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Motivation and background

In cryptography, in order to obscure the relationship between the
ciphertext and the key, substitution boxes (S-boxes) are generally used to
transform S input bits into T output bits.

An S-box is a collection of T Boolean functions f : GF (2)S → GF (2).

The security of a block cipher against various attacks comes down to the
security of the S-Boxes, which in turn comes down to the security of the
Boolean functions.

I. Bouyukliev, E. Jacobsson (BAS, CTH) Minimal lengths given d and d⊥ June 17, 2009 3 / 20



Motivation and background

In cryptography, in order to obscure the relationship between the
ciphertext and the key, substitution boxes (S-boxes) are generally used to
transform S input bits into T output bits.

An S-box is a collection of T Boolean functions f : GF (2)S → GF (2).

The security of a block cipher against various attacks comes down to the
security of the S-Boxes, which in turn comes down to the security of the
Boolean functions.

I. Bouyukliev, E. Jacobsson (BAS, CTH) Minimal lengths given d and d⊥ June 17, 2009 3 / 20



Motivation and background

In cryptography, in order to obscure the relationship between the
ciphertext and the key, substitution boxes (S-boxes) are generally used to
transform S input bits into T output bits.

An S-box is a collection of T Boolean functions f : GF (2)S → GF (2).

The security of a block cipher against various attacks comes down to the
security of the S-Boxes, which in turn comes down to the security of the
Boolean functions.

I. Bouyukliev, E. Jacobsson (BAS, CTH) Minimal lengths given d and d⊥ June 17, 2009 3 / 20



Motivation and background

Definition

A Boolean function f : GF (2)S → GF (2) is called K -resilient if we can fix
any set of K , K < S, input bits and the function gives 0 and 1 equally
often, on the remaining 2S−K different inputs.

Definition

A Boolean function f : GF (2)S → GF (2) is said to satisfy propagation
criteria, PC (L) if for a fixed x ∈ GF (2)S

f (x)− f (x + ∆)

gives 0 and 1 equally often, for ∆ ∈ GF (2)S with Hamming weight
1 ≤ w(∆) ≤ L
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Motivation and background

Definition

A Boolean function f : GF (2)S → GF (2) is said to satisfy the extended
propagation criteria, EPC (L) of order K if

f (x)− f (x + ∆)

is K -resilient for ∆ ∈ GF (2)S with 1 ≤ w(∆) ≤ L.

In fact, it has been shown that the EPC (L) of order K is directly related to
security of a Boolean function against both linear and differential attacks.
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Motivation and background

Question:
Given L and K , what is the minimum S for which an EPC (L) of order K
function exists?

Theorem (Kurosawa and Satoh(1997))

There exists an EPC (L) function f (x1, ..., xS) of order K if there exists a
linear code of length S

2 , some dimension, minimum distance K + 1 and
dual distance L + 1.

If we let n = S
2 , d = K + 1, d⊥ = L + 1 and let k denote the dimension

we can reformulate the question.
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Definitions and Notations

Reformulated question:
What is the least n such that there exists a linear code of length n with
minimum distance d and dual distance d⊥, where d and d⊥ are fixed?

Definition (Matsumoto et.al. 2004)

N(d , d⊥) = The minimum n such that there exists a linear [n, k , d ] code
with dual distance d⊥.
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Objectives

Find some values for N(d , d⊥) for specific d and d⊥.

For these values classify all inequivalent codes reaching N(d , d⊥).
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History of the problem

1 The problem to study the function N(d , d⊥) was given by Matsumoto
et al. in 2006.
They presented:

Some general bounds on the function N(d , d⊥)
(I.e. new versions of known bounds Griesmer, Hamming, linear
programming bound).
Some examples (although no systematical investigation of the exact
values of N(d , d⊥)).

2 Kohnert gave a talk in 2008 on construction of linear codes having
prescribed primal-dual minimum distances. The construction gave
new upper bounds on N(d , d⊥).
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Preliminaries

Theorem

Let C be a linear code with minimum distance d and dual distance d⊥,
and let C ′ be the punctured code of C . Then C ′ has minimum distance at
least d − 1 and dual distance at least d⊥.

For d , d⊥ > 2, we have

N(d − 1, d⊥) ≤ N(d , d⊥)− 1

N(d , d⊥ − 1) ≤ N(d , d⊥)− 1.

