Minimal lenghts for codes with given primal and dual distance

Iliya Bouyukliev¹ Erik Jacobsson²

¹Institute of Mathematics and Informatics Bulgarian Academy of Sciences

 2 Department of Mathematical Sciences University of Gothenburg/Chalmers University of Technology

Sixth International Workshop on Optimal Codes and Related Topics: OC 2009

- Motivation and background
- ② Definitions and notations
- Objectives
- 4 History of the problem
- Opening in the second of th
- Computer tools & techniques
- Two examples
- Table of results

- Motivation and background
- Definitions and notations
- Objectives
- 4 History of the problem
- Opening in the second of th
- Computer tools & techniques
- Two examples
- Table of results

- Motivation and background
- Definitions and notations
- Objectives
- History of the problem
- Preliminaries
- Computer tools & techniques
- Two examples
- Table of results

- Motivation and background
- ② Definitions and notations
- Objectives
- 4 History of the problem
- Preliminaries
- Computer tools & techniques
- Two examples
- Table of results

- Motivation and background
- 2 Definitions and notations
- Objectives
- 4 History of the problem
- Preliminaries
- Computer tools & techniques
- Two examples
- Table of results

- Motivation and background
- 2 Definitions and notations
- Objectives
- 4 History of the problem
- Preliminaries
- Computer tools & techniques
- Two examples
- Table of results

- Motivation and background
- 2 Definitions and notations
- Objectives
- 4 History of the problem
- Preliminaries
- Computer tools & techniques
- Two examples
- Table of results

- Motivation and background
- Definitions and notations
- Objectives
- History of the problem
- Preliminaries
- Computer tools & techniques
- Two examples
- Table of results

In cryptography, in order to obscure the relationship between the ciphertext and the key, substitution boxes (S-boxes) are generally used to transform S input bits into $\mathcal T$ output bits.

An S-box is a collection of T Boolean functions $f: GF(2)^S \to GF(2)$.

The security of a block cipher against various attacks comes down to the security of the S-Boxes, which in turn comes down to the security of the Boolean functions.

In cryptography, in order to obscure the relationship between the ciphertext and the key, substitution boxes (S-boxes) are generally used to transform S input bits into T output bits.

An S-box is a collection of T Boolean functions $f: GF(2)^S \to GF(2)$.

The security of a block cipher against various attacks comes down to the security of the S-Boxes, which in turn comes down to the security of the Boolean functions.

In cryptography, in order to obscure the relationship between the ciphertext and the key, substitution boxes (S-boxes) are generally used to transform S input bits into T output bits.

An S-box is a collection of T Boolean functions $f: GF(2)^S \to GF(2)$.

The security of a block cipher against various attacks comes down to the security of the S-Boxes, which in turn comes down to the security of the Boolean functions.

Definition

A Boolean function $f: GF(2)^S \to GF(2)$ is called K-resilient if we can fix any set of K, K < S, input bits and the function gives 0 and 1 equally often, on the remaining 2^{S-K} different inputs.

Definition

A Boolean function $f: GF(2)^S \to GF(2)$ is said to satisfy propagation criteria, PC(L) if for a fixed $x \in GF(2)^S$

$$f(x) - f(x + \Delta)$$

gives 0 and 1 equally often, for $\Delta \in GF(2)^S$ with Hamming weight $1 \leq w(\Delta) \leq L$

Definition

A Boolean function $f: GF(2)^S \to GF(2)$ is called K-resilient if we can fix any set of K, K < S, input bits and the function gives 0 and 1 equally often, on the remaining 2^{S-K} different inputs.

Definition

A Boolean function $f: GF(2)^S \to GF(2)$ is said to satisfy propagation criteria, PC(L) if for a fixed $x \in GF(2)^S$

$$f(x) - f(x + \Delta)$$

gives 0 and 1 equally often, for $\Delta \in GF(2)^S$ with Hamming weight $1 \leq w(\Delta) \leq L$

Definition

A Boolean function $f: GF(2)^S \to GF(2)$ is said to satisfy the extended propagation criteria, EPC(L) of order K if

$$f(x) - f(x + \Delta)$$

is K-resilient for $\Delta \in GF(2)^S$ with $1 \leq w(\Delta) \leq L$.

In fact, it has been shown that the EPC(L) of order K is directly related to security of a Boolean function against both linear and differential attacks.

Question:

Given L and K, what is the minimum S for which an EPC(L) of order K function exists?

