Sixth International Workshop on Optimal Codes, 16-22 June 2009
Varna, Bulgaria

On the classification of binary self-dual \([44, 22, 8]\) codes with an automorphism of order 3

St. Bouyuklieva
Veliko Tarnovo University, Bulgaria

R. Russeva, N Yankov, N. Ziapkov and M. Nikolova
Shumen University, Bulgaria
\(C - [n, k, d] \) binary linear code

\(C^\perp \) is the dual code of \(C \) under the standard inner product

\(C \) is a self-dual code if \(C = C^\perp \)

For SD codes \(n = 2k \) and all weights are even

Automorphism of the code \(C \) is a permutation of the coordinates that preserves \(C \)

\(\text{Aut}(C) \) - the group of all automorphisms of \(C \)

OC’09 R. Ruseva et al.
\(\mathcal{C} - [44, 22, 8] \) SD binary code

\[p = 11, 7, 5, 3 \] - odd primes dividing \(|Aut(\mathcal{C})| \)

The codes having automorphisms of prime orders \(p \geq 5 \) are classified

Yorgov(1993), Yorgov and Russeva(1994)

We investigate codes with an automorphism of order 3
\[\mathcal{C} - \text{[44, 22, 8] SD code with an automorphism } \sigma \text{ of type 3-}(c,f) \]

\[\sigma - \text{with } c \text{ cycles of order 3 and } f = 44-3c \]

\[c = 6, 8, 10, 12 \text{ and } 14 \]

\[c = 6 \text{ and } 14 \text{ (Bouyuklieva (2004), Yankov (2007))} \]

We classify all codes with an automorphism of order 3 with 8, 10 and 12 3-cycles

We complete the classification of SD [44,22,8] codes with an automorphism of odd prime order
Construction Method

\[F_\sigma(C) = \{ v \in C : v\sigma = v \} \] - the fixed part of \(C \)

\[E_\sigma(C) \] - the set of vectors in \(C \) with even weight in each 3-cycle of \(\sigma \) and 0 at the fixed points

\[C = F_\sigma(C) \oplus E_\sigma(C) \]

\[\text{gen}(C) = \left(\begin{array}{c} \text{gen}(F_\sigma(C)) \\ \text{gen}(E_\sigma(C)) \end{array} \right) \]
\[\pi : F_\sigma(C) \rightarrow F_2^{c+f} \]

\(\pi(v) \) - vector of length \(c + f \) obtained by choosing a coordinate from each cycle and fixed points of \(v \).

\(\pi(F_\sigma(C)) \) - a binary self-dual \([c + f, \frac{c+f}{2}]\) code
$E_\sigma(C)^*$ - the code $E_\sigma(C)$ with the last f coordinates deleted.

$P = \langle x + 1 \rangle$ - cyclic code of length 3

$P \cong F_4$ - set of even weight polynomials

The restriction of $v \in E_\sigma(C)$ on any 3-cycle of σ can be viewed as an element from P

$(v_0, v_1, v_2) \rightarrow v_0 + v_1x + v_2x^2 \in P$

$\varphi : E_\sigma(C)^* \rightarrow P^c$.
Theorem 1 A code C with an automorphism σ of order 3 is SD if and only if:

i) $\pi(F_\sigma(C))$ is a $[c + f, \frac{c+f}{2}]$ binary SD code;

ii) $\varphi(E_\sigma(C)^*)$ is a quaternary Hermitian SD code of length c
Two weight enumerators for [44, 22, 8] SD codes:

\[W_{44,1}(y) = 1 + (44 + 4\beta)y^8 + (976 - 8\beta)y^{10} + \ldots \]

for 10 ≤ β ≤ 122

\[W_{44,2}(y) = 1 + (44 + 4\beta)y^8 + (1232 - 8\beta)y^{10} + \ldots \]

for 10 ≤ β ≤ 154

\(W_{44,1} \) and \(W_{44,2} \) for various \(\beta \)

OC’09 R. Ruseva et al.
Codes with automorphism of type $3 - (8, 20)$

$\varphi(E_\sigma(C)^*) = C_\varphi$ - unique quaternary $[8, 4, 4]$ code

$\pi(F_\sigma(C)) = C_\pi$ is a $[28, 14, \geq 4]$ SD code
\[G_\pi = \begin{pmatrix} B & O \\ O & D \\ E & F \end{pmatrix} \]

\(B \) generates \([8, k_1, \geq 4]\) SO code
\(D \) generates \([20, 6 \leq k_1 + 6 \leq 10, \geq 8]\) SO code

All optimal binary self-orthogonal codes of length 20 are classified \((\text{Bouyuklieva}(2004))\)

23 - \([20,6,8]\) SO codes; 4 - \([20,7,8]\) SO codes; unique \([20,8,8]\) SO code

Hence \(k_1 \leq 2\)
Theorem 2 There are exactly 4570 inequivalent [44, 22, 8] SD codes with automorphism of type 3-(8,20).

Their weight enumerators are of both types $W_{44,1}$ and $W_{44,2}$ with $\beta \leq 76$
Codes with automorphism of type $3 - (10, 14)$

C_φ - Hermitian $[10,5,4]$ code: E_{10} or B_{10}

C_π is a $[24, 12, \geq 4]$ SD binary code

Seven such codes can be used, namely: G_{24}, R_{24}, U_{24}, W_{24}, X_{24}, Y_{24} and Z_{24}

We fix the generator matrix of the subcode C_φ and consider all possibilities for the generator matrix of the subcode C_π
Theorem 3 There are exactly 8738 inequivalent $[44, 22, 8]$ SD codes with automorphism of type 3-(10,14).

1815 codes with $W_{44,1}$ for $\beta \leq 62$
6923 codes with $W_{44,2}$ for $\beta \leq 24$
Codes with automorphism of type $3 - (12, 8)$

C_φ - Hermitian $[12,6,4]$ code: $d_{12}, 2d_6, 3d_4, e_6 \oplus e_6$, and $e_7 + e_5$

C_π is a $[20, 10, \geq 4]$ SD binary code

Seven such codes, namely: $d_{12} + d_8$, $d_{12} + e_8$, d_{20}, d_5^5, $d_6^3 + f_2$, $d_8^2 + d_4$, and $e_7^2 + d_6$
Theorem 4 There are exactly 123147 inequivalent $[44, 22, 8]$ SD codes with automorphism of type $3-(12,8)$.

Their weight enumerators are of both types

Codes with $W_{44,1}$ for $\beta = 10, \ldots, 68, 70, 72, 74, 82, 86, 90, 122$

Codes with $W_{44,2}$ for $\beta = 0, \ldots, 56, 58, \ldots, 62, 64, 66, 68, 70, 72, 74, 76, 82, 86, 90, 104, 154$
For computing codes - **GAP 4.4** and

Q-Extensions (I. Bouyukliev)
THANK YOU!