I.e. the N(d , d⊥) function is strictly increasing in both its arguments.
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Preliminaries

Definition

Let G be a generator matrix of a linear binary [n, k , d ] code C and c ∈ C .
Then the residual code Res(C , c) of C with respect to c is the code
generated by the restriction of G to the columns where c has a zero entry.

Theorem

Suppose C is a binary [n, k , d ] code and suppose c ∈ C has weight ω,
where d > ω/2. Then Res(C , c) is an [n − ω, k − 1, d ′] code with
d ′ ≥ d − ω + dω/2e.
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Preliminaries

Theorem

Suppose C is a binary [n, k , d ] code with dual distance d⊥, c ∈ C , and the
dimension of Res(C , c) is k − 1. Then the dual distance of Res(C , c) is
also d⊥.
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Computer programs

We use the program Q EXTENSION to construct all inequivalent [n, k , d ]
codes from their residual or shortening codes.

First approach:

Moving backwards through the residuals of a supposed [n, k , d ]d
⊥

code
(where the superscript means that the code has dual distance d⊥) we can
extend as:

[k0, k0, 1]→ [n0, k0, d0]d
⊥ → ...→

→ [n − d , k − 1, ≥ d/2]d
⊥ → [n, k, d ]d

⊥

(In fact, this does in most cases become a tree of extensions).
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Second approach:

We construct all [n, k, d ] codes by extending from their shortened codes.

I.e. from codes of the form [n − i , k − i , d ] or [n − i − 1, k − i , d ].

If G is a generator matrix for an [n − i , k − i , d ] or an [n − i − 1, k − i , d ]
code we extend it in all possible ways to(

∗ Ii
G 0

)
or

(
∗ 1 Ii
G 0

)
.
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Finding N(9, 5) and N(10, 5)

From Brouwer’s table we know that there may exist binary [27, 10, 9] and
[28, 10, 10] codes with dual distance 5.

If we let C27 be a [27, 10, 9] linear code with dual distance 5 we can
consider a generator matrix of C27 in the form:

G27 =



00000
. . . G22

00000

11000
10100 A
10010
10001


(where G22 generates a [22, 6, 9] code).
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Finding N(9, 5) and N(10, 5)

Adding a parity check bit to G27 we obtain a generator matrix of a code
C28 with parameters [28, 10, 10]. This generator matrix has the form:

G28 =



00000
. . . G23

00000

11000 b7

10100 A b8

10010 b9

10001 b10


(where G23 generates a [23,6,10] code).

By exhaustive search we find all inequivalent [28, 10, 10] codes.

The extensions are:

[6, 6, 1]→ [23, 6, 10](29)→ [25, 7, 10](30522)→ [26, 8, 10](507533)

→ [27, 9, 10](30418)→ [28, 10, 10](10).
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[6, 6, 1]→ [23, 6, 10](29)→ [25, 7, 10](30522)→ [26, 8, 10](507533)

→ [27, 9, 10](30418)→ [28, 10, 10](10).
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Finding N(9, 5) and N(10, 5)

Out of these ten, five turn out to have dual distance 5.

N(10, 5) = 28 with 5 inequivalent codes.

By deleting each coordinate and analysing the results, we find that there
are exactly 137 inequivalent [27, 10, 9] codes with dual distance 5.

N(9, 5) = 27 with 137 inequivalent codes.
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N(12,6)

Extensions:

[5, 5, 1]→ [15, 5,≥ 6](91)→ [27, 6, 12](178)→ [28, 7, 12](129)→
[29, 8, 12](73)→ [30, 9, 12](9)→ [31, 10, 12](2)→ [32, 11, 12](2).

The [32, 11, 12] codes turn out to have dual distance 6, which is optimal in
the sence that no shorter code, or with different dimension, could achieve
this.

Moreover, the [31, 10, 12] codes turn out to have dual distance 5, which is
also optimal.

N(12, 5) = 31 and N(12, 6) = 32.

Puncturing (and optimality) give us N(11, 6) = 31, N(10, 6) = 30 and
N(9, 6) = 29. And also N(11, 5) = 30.

I. Bouyukliev, E. Jacobsson (BAS, CTH) Minimal lengths given d and d⊥ June 17, 2009 18 / 20



N(12,6)

Extensions:

[5, 5, 1]→ [15, 5,≥ 6](91)→ [27, 6, 12](178)→ [28, 7, 12](129)→
[29, 8, 12](73)→ [30, 9, 12](9)→ [31, 10, 12](2)→ [32, 11, 12](2).