Theorem (Kurosawa and Satoh(1997))

There exists an EPC(L) function $f(x_1,...,x_S)$ of order K if there exists a linear code of length $\frac{S}{2}$, some dimension, minimum distance K+1 and dual distance L+1.

If we let $n = \frac{S}{2}$, d = K + 1, $d^{\perp} = L + 1$ and let k denote the dimension we can reformulate the question.

Question:

Given L and K, what is the minimum S for which an EPC(L) of order K function exists?

Theorem (Kurosawa and Satoh(1997))

There exists an EPC(L) function $f(x_1,...,x_S)$ of order K if there exists a linear code of length $\frac{S}{2}$, some dimension, minimum distance K+1 and dual distance L+1.

If we let $n = \frac{S}{2}$, d = K + 1, $d^{\perp} = L + 1$ and let k denote the dimension we can reformulate the question.

Question:

Given L and K, what is the minimum S for which an EPC(L) of order K function exists?

Theorem (Kurosawa and Satoh(1997))

There exists an EPC(L) function $f(x_1,...,x_S)$ of order K if there exists a linear code of length $\frac{S}{2}$, some dimension, minimum distance K+1 and dual distance L+1.

If we let $n = \frac{S}{2}$, d = K + 1, $d^{\perp} = L + 1$ and let k denote the dimension we can reformulate the question.

Definitions and Notations

Reformulated question:

What is the least n such that there exists a linear code of length n with minimum distance d and dual distance d^{\perp} , where d and d^{\perp} are fixed?

Definition (Matsumoto et.al. 2004)

 $N(d, d^{\perp}) =$ The minimum n such that there exists a linear [n, k, d] code with dual distance d^{\perp} .

Definitions and Notations

Reformulated question:

What is the least n such that there exists a linear code of length n with minimum distance d and dual distance d^{\perp} , where d and d^{\perp} are fixed?

Definition (Matsumoto et.al. 2004)

 $N(d, d^{\perp}) =$ The minimum n such that there exists a linear [n, k, d] code with dual distance d^{\perp} .

Objectives

- Find some values for $N(d, d^{\perp})$ for specific d and d^{\perp} .
- For these values classify all inequivalent codes reaching $N(d, d^{\perp})$.

Objectives

- Find some values for $N(d, d^{\perp})$ for specific d and d^{\perp} .
- For these values classify all inequivalent codes reaching $N(d, d^{\perp})$.

• The problem to study the function $N(d, d^{\perp})$ was given by Matsumoto et al. in 2006.

They presented

- Some general bounds on the function $N(d, d^{\perp})$ (I.e. new versions of known bounds Griesmer, Hamming, linear programming bound).
- Some examples (although no systematical investigation of the exact values of $N(d, d^{\perp})$).
- ② Kohnert gave a talk in 2008 on construction of linear codes having prescribed primal-dual minimum distances. The construction gave new upper bounds on $N(d, d^{\perp})$.

• The problem to study the function $N(d, d^{\perp})$ was given by Matsumoto et al. in 2006.

They presented:

- Some general bounds on the function $N(d, d^{\perp})$ (I.e. new versions of known bounds Griesmer, Hamming, linear programming bound).
- Some examples (although no systematical investigation of the exact values of $N(d, d^{\perp})$).
- ② Kohnert gave a talk in 2008 on construction of linear codes having prescribed primal-dual minimum distances. The construction gave new upper bounds on $N(d, d^{\perp})$.

• The problem to study the function $N(d, d^{\perp})$ was given by Matsumoto et al. in 2006.

They presented:

- Some general bounds on the function $N(d, d^{\perp})$ (I.e. new versions of known bounds Griesmer, Hamming, linear programming bound).
- Some examples (although no systematical investigation of the exact values of $N(d, d^{\perp})$).
- ② Kohnert gave a talk in 2008 on construction of linear codes having prescribed primal-dual minimum distances. The construction gave new upper bounds on $N(d, d^{\perp})$.

• The problem to study the function $N(d, d^{\perp})$ was given by Matsumoto et al. in 2006.

They presented:

- Some general bounds on the function $N(d, d^{\perp})$ (I.e. new versions of known bounds Griesmer, Hamming, linear programming bound).
- Some examples (although no systematical investigation of the exact values of $N(d, d^{\perp})$).
- ② Kohnert gave a talk in 2008 on construction of linear codes having prescribed primal-dual minimum distances. The construction gave new upper bounds on $N(d, d^{\perp})$.

