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1. Multisets of points

Definition. A multiset in PG(k — 1, q) is a mapping

. 7) — No,
K'{P —  K(P).

o IC(P) — multiplicity of the point P.

o IC(P) — the cardinality of IC.

0 QCP:K(Q)=> pcoK(P)

& a; — the number of hyperplanes H with C(H) =1

o (a;)i>0 — the spectrum of K
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Definition. (n,w)-multiarc in PG(k — 1, q): a multiset IC with
1) K(P) = n;
2) for every hyperplane H: K(H) < w;

3) there exists a hyperplane Hy: K(Hy) = w.

Definition. (n,w)-blocking multiset in PG(k — 1, q)
(or (n, w)-minihyper):

a multiset K with

1) K(P) =n,

2) for every hyperplane H: K(H) > w;

3) there exists a hyperplane Hy: K(Hy) = w.
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2. Linear codes over finite fields

o Linear [n, k], code: C < Fy, dimC =k

o [n, k,d|,~code: d = min{d(u,v) | u,v € C,u # v}.
- n - the length of C;
- k - the dimension of C
- d - the minimum distance of C.

o A; — number of codewords of (Hamming) weight ¢

o (A;)i>0 — the spectrum of C
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3. Linear codes as multisets of points

A linear code of full length over F:

A linear code C' € Ty is said to be of full length if Vi € {1,...,n},
dc=(c1,c2,...,cn) € C with ¢; # 0.

Theorem. For every multiset K of cardinality n in PG(k — 1, q) there exist
a linear code of full length C' < F/ and a generating sequence of vectors
S = (c1,-+,c) from C which induces K. Two multisets K1 and Ko in
PG(k — 1, q) associated with the linear codes of full length C and Cs over IFy,
respectively, are equivalent if and only if C and C5 are semilinearly isomorphic.
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n, k,d],-code C & (n,n — d)-multiarc IC
of full length in PG(k — 1, q)

ueC wt(u) =n—w < ahyperplane H with K(H) = w,

(Ai)i>o <~ (a;)i>o0
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3. The main problem of coding theory

Given the positive integers k, d, and the prime power g, find n,(k, d) the smallest
value of n for which there exists a [n, k, d], code.
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4. The Griesmer bound

nalksd) > gk, d) = 3 [

i—0
In case of equality: Griesmer codes

o For k, g-fixed, d large enough, Griesmer codes always exist. (Tamari)

o For d, g-fixed, k large enough the Hamming bound gets better than the Griesmer
bound and Griesmer codes do not exist. (Dodunekov)
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o C: [n, k,d],code with n =t + g,(k, d)
o IC: (n,n — d)-(multi)arc in PG(k — 1, q) associated with C
& 7y; := maximal multiplicity of an ¢-dimensional subspace of PG(k — 1, q)

¢ Fact.

'L d
Vi < t+2[§1
j=0
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5. The status quo for ¢ =4

Problem.

For codes over [Fy, ny(k, d) has been found for k < 4 for all d.

For K = 5, n4(5,d) has been found for all but ~110 values of d.

Some open cases for k =5, ¢ = 4

d | ga(5,d) | na(5,d) || (n,w)-arc
285 382 382-383 (382 97)-arc
286 383 383-384 || (383,97)-arc
087 | 384 | 384-385 || (334,97 )arc

( )-

288 385 385-386 || (385,97

arc
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6. The Nonexistence result

Theorem. There exist no arcs with parameters (384,97) and (385,97) in
PG(4,4)

Corollary. There exist no codes with parameters [384,5,287]|, and
1385, 5, 288]4. Consequently, n4(5,287) = 385 and n4 (5, 288) = 386.

d | g4(5,d) | ng(5,d) || (n,w)-arc
285 | 382 | 382-383 || ? (382,97)
286 | 383 | 383-384 | ? (383,97)
287 | 384 | 384-385 || P (384, 97)
288 | 385 | 385-386 | # (385,97)
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7. Sketch of proof

Step 1. For a (385,97)-arc in PG(4,4):

Yo=2, v1 =7, v2 =25, 73 =97.

A maximal hyperplane is a (97,25)-arc in PG(3,4).

Step 2. By Ward's divisibility result and additional combinatorial arguments,
all multiplicities of hyperplanes (planes) for a (97,25)-arc are 1 modulo 4.

It turns out that a; = 0 for all © £ 9,13, 17,21, 25.

Step 3. The possible multiplicities of hyperplanes (solids) for a (385,97)-arc
are 65, 81,97.
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Step 4. Dualize a (385,97)-arc in PG(4,4) as follows:

65-solids —  2-points
81-solids —  1-points
97-solids —  0O-points

One gets a (22,{2,6,10})-arc in PG(4,4).
Step 5. A (22,{2,6,10})-arc obtained by dualizing a (385, 97)-arc has a 3-line.
Step 6. A (22,{2,6,10})-arc cannot have a 3-line.

o projection from a 3-line: (19, {3, 7})-arc in PG(2,4);

o characterization of all (19,{3,7})-arcs in PG(2, 4);

o none of them is extendible to a (22,{2,6,10})-arc in PG(4,4)

( a straightforward computer search).
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& The proof of the nonexistence of (384, 97)-arcs in PG(4,4) follows from the
geometric verison of Hill-Lizak's extension theorem.

Theorem. (Hill, Lizak) Let K be an (n,w)-arc in PG(k — 1,q) with
gcd(n—w, q) = 1. Assume that the multiplicities of all hyperplanes are congruent
to m or w modulo ¢. Then C can be extended to an (n + 1, w)-arc.
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