is a [28, 14, \geq 4] SD code

R. Ruseva et al.

OC'09

$$G_{\pi} = \begin{pmatrix} B & O \\ O & D \\ E & F \end{pmatrix}$$

B generates $[8, k_1, \ge 4]$ SO code *D* generates $[20, 6 \le k_1 + 6 \le 10, \ge 8]$ SO code

All optimal binary self-orthogonal codes of length 20 are classified (Bouyuklieva(2004))

23 - [20,6,8] SO codes; 4 - [20,7,8] SO codes; unique [20,8,8] SO code Hence $k_1 \leq 2$

OC'09

Theorem 2 There are exactly **4570** inequivalent [44, 22, 8] SD codes with automorphism of type 3-(8,20).

Their weight enumerators are of both types $W_{44,1}$ and $W_{44,2}$ with $\beta \leq 76$

Codes with automorphism of type 3 - (10, 14)

 C_{φ} - Hermitian [10,5,4] code: E_{10} or B_{10}

 C_{π} is a $[24, 12, \geq 4]$ SD binary code

Seven such codes can be used, namely: G_{24} , R_{24} , U_{24} , W_{24} , X_{24} , Y_{24} and Z_{24}

We fix the generator matrix of the subcode C_{φ} and consider all possibilities for the generator matrix of the subcode C_{π}

OC'09

Theorem 3 There are exactly **8738** inequivalent [44, 22, 8] SD codes with automorphism of type 3-(10,14).

1815 codes with $W_{44,1}$ for $\beta \leq 62$ 6923 codes with $W_{44,2}$ for $\beta \leq 24$

R. Ruseva et al.

Codes with automorphism of type 3 - (12, 8)

 C_{φ} - Hermitian [12,6,4] code: d_{12} , $2d_6$, $3d_4$, $e_6 \oplus e_6$, and $e_7 + e_5$

 C_{π} is a [20, 10, \geq 4] SD binary code Seven such codes, namely: $d_{12} + d_8$, $d_{12} + e_8$, d_{20} , d_4^5 , $d_6^3 + f_2$, $d_8^2 + d_4$, and $e_7^2 + d_6$

Theorem 4 There are exactly **123147** inequivalent [44, 22, 8] SD codes with automorphism of type 3-(12,8).

Their weight enumerators are of both types Codes with $W_{44,1}$ for $\beta = 10, \ldots, 68, 70, 72, 74, 82, 86, 90, 122$

Codes with $W_{44,2}$ for $\beta = 0, \ldots, 56, 58, \ldots, 62, 64, 66, 68, 70, 72, 74, 76, 82, 86, 90, 104, 154$

For computing codes - GAP4.4 and

Q-Extensions (I. Bouyukliev)

OC'09

R. Ruseva et al.

THANK YOU!

R. Ruseva et al.

OC'09