Theorem

Let C be a linear code with minimum distance d and dual distance d^{\perp} , and let C' be the punctured code of C. Then C' has minimum distance at least d-1 and dual distance at least d^{\perp} .

For $d, d^{\perp} > 2$, we have

$$N(d-1,d^{\perp}) \leq N(d,d^{\perp})-1$$

$$N(d, d^{\perp} - 1) \le N(d, d^{\perp}) - 1.$$

I.e. the $N(d, d^{\perp})$ function is strictly increasing in both its arguments.

Theorem

Let C be a linear code with minimum distance d and dual distance d^{\perp} , and let C' be the punctured code of C. Then C' has minimum distance at least d-1 and dual distance at least d^{\perp} .

For $d, d^{\perp} > 2$, we have

$$N(d-1,d^{\perp}) \leq N(d,d^{\perp})-1$$

$$N(d, d^{\perp} - 1) \leq N(d, d^{\perp}) - 1.$$

I.e. the $N(d, d^{\perp})$ function is strictly increasing in both its arguments.

Definition

Let G be a generator matrix of a linear binary [n, k, d] code C and $c \in C$. Then the residual code Res(C, c) of C with respect to c is the code generated by the restriction of G to the columns where c has a zero entry.

Theorem

Suppose C is a binary [n,k,d] code and suppose $c \in C$ has weight ω , where $d > \omega/2$. Then Res(C,c) is an $[n-\omega,k-1,d']$ code with $d' \geq d-\omega + \lceil \omega/2 \rceil$.

Definition

Let G be a generator matrix of a linear binary [n, k, d] code C and $c \in C$. Then the residual code Res(C, c) of C with respect to c is the code generated by the restriction of G to the columns where c has a zero entry.

Theorem

Suppose C is a binary [n,k,d] code and suppose $c \in C$ has weight ω , where $d > \omega/2$. Then Res(C,c) is an $[n-\omega,k-1,d']$ code with $d' \geq d-\omega + \lceil \omega/2 \rceil$.

Theorem

Suppose C is a binary [n, k, d] code with dual distance d^{\perp} , $c \in C$, and the dimension of Res(C, c) is k - 1. Then the dual distance of Res(C, c) is also d^{\perp} .

Computer programs

We use the program $Q_EXTENSION$ to construct all inequivalent [n, k, d] codes from their residual or shortening codes.

First approach

Moving backwards through the residuals of a supposed $[n, k, d]^{d^{\perp}}$ code (where the superscript means that the code has dual distance d^{\perp}) we can extend as:

$$[k_0, k_0, 1] \rightarrow [n_0, k_0, d_0]^{d^{\perp}} \rightarrow ... \rightarrow$$

 $\rightarrow [n - d, k - 1, \geq d/2]^{d^{\perp}} \rightarrow [n, k, d]^{d^{\perp}}$

(In fact, this does in most cases become a tree of extensions).

Computer programs

We use the program Q_EXTENSION to construct all inequivalent [n, k, d] codes from their residual or shortening codes.

First approach:

Moving backwards through the residuals of a supposed $[n, k, d]^{d^{\perp}}$ code (where the superscript means that the code has dual distance d^{\perp}) we can extend as:

$$[k_0, k_0, 1] \rightarrow [n_0, k_0, d_0]^{d^{\perp}} \rightarrow ... \rightarrow$$

 $\rightarrow [n - d, k - 1, \geq d/2]^{d^{\perp}} \rightarrow [n, k, d]^{d^{\perp}}$

(In fact, this does in most cases become a tree of extensions).

Second approach:

We construct all [n, k, d] codes by extending from their shortened codes.

I.e. from codes of the form [n-i, k-i, d] or [n-i-1, k-i, d].

If G is a generator matrix for an [n-i, k-i, d] or an [n-i-1, k-i, d] code we extend it in all possible ways to

$$\left(\begin{array}{c|c} * & I_i \\ \hline G & 0 \end{array}\right) \ \ \mathrm{or} \ \ \left(\begin{array}{c|c} * & 1 & I_i \\ \hline G & 0 \end{array}\right).$$

Finding N(9,5) and N(10,5)

From Brouwer's table we know that there may exist binary [27, 10, 9] and [28, 10, 10] codes with dual distance 5.

