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Definition: perfect coloring

Let G = (V, E) be a graph.

Let f be a function (“coloring”) on V that pos-

sesses exactly k different values e0, . . . , ek−1 (“col-

ors”).

f is called a perfect coloring with parameter matrix

S = (Sij)
k−1
i,j=0, or S-perfect coloring, iff for any

colors ei, ej any vertex of color ei has exactly Sij

neighbors of color ej.



Example: perfect coloring

S =















1 2 0

1 0 2

0 2 1















Equivalent (almost) concepts: perfect coloring; eq-

uitable partition; front divisor of the graph; graph

covering



Matrix representation of a perfect coloring

f :

0 0 1

0 0 1

0 1 0

0 1 0

0 0 1

0 1 0

0 0 1

0 1 0

1 0 0

1 0 0



Adjacency matrix

A:

0 0 0 0 1 0 0 1 1 0

0 0 1 0 0 0 1 0 0 1

0 1 0 1 0 0 0 0 0 1

0 1 0 0 0 1 0 0 1 0

0 0 0 1 1 0 1 0 0 0

1 0 0 0 0 1 0 0 0 1

0 0 1 0 0 1 0 1 0 0

1 0 0 1 0 0 0 0 1 0

1 0 0 0 0 0 1 1 0 0

0 1 1 0 1 0 0 0 0 0



Matrix equation for perfect coloring

A – adjacency matrix of the graph;

f – perfect coloring with parameter matrix

S.

Then

Af = fS



Definition: perfect structure

If the equation Af = fS holds for some

matrices A, S, and f (of size N ×N , k× k,

and N×k respectively) over R, then we will

say that f is an S-perfect structure (or a

perfect structure with parameters S) over

A.

[1] S. V. Avgustinovich. Perfect structures. Lectures. POSTECH,
Korea, May 2007.



Def.: distance coloring, completely regular code

C – some set of vertices (code).

The function f(x) = ed(x,C), where d(·, ·) is the

natural distance in the graph, is a distance coloring

with respect to C.

If f is a perfect coloring, then C is called a com-

pletely regular code.



Examples: completely regular codes

The parameter matrix of a completely regular code
is three-diagonal.

– 1-Perfect codes:
(

0 n
1 n−1

)
; extended:




0 n 0
1 0 n−1
0 n 0




– Preparata-like codes:




0 n 0 0
1 0 n−1 0
0 2 n−3 1
0 0 n 0


; extended...

– STS:
(

0 n
3 n−3

)
; SQS:

(
0 n
4 n−4

)
.



Examples: (non) completely regular codes

– In a distance-regular graph, for any vertex x the

set {x} is a completely regular code.

New. – Every binary (n = 2m − 3,2n−m,3) code

(i.e., a code with parameters of doubly shortened

Hamming code) is a first color of a perfect coloring

with parameters




0 1 n−1 0
1 0 n−1 0
1 1 n−4 2
0 0 n−1 1






Exam.: c. r. codes with large covering radius

– r-dimensional face {(x1, ..., xr,0, ...,0)} in a Ham-

ming graph

– lattice {(x11, ..., x1r, x21, . . . , xpr) |
r∑

i=1

xji = 0∀j}
in a Hamming graph of dimension pr.

– p-ary subcube {(x1, ..., xn) | xi < p} of a q-ary

Hamming graph.



Definition: Distribution of one coloring

with respect to another

Let f and g be two colorings of the same graph.

The matrix gTf is the distribution of f with respect

to g. The ijth element is the number of vertices x

such that g(x) = ei and f(x) = ej.

If g is a distance coloring of some C, then gTf is

the weight distribution of f with respect to C. The

ijth element is the number of vertices x such that

d(x, C) = i and f(x) = ej.



Theorem 1 (distribution is a perfect structure)

Let Af = fS and Ag = gR where A = AT . Then

RT (gTf) = (gTf)S.

I.e., gTf is an S-perfect structure over RT .

Proof. RTgTf = (gR)Tf = (ATg)Tf = gTAf =

gTfS. ¤



Theorem 2 If the matrix B = {bi,j}n−1
i,j=0 is three-

diagonal and bi,i+1 6= 0, for any i = 0, ..., n − 2.

Then any S-perfect structure h over B (i.e. Bh =

hS) is uniquely defined by its first row h0. More-

over, the rows hi satisfy the recursive relations

hi = (hi−1S− bi−1,i−2hi−2 − bi−1,i−1hi−1)/bi−1,i,

and, by induction,

hi = h0Π
B
i (S)

where ΠB
i (z) is a degree-i polynomial in z.



Corollary

If we have: an S-perfect coloring f , a completely

regular code C. Then the weight distribution h of

f with respect to C is calculated as

hi = h0Π
C
i (S).

Q: How to compute the polynomials ΠC
i for C with

large covering radius (e.g., C = {x})?



Let G be a graph and let for every w from 0 to

diameter(G) the matrix Aw = (aw
ij)i,j∈V (G) be the

distance-w matrix of G (i.e., aw
ij = 1 if the graph

distance between i and j is w, and = 0 otherwise);

put A := A1. The graph G is called distance regular

iff for every w

Aw = Πw(A)

for some polynomial Πw of degree w. The poly-

nomials Π0, Π1, . . . , Πdiameter(G) are called P -

polynomials of G.



Af = fS, A2f = fS2, A3f = fS3, ..., and so,

P (A)f = fP (S) for any polynomial P . In particular,

Awf = fΠw(S).

I.e., the color percentage at the distance w from

the vertex i is fiΠw(S) where fi = the ith row of f

= the color of the vertex i. The weight distribution

of f with respect to {i} is:

(Π0(S)fi, Π1(S)fi, Π2(S)fi, ...)T ;

Π0(S) = Id, Π1(S) = S.



Hamming graph: Πw(·) = Kw(K−1
w (·)), Krawtchouk

polynomials.

Kw(z) = Kw(z;n, q) =
w∑

j=0

(−1)j(q−1)w−j

(
z

j

) (
n− z

w − j

)

Johnson graph: Πw(·) = Ew(E−1
w (·)), Eberlein poly-

nomials.



Conclusions

We have a universal matrix formula for calculating

the weight distribution of a perfect coloring with

respect to a completely regular code. In the case

of weight distribution with respect to a point in

a Hamming or Johnson graph, an explicit form of

this formula is given, using Krawtchouk or Eberlein

polynomials.






