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ADDITIVE CODES OVER Fq

Additive code C over Fq of length n – additive subgroup
of Fn

q (if x, y ∈ C ⇒ x + y ∈ C)

Connections:

⇒ Quantum codes (Calderbank, Rains, Shor, and Sloane)

⇒ combinatorial t-designs (Pless and Kim)

⇒ undirected graphs (Glynn; Schlingemann and Werner)

⇒ other combinatorial structures (Huffman, Gulliver,
Parker)
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ADDITIVE CODES OVER F4

F4 = GF (4) = {0, 1, ω, ω2}, and ω2 + ω + 1 = 0.

Additive code C over F4 of length n – additive subgroup of Fn
4 .

We call C an (n, 2k) code (0 ≤ k ≤ 2n).

Weight of a codeword c ∈ C (wt(c)) is the number of nonzero
components of c.

Minimum weight (distance):
d = d(C) = min{wt(c)|c ∈ C, c 6= 0} → (n, 2k, d) code.

Generator matrix of C – k × n matrix with entries in F4

whose rows are a basis of C.

Weight enumerator of C: C(z) =
∑n

i=0 Aiz
i
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ADDITIVE CODES OVER F4

Trace map Tr : F4 → F2 is given by Tr(x) = x + x2.
In particular Tr(0) = Tr(1) = 0 and Tr(ω) = Tr(ω2) = 1.

The conjugate of x ∈ F4 (denoted x̄) is the following image
of x: 0̄ = 0, 1̄ = 1, and ω̄ = ω2.

The trace inner product of two vectors
x = (x1, x2, . . . , xn), y = (y1, y2, . . . , yn) in Fn

4 is

x ? y =
n∑

i=1

Tr(xiȳi) (1)
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ADDITIVE SELF-DUAL CODES

Dual code (C⊥) – C⊥ = {x ∈ Fn
4 |x ? c = 0 for all c ∈ C}.

If C is an (n, 2k) code, then C⊥ is an (n, 22n−k) code.

Self-orthogonal additive code - C ⊆ C⊥

Self-dual additive code - C = C⊥; it is (n, 2n) code.

Type II code - additive self-dual code, all codewords have
even weight

Type I code - additive self-dual code, some codewords have
odd weight
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BOUNDS

Bounds on the minimum weight (Rains and Sloane)

dI ≤




2bn/6c+ 1, n ≡ 0 (mod 6);
2bn/6c+ 3, n ≡ 5 (mod 6);
2bn/6c+ 2, otherwise

(2)

dII ≤ 2bn/6c+ 2

A code that meets the appropriate bound is called extremal.

If the code is not extremal but no code of given type can
exist with a larger minimum weight, the code is called optimal.
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EQUIVALENCE

Equivalent additive codes - C1 and C2 are equivalent if there
is a map sending the codewords of C1 onto the codewords of
C2 where the map consists of a permutation of coordinates,
a scaling of coordinates by element of F4, and conjugation of
some of coordinates.

Equivalence of two additive codes over F4 – by operations
on binary codes. The transformation from C into a binary
code is done by applying the map

β : 0 → 000; 1 → 011; ω → 101; ω̄ → 110 | (n, 2k) → [3n, k]2 code

G4 =

(
1 ω
0 ω̄

)
→ G2 =

(
0 1 1 1 0 1
0 0 0 1 1 0

)
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PRELIMINARY RESULTS

⇒ All extremal codes 2 ≤ n ≤ 7 – Höhn, 1996

⇒ All extremal codes n = 8, 9, 11, 12 – Gaborit, Huffman,
Kim, and Pless, 2001

⇒ All additive self-dual codes n ≤ 12 – Parker and
Danielsen, 2006

⇒ All extremal codes n = 13, 14; some codes 15 ≤ n ≤ 21 –
Varbanov, 2006

⇒ Some codes 15 ≤ n ≤ 28 with an automorphism of odd
prime order – Huffman, 2007
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GRAPH CODES

Graph code – additive self-dual code over F4 with generator
matrix Γ + ωI, where I is the identity matrix and Γ is the
adjacency matrix of a simple undirected graph which must
be symmetric with 0’s along the diagonal.