If we let C_{27} be a [27, 10, 9] linear code with dual distance 5 we can consider a generator matrix of C_{27} in the form:

$$G_{27} = \begin{pmatrix} 00000 \\ \dots & G_{22} \\ \hline 00000 \\ \hline 11000 \\ 10100 & A \\ 10010 \\ 10001 \end{pmatrix}$$

(where G_{22} generates a [22, 6, 9] code).

Finding N(9,5) and N(10,5)

From Brouwer's table we know that there may exist binary [27, 10, 9] and [28, 10, 10] codes with dual distance 5.

If we let C_{27} be a [27, 10, 9] linear code with dual distance 5 we can consider a generator matrix of C_{27} in the form:

$$G_{27} = \left(egin{array}{c} 00000 \ \dots \ G_{22} \ 00000 \ \hline 11000 \ 10100 \ A \ 10010 \ 10001 \end{array}
ight)$$

(where G_{22} generates a [22, 6, 9] code).

From Brouwer's table we know that there may exist binary [27, 10, 9] and [28, 10, 10] codes with dual distance 5.

If we let C_{27} be a [27, 10, 9] linear code with dual distance 5 we can consider a generator matrix of C_{27} in the form:

$$G_{27} = egin{pmatrix} 00000 \ \dots & G_{22} \ 00000 \ \hline 11000 \ 10100 & A \ 10010 \ 10001 \end{pmatrix}$$

(where G_{22} generates a [22, 6, 9] code).

Adding a parity check bit to G_{27} we obtain a generator matrix of a code C_{28} with parameters [28, 10, 10]. This generator matrix has the form:

$$G_{28} = egin{pmatrix} 00000 & & & & \ \dots & G_{23} & & \ 00000 & & & \ \hline 11000 & & b_7 \ 10100 & A & b_8 \ 10010 & & b_9 \ 10001 & & b_{10} \end{pmatrix}$$

(where G_{23} generates a [23,6,10] code).

By exhaustive search we find all inequivalent [28, 10, 10] codes.

The extensions are

$$[6,6,1] \rightarrow [23,6,10](29) \rightarrow [25,7,10](30522) \rightarrow [26,8,10](507533)$$

 $\rightarrow [27,9,10](30418) \rightarrow [28,10,10](10).$

Adding a parity check bit to G_{27} we obtain a generator matrix of a code C_{28} with parameters [28, 10, 10]. This generator matrix has the form:

$$G_{28} = \begin{pmatrix} 00000 \\ \dots & G_{23} \\ 000000 \\ \hline 11000 & b_7 \\ 10100 & A & b_8 \\ 10010 & b_9 \\ 10001 & b_{10} \end{pmatrix}$$

(where G_{23} generates a [23,6,10] code).

By exhaustive search we find all inequivalent [28, 10, 10] codes.

The extensions are

$$[6,6,1] \rightarrow [23,6,10](29) \rightarrow [25,7,10](30522) \rightarrow [26,8,10](507533)$$

 $\rightarrow [27,9,10](30418) \rightarrow [28,10,10](10).$

Adding a parity check bit to G_{27} we obtain a generator matrix of a code C_{28} with parameters [28, 10, 10]. This generator matrix has the form:

$$G_{28} = egin{pmatrix} 00000 & & & & & \ \dots & G_{23} & & & \ 00000 & & & & \ \hline 11000 & & b_7 & & \ 10100 & A & b_8 & \ 10010 & & b_9 & \ 10001 & & b_{10} \end{pmatrix}$$

(where G_{23} generates a [23,6,10] code).

By exhaustive search we find all inequivalent [28, 10, 10] codes.

The extensions are:

$$[6,6,1] \rightarrow [23,6,10](29) \rightarrow [25,7,10](30522) \rightarrow [26,8,10](507533)$$

 $\rightarrow [27,9,10](30418) \rightarrow [28,10,10](10)$

Adding a parity check bit to G_{27} we obtain a generator matrix of a code C_{28} with parameters [28, 10, 10]. This generator matrix has the form:

$$G_{28} = \begin{pmatrix} 00000 \\ \dots & G_{23} \\ 000000 \\ \hline 11000 & b_7 \\ 10100 & A & b_8 \\ 10010 & b_9 \\ 10001 & b_{10} \end{pmatrix}$$

(where G_{23} generates a [23,6,10] code).

By exhaustive search we find all inequivalent [28, 10, 10] codes.

