THE NONEXISTENCE OF SOME OPTIMAL ARCS IN PG(4,4)

Assia Rousseva

Sofia University

Ivan Landjev

Institute of Mathematics and Informatics, BAS

1. Multisets of points

Definition. A multiset in PG(k-1,q) is a mapping

$$\mathcal{K}: \left\{ \begin{array}{ccc} \mathcal{P} & \to & \mathbb{N}_0, \\ P & \to & \mathcal{K}(P). \end{array} \right.$$

- $\diamond \mathcal{K}(P)$ multiplicity of the point P.
- $\diamond \mathcal{K}(\mathcal{P})$ the cardinality of \mathcal{K} .
- $\diamond \mathcal{Q} \subset \mathcal{P}: \mathcal{K}(\mathcal{Q}) = \sum_{P \in \mathcal{Q}} \mathcal{K}(P).$
- $\diamond a_i$ the number of hyperplanes H with $\mathcal{K}(H)=i$
- $\diamond (a_i)_{i \geq 0}$ the **spectrum** of \mathcal{K}

Definition. (n, w)-multiarc in PG(k-1, q): a multiset K with

- 1) $\mathcal{K}(\mathcal{P}) = n$;
- 2) for every hyperplane $H: \mathcal{K}(H) \leq w$;
- 3) there exists a hyperplane H_0 : $\mathcal{K}(H_0) = w$.

Definition. (n, w)-blocking multiset in PG(k-1, q)

(or (n, w)-minihyper):

a multiset ${\cal K}$ with

- 1) $\mathcal{K}(\mathcal{P}) = n$;
- 2) for every hyperplane $H: \mathcal{K}(H) \geq w$;
- 3) there exists a hyperplane H_0 : $\mathcal{K}(H_0) = w$.

2. Linear codes over finite fields

- \diamond Linear $[n,k]_q$ code: $C<\mathbb{F}_q^n$, $\dim C=k$
- $\diamond [n, k, d]_q$ -code: $d = \min\{d(u, v) \mid u, v \in C, u \neq v\}$.
 - n the **length** of C;
 - k the **dimension** of C;
 - d the minimum distance of C.
- \diamond A_i number of codewords of (Hamming) weight i
- $\diamond (A_i)_{i>0}$ the **spectrum** of C

3. Linear codes as multisets of points

A linear code of full length over \mathbb{F}_q :

A linear code $C \in \mathbb{F}_q^n$ is said to be of **full length** if $\forall i \in \{1, \dots, n\}$, $\exists \ \boldsymbol{c} = (c_1, c_2, \dots, c_n) \in C$ with $c_i \neq 0$.

Theorem. For every multiset \mathcal{K} of cardinality n in $\mathrm{PG}(k-1,q)$ there exist a linear code of full length $C < \mathbb{F}_q^n$ and a generating sequence of vectors $S = (\boldsymbol{c}_1, \cdots, \boldsymbol{c}_k)$ from C which induces \mathcal{K} . Two multisets \mathcal{K}_1 and \mathcal{K}_2 in $\mathrm{PG}(k-1,q)$ associated with the linear codes of full length C_1 and C_2 over \mathbb{F}_q , respectively, are equivalent if and only if C_1 and C_2 are semilinearly isomorphic.

⁻ Optimal Codes and Related Topics, Varna, 16.-22.06.2009 -

$$\begin{array}{ccc} [n,k,d]_q\text{-code }C & \Leftrightarrow & (n,n-d)\text{-multiarc }\mathcal{K} \\ \text{of full length} & & \text{in }\mathrm{PG}(k-1,q) \end{array}$$

$${m u} \in C$$
, ${
m wt}({m u}) = n - w \quad \Leftrightarrow \quad {
m a \ hyperplane} \ H \ {
m with} \ {\cal K}(H) = w$,

$$(A_i)_{i \ge 0} \qquad \Leftrightarrow \qquad (a_i)_{i \ge 0}$$

$$a_i = \frac{1}{q-1} A_{n-i}$$

3. The main problem of coding theory

Given the positive integers k, d, and the prime power q, find $n_q(k,d)$ the smallest value of n for which there exists a $[n,k,d]_q$ code.