The [32, 11, 12] codes turn out to have dual distance 6, which is optimal in
the sence that no shorter code, or with different dimension, could achieve
this.

Moreover, the [31, 10, 12] codes turn out to have dual distance 5, which is
also optimal.

N(12, 5) = 31 and N(12, 6) = 32.

Puncturing (and optimality) give us N(11, 6) = 31, N(10, 6) = 30 and
N(9, 6) = 29. And also N(11, 5) = 30.

I. Bouyukliev, E. Jacobsson (BAS, CTH) Minimal lengths given d and d⊥ June 17, 2009 18 / 20



N(12,6)

Extensions:

[5, 5, 1]→ [15, 5,≥ 6](91)→ [27, 6, 12](178)→ [28, 7, 12](129)→
[29, 8, 12](73)→ [30, 9, 12](9)→ [31, 10, 12](2)→ [32, 11, 12](2).

The [32, 11, 12] codes turn out to have dual distance 6, which is optimal in
the sence that no shorter code, or with different dimension, could achieve
this.

Moreover, the [31, 10, 12] codes turn out to have dual distance 5, which is
also optimal.

N(12, 5) = 31 and N(12, 6) = 32.

Puncturing (and optimality) give us N(11, 6) = 31, N(10, 6) = 30 and
N(9, 6) = 29. And also N(11, 5) = 30.

I. Bouyukliev, E. Jacobsson (BAS, CTH) Minimal lengths given d and d⊥ June 17, 2009 18 / 20



N(12,6)

Extensions:

[5, 5, 1]→ [15, 5,≥ 6](91)→ [27, 6, 12](178)→ [28, 7, 12](129)→
[29, 8, 12](73)→ [30, 9, 12](9)→ [31, 10, 12](2)→ [32, 11, 12](2).

The [32, 11, 12] codes turn out to have dual distance 6, which is optimal in
the sence that no shorter code, or with different dimension, could achieve
this.

Moreover, the [31, 10, 12] codes turn out to have dual distance 5, which is
also optimal.

N(12, 5) = 31 and N(12, 6) = 32.

Puncturing (and optimality) give us N(11, 6) = 31, N(10, 6) = 30 and
N(9, 6) = 29. And also N(11, 5) = 30.

I. Bouyukliev, E. Jacobsson (BAS, CTH) Minimal lengths given d and d⊥ June 17, 2009 18 / 20



N(12,6)

Extensions:

[5, 5, 1]→ [15, 5,≥ 6](91)→ [27, 6, 12](178)→ [28, 7, 12](129)→
[29, 8, 12](73)→ [30, 9, 12](9)→ [31, 10, 12](2)→ [32, 11, 12](2).

The [32, 11, 12] codes turn out to have dual distance 6, which is optimal in
the sence that no shorter code, or with different dimension, could achieve
this.

Moreover, the [31, 10, 12] codes turn out to have dual distance 5, which is
also optimal.

N(12, 5) = 31 and N(12, 6) = 32.

Puncturing (and optimality) give us N(11, 6) = 31, N(10, 6) = 30 and
N(9, 6) = 29. And also N(11, 5) = 30.

I. Bouyukliev, E. Jacobsson (BAS, CTH) Minimal lengths given d and d⊥ June 17, 2009 18 / 20



Table of the N(d , d⊥) function

d/d⊥ 3 4 5 6 7 8 9 10 11 12
3 6 (1) - - - - - - - - -
4 7 (1) 8 (1) - - - - - - - -
5 11 (1) 13 (1) 16 (1) - - - - - - -
6 12 (1) 14 (1) 17 (1) 18 (1) - - - - - -
7 14 (1) 15 (1) 20 (1) 21 (1) 22* (1) - - - - -
8 15 (1) 16 (1) 21 (1) 22* (1) 23* (1) 24* (1) - - - -
9 20 (3) 22 (1) 27 (137) 29 (≥ 2) 32-37 33-41 38-42 - - -
10 21 (2) 24 (2) 28 (5) 30 (≥ 2) 33-41 34-42 39-43 40-44 - -
11 23 (1) 26 (1) 30 (2) 31 (2) 36-42 37-43 41-44 43-45 46* (1) -
12 24 (1) 28 (7) 31 (2) 32 (2) 37-43 38-44 42-45 44-46 47* (1) 48* (1)
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Thank you for your attention!
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