The extensions are:

$$[6,6,1] \rightarrow [23,6,10](29) \rightarrow [25,7,10](30522) \rightarrow [26,8,10](507533)$$

◆ロト ◆個ト ◆見ト ◆見ト ・ 見 ・ り

Adding a parity check bit to G_{27} we obtain a generator matrix of a code C_{28} with parameters [28, 10, 10]. This generator matrix has the form:

$$G_{28} = egin{pmatrix} 00000 & & & & & \ \dots & G_{23} & & & \ 00000 & & & & \ \hline 11000 & & b_7 & & \ 10100 & A & b_8 & \ 10010 & & b_9 & \ 10001 & & b_{10} \end{pmatrix}$$

(where G_{23} generates a [23,6,10] code).

By exhaustive search we find all inequivalent [28, 10, 10] codes.

The extensions are:

$$[6,6,1] \rightarrow [23,6,10](29) \rightarrow [25,7,10](30522) \rightarrow [26,8,10](507533)$$

 \rightarrow [27, 9, 10](30418) \rightarrow [28, 10, 10](10)

◆ロト ◆@ ト ◆ 差 ト ◆ 差 ・ り へ ご

Adding a parity check bit to G_{27} we obtain a generator matrix of a code C_{28} with parameters [28, 10, 10]. This generator matrix has the form:

$$G_{28} = \begin{pmatrix} 00000 \\ \dots & G_{23} \\ 000000 \\ \hline 11000 & b_7 \\ 10100 & A & b_8 \\ 10010 & b_9 \\ 10001 & b_{10} \end{pmatrix}$$

(where G_{23} generates a [23,6,10] code).

By exhaustive search we find all inequivalent [28, 10, 10] codes.

The extensions are:

$$[6,6,1] \rightarrow [23,6,10](29) \rightarrow [25,7,10](30522) \rightarrow [26,8,10](507533)$$

 \rightarrow [27, 9, 10](30418) \rightarrow [28, 10, 10](10).

(+ D) (#) (+ 분) (+ 분) (+ 분)

Adding a parity check bit to G_{27} we obtain a generator matrix of a code C_{28} with parameters [28, 10, 10]. This generator matrix has the form:

$$G_{28} = egin{pmatrix} 00000 & & & & & \ & \dots & G_{23} & & \ 00000 & & & & \ \hline 11000 & & b_7 \ 10100 & A & b_8 \ 10010 & & b_9 \ 10001 & & b_{10} \ \end{pmatrix}$$

(where G_{23} generates a [23,6,10] code).

By exhaustive search we find all inequivalent [28, 10, 10] codes.

The extensions are:

$$[6,6,1] \rightarrow [23,6,10](29) \rightarrow [25,7,10](30522) \rightarrow [26,8,10](507533)$$

$$\rightarrow$$
 [27, 9, 10](30418) \rightarrow [28, 10, 10](10).

4 □ ▶ 4 圖 ▶ 4 필 ▶ 4 필 ▶

Adding a parity check bit to G_{27} we obtain a generator matrix of a code C_{28} with parameters [28, 10, 10]. This generator matrix has the form:

$$G_{28} = egin{pmatrix} 00000 & & & & & \ & \dots & G_{23} & & \ 00000 & & & & \ \hline 11000 & & b_7 \ 10100 & A & b_8 \ 10010 & & b_9 \ 10001 & & b_{10} \ \end{pmatrix}$$

(where G_{23} generates a [23,6,10] code).

By exhaustive search we find all inequivalent [28, 10, 10] codes.

The extensions are:

$$[6,6,1] \rightarrow [23,6,10](29) \rightarrow [25,7,10](30522) \rightarrow [26,8,10](507533)$$

 \rightarrow [27, 9, 10](30418) \rightarrow [28, 10, 10](10).

Out of these ten, five turn out to have dual distance 5.

N(10,5) = 28 with 5 inequivalent codes.

By deleting each coordinate and analysing the results, we find that there are exactly 137 inequivalent [27, 10, 9] codes with dual distance 5.

N(9,5) = 27 with 137 inequivalent codes.

Out of these ten, five turn out to have dual distance 5.

N(10,5) = 28 with 5 inequivalent codes.

By deleting each coordinate and analysing the results, we find that there are exactly 137 inequivalent [27, 10, 9] codes with dual distance 5.

N(9,5) = 27 with 137 inequivalent codes.