⁻ Optimal Codes and Related Topics, Varna, 16.-22.06.2009 -

4. The Griesmer bound

$$n_q(k,d) \ge g_q(k,d) := \sum_{i=0}^{k-1} \lceil \frac{d}{q^i} \rceil$$

In case of equality: Griesmer codes

- \diamond For k, q-fixed, d large enough, Griesmer codes always exist. (Tamari)
- \diamond For d, q-fixed, k large enough the Hamming bound gets better than the Griesmer bound and Griesmer codes do not exist. (**Dodunekov**)

- $\diamond C$: $[n, k, d]_q$ -code with $n = t + g_q(k, d)$
- \diamond \mathcal{K} : (n,n-d)-(multi)arc in $\mathrm{PG}(k-1,q)$ associated with C
- $\diamond \gamma_i :=$ maximal multiplicity of an *i*-dimensional subspace of PG(k-1,q)
- ♦ Fact.

$$\gamma_i \le t + \sum_{j=0}^i \lceil \frac{d}{q^j} \rceil.$$

5. The status quo for q=4

Problem.

For codes over \mathbb{F}_4 , $n_4(k,d)$ has been found for $k \leq 4$ for all d.

For k=5, $n_4(5,d)$ has been found for all but ≈ 110 values of d.

Some open cases for k=5, q=4:

d	$g_4(5,d)$	$n_4(5,d)$	(n,w)-arc
285	382	382-383	(382,97)-arc
286	383	383-384	(383,97)-arc
287	384	384–385	(384,97)-arc
288	385	385–386	(385,97)-arc

⁻ Optimal Codes and Related Topics, Varna, 16.-22.06.2009 -

6. The Nonexistence result

Theorem. There exist no arcs with parameters (384, 97) and (385, 97) in PG(4,4).

Corollary. There exist no codes with parameters $[384, 5, 287]_4$ and $[385, 5, 288]_4$. Consequently, $n_4(5, 287) = 385$ and $n_4(5, 288) = 386$.

d	$g_4(5,d)$	$n_4(5,d)$	(n,w)-arc
285	382	382–383	? (382, 97)
286	383	383-384	? (383, 97)
287	384	3/84-385	
288	385	3/85-386	385,97

⁻ Optimal Codes and Related Topics, Varna, 16.-22.06.2009 -

7. Sketch of proof

Step 1. For a (385, 97)-arc in PG(4, 4):

$$\gamma_0 = 2, \ \gamma_1 = 7, \ \gamma_2 = 25, \ \gamma_3 = 97.$$

A maximal hyperplane is a (97,25)-arc in PG(3,4).

Step 2. By Ward's divisibility result and additional combinatorial arguments, all multiplicities of hyperplanes (planes) for a (97, 25)-arc are 1 modulo 4.

It turns out that $a_i=0$ for all $i \neq 9,13,17,21,25$.

Step 3. The possible multiplicities of hyperplanes (solids) for a (385, 97)-arc are 65, 81, 97.

Step 4. Dualize a (385, 97)-arc in PG(4, 4) as follows:

```
\begin{array}{cccc} 65\text{-solids} & \longrightarrow & 2\text{-points} \\ 81\text{-solids} & \longrightarrow & 1\text{-points} \\ 97\text{-solids} & \longrightarrow & 0\text{-points} \end{array}
```

One gets a $(22, \{2, 6, 10\})$ -arc in PG(4, 4).

Step 5. A $(22, \{2, 6, 10\})$ -arc obtained by dualizing a (385, 97)-arc has a 3-line.

Step 6. A $(22, \{2, 6, 10\})$ -arc cannot have a 3-line.

- \circ projection from a 3-line: $(19,\{3,7\})$ -arc in PG(2,4);
- \circ characterization of all $(19, \{3, 7\})$ -arcs in PG(2, 4);
- \circ none of them is extendible to a $(22,\{2,6,10\})$ -arc in PG(4,4)

(a straightforward computer search).

⁻ Optimal Codes and Related Topics, Varna, 16.-22.06.2009 -

 \diamond The proof of the nonexistence of (384,97)-arcs in PG(4,4) follows from the geometric verison of Hill-Lizak's extension theorem.

Theorem. (Hill, Lizak) Let \mathcal{K} be an (n,w)-arc in $\mathrm{PG}(k-1,q)$ with $\gcd(n-w,q)=1$. Assume that the multiplicities of all hyperplanes are congruent to n or w modulo q. Then \mathcal{K} can be extended to an (n+1,w)-arc.