EXAMPLE:

Γ =




0 1 1
1 0 0
1 0 0


 , C = Γ + ωI =




ω 1 1
1 ω 0
1 0 ω




Theorem (Schlingemann and Werner, 2002): For any self-
dual additive code, there is an equivalent graph code. This means
that there is a one-to-one correspondence between the set of simple
undirected graphs and the set of self-dual additive codes over F4.
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ADDITIVE CIRCULANT CODES

A matrix B of the form:

B =




b0 b1 . . . bn−2 bn−1

bn−1 b0 b1 . . . bn−2

. . . . . . . . . . . . . . .
b2 . . . bn−1 b0 b1

b1 b2 . . . bn−1 b0




is called a circulant matrix.

The vector (b0, b1, . . . , bn−1) is called generating vector for
the matrix B.

Circulant code – an additive code with circulant generator
matrix.
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ADDITIVE CIRCULANT GRAPH CODES

Additive circulant graph (ACG) code – a code
corresponding to graph with circulant adjacency matrix.

B =




ω 1 0 0 1
1 ω 1 0 0
0 1 ω 1 0
0 0 1 ω 1
1 0 0 1 ω




The generating vector has the following property:
bi = bn−i,∀ i = 1, . . . , n− 1, and b0 = ω.

Then, the entries in the generator matrix of ACG code
depend only on the coordinates (b1, b2, . . . , bbn/2c).
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THE ALGORITHM

INPUT: positive integers n and d (1 < d < n).

OUTPUT: all possible ACG codes of length n and minimum distance ≥ d.

• STEP 1: If n is even, take a binary vector g(0) = (g1, g2, . . . g n
2
) and extend

it to a vector g = (ω, g1, g2, . . . , g n
2−1, g n

2
, g n

2−1, . . . , g2, g1). If n is odd then
g(0) = (g1, g2, . . . g n−1

2
), and g = (ω, g1, g2, . . . , g n−1

2
, g n−1

2
, . . . , g2, g1)

• STEP 2: Construct a circulant matrix G (a generator matrix of an ACG
code) with generating vector g.

• STEP 3: Compute all linear combinations of 1, 2, ...., d− 1 rows of G and
check their weights. If all weights are ≥ d then the minimum distance is
at least d.

• STEP 4: If g(0) is not all-one vector – g(0) = g(0) + 1, Step 1.

• END.
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RESULTS

Gulliver and Kim (2004) performed a computer search of
circulant self-dual additive codes over F4 of length ≤ 30.

Their search was not restricted to graph codes, so our
search space is a subset of theirs.

On the other hand, in some cases our search include all
circulant graph codes of given length (not only extremal or
optimal codes).

In this work we construct ACG codes of lengths 13 ≤ n ≤ 36
with maximum d that the codes of this type can reach.

Full classification of ACG codes of lengths 13 ≤ n ≤ 33
(excluding n = 30), some codes of lengths 34 ≤ n ≤ 36.
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RESULTS

ACG codes of length 13 ≤ n ≤ 36
for the maximum reached d

n d number n d number n d number
13 5 2 21 7 11 29 11 1
14 6 3 22 8 14 30 12 ≥ 1
15 6 2 23 8 2 31 10 62
16 6 6 24 8 51 32 10 108
17 7 1 25 8 31 33 10 76
18 6 52 26 8 210 34 10 ≥ 144
19 7 4 27 8 140 35 10 ≥ 1
20 8 2 28 10 1 36 10 ≥ 4
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RESULTS

ACG codes of lengths 13, 14, and 15
with d ≥ 2

n # d = 2 d = 3 d = 4 d = 5 d = 6
13 8 1 1 4 2 –
14 30 3 3 14 2 8
15 39 7 10 10 10 2
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RESULTS

Gulliver and Kim (2004) – 51 nonequivalent circulant
codes of length 24, all of them are Type II.

Our research – 51 nonequivalent circulant codes of length
24 but five of them are Type I (these are the first constructed
examples), and 46 codes are Type II.

This shows that the circulant graph code construction
cannot produce the same nonequivalent codes as strong as
the more general circulant code construction.

We construct 210 codes of length n = 26 (d = 8) – 49 codes
are Type I and 161 codes are Type II (Gulliver and Kim
(2004) – 14 Type I and 49 Type II codes, respectively).
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