Extensions:

$$\begin{array}{l} [5,5,1] \rightarrow [15,5,\geq 6](91) \rightarrow [27,6,12](178) \rightarrow [28,7,12](129) \rightarrow \\ [29,8,12](73) \rightarrow [30,9,12](9) \rightarrow [31,10,12](2) \rightarrow [32,11,12](2). \end{array}$$

The [32, 11, 12] codes turn out to have dual distance 6, which is optimal in the sence that no shorter code, or with different dimension, could achieve this.

Moreover, the [31, 10, 12] codes turn out to have dual distance 5, which is also optimal.

$$N(12,5) = 31$$
 and $N(12,6) = 32$.

Extensions:

$$\begin{array}{l} [5,5,1] \rightarrow [15,5,\geq 6](91) \rightarrow [27,6,12](178) \rightarrow [28,7,12](129) \rightarrow \\ [29,8,12](73) \rightarrow [30,9,12](9) \rightarrow [31,10,12](2) \rightarrow [32,11,12](2). \end{array}$$

The [32, 11, 12] codes turn out to have dual distance 6, which is optimal in the sence that no shorter code, or with different dimension, could achieve this.

Moreover, the [31, 10, 12] codes turn out to have dual distance 5, which is also optimal.

$$N(12,5) = 31$$
 and $N(12,6) = 32$.

Extensions:

$$\begin{array}{l} [5,5,1] \rightarrow [15,5,\geq 6](91) \rightarrow [27,6,12](178) \rightarrow [28,7,12](129) \rightarrow \\ [29,8,12](73) \rightarrow [30,9,12](9) \rightarrow [31,10,12](2) \rightarrow [32,11,12](2). \end{array}$$

The [32, 11, 12] codes turn out to have dual distance 6, which is optimal in the sence that no shorter code, or with different dimension, could achieve this.

Moreover, the [31, 10, 12] codes turn out to have dual distance 5, which is also optimal.

$$N(12,5) = 31$$
 and $N(12,6) = 32$.

Extensions:

$$\begin{array}{l} [5,5,1] \rightarrow [15,5,\geq 6](91) \rightarrow [27,6,12](178) \rightarrow [28,7,12](129) \rightarrow \\ [29,8,12](73) \rightarrow [30,9,12](9) \rightarrow [31,10,12](2) \rightarrow [32,11,12](2). \end{array}$$

The [32, 11, 12] codes turn out to have dual distance 6, which is optimal in the sence that no shorter code, or with different dimension, could achieve this.

Moreover, the [31, 10, 12] codes turn out to have dual distance 5, which is also optimal.

$$N(12,5) = 31$$
 and $N(12,6) = 32$.

Extensions:

$$\begin{array}{l} [5,5,1] \rightarrow [15,5,\geq 6](91) \rightarrow [27,6,12](178) \rightarrow [28,7,12](129) \rightarrow \\ [29,8,12](73) \rightarrow [30,9,12](9) \rightarrow [31,10,12](2) \rightarrow [32,11,12](2). \end{array}$$

The [32, 11, 12] codes turn out to have dual distance 6, which is optimal in the sence that no shorter code, or with different dimension, could achieve this.

Moreover, the [31, 10, 12] codes turn out to have dual distance 5, which is also optimal.

$$N(12,5) = 31$$
 and $N(12,6) = 32$.

Table of the $N(d, d^{\perp})$ function

d/d^{\perp}	3	4	5	6	7	8	9	10	11	12
3	6 (1)	-	-	-	-	-	-	-	-	-
4	7 (1)	8 (1)	-	-	-	-	-	-	-	-
5	11 (1)	13 (1)	16 (1)	-	-	-	-	-	-	-
6	12 (1)	14 (1)	17 (1)	18 (1)	-	-	-	-	-	-
7	14 (1)	15 (1)	20 (1)	21 (1)	22* (1)	-	-	-	-	-
8	15 (1)	16 (1)	21 (1)	22* (1)	23* (1)	24* (1)	-	-	-	-
9	20 (3)	22 (1)	27 (137)	29 (≥ 2)	32-37	33-41	38-42	-	-	-
10	21 (2)	24 (2)	28 (5)	30 (≥ 2)	33-41	34-42	39-43	40-44	-	-
11	23 (1)	26 (1)	30 (2)	31 (2)	36-42	37-43	41-44	43-45	46* (1)	-
12	24 (1)	28 (7)	31 (2)	32 (2)	37-43	38-44	42-45	44-46	47* (1)	48* (1)

Thank you